vco_vexag2005

19
JAXA’s Venus Climate Orbiter (PLANET-C) overview Launch: Jun 2010 Arrival: Dec 2010 Mission life: 2 years

Upload: rauljoserainieri

Post on 26-Sep-2015

213 views

Category:

Documents


0 download

DESCRIPTION

VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005 VCO_VEXAG2005VCO_VEXAG2005 VCO_VEXAG

TRANSCRIPT

  • JAXAs Venus Climate Orbiter (PLANET-C) overview

    Launch: Jun 2010Arrival: Dec 2010Mission life: 2 years

  • Venus and Earth

    They have almost the same size and mass. Surface environments are completely different.

    (Venus environment: CO2 atmosphere, no ocean, 92bar, 740K, H2SO4 cloud ..)

    What differentiated these planets? How does the climate system work under different conditions?

  • Science goals

    Atmospheric dynamics Mechanism of super-rotation Meridional circulation Meso-scale processes Lightning Cloud physics

    Detection of active volcanism Inhomogeneity of surface material Zodiacal light

  • Planetary wave

    Baroclinic instability Tropical cyclones

    Cloud crusterInertio gravity wave

    Cumulus convectionGravity wave

    Boundary layer

    Boundary layer turbulence

    Climate change

    Wave breaking

    Hierarchy of Earths meteorology

    Interaction

    1sec 10min 1hr 6hr 2d 20d 1yr 10yr M

    acro

    Meso

    M

    icro

    104 km

    103 km

    102 km

    10 km

    1 km

    100 m

    10 m

  • Hierarchy of Venus meteorology1sec 10min 1hr 6hr 2d 20d 1yr 10yr

    Macro

    M

    eso

    Micro

    104 km

    103 km

    102 km

    10 km

    1 km

    100 m

    10 m

    ?Super-rotation

    ???????Upscale cascade to super-rotation?

  • Forbes (2002)

  • Concept of meteorological satellite

    Monitoring global structure Wide field of view (12o)

    Covering wide-range of time scales Continuous, systematic sampling

    (every 2 hours) Local time coverage

    Equatorial orbit Meso-scales / Wind vectors

    High spatial resolution (~10 km)

  • SpacecraftMass 480 kg

    (including fuel)Science payload 34 kgAttitude control

    Pointing accuracy 0.1o

    Stability 0.01o

    OribitPeriapsis 300km

    Apoapsis 13 RvPeriod 30 hours

    12o FOV

  • Science instruments (1)1-m camera (IR1) by Tokyo U.

    = 1.01 m (near-IR window)Pixels: 1024x1024, Detector: Si-CSD/CCD Cloud (day/night) Active volcanism / surface emissivity (night)

    2-m camera (IR2) by Kumamoto U. = 1.73, 2.26, 2.32 m (near-IR window), 2.02 m (CO2 absorption), 1.65 m (zodiacal light) Pixels: 1024x1024, Detector: PtSi

    Cloud / Particle size Carbon monooxide (night) Cloud top height (day) Zodiacal light (cruising) Galileo (2.3m)

  • Science instruments (2)UV imager (UVI) by Hokkaido U.

    = 283, 365 nm Pixels: 1024x1024, Detector: SiCCD SO2 / Unknown UV absorber (day)Longwave IR camera (LIR) by Inst. of Polar Res. = 8-12 m Pixels: 240x320, Detector: uncooled bolometer Cloud top temperature (day/night)Lightning and Airglow camera (LAC) by Tohoku U. = 777, 551, 553, 558, 630 nm Pixels: 8x8, Detector: APD (50kHz sampling) Lightning (night) O2 /O airglow (night)

  • Spacecraft motion

    To the earth

    Atmosphere

    X-band beacon

    Science instruments (3)Sensor Digital Electronics unit (DE) by JAXA

    Controlling observation sequence of camerasOnboard calibrationJPEG2000 data compression

    Ultra-stable oscillator (Radio science) by JAXA~10-13, provided by Timetech Co. Temperature profiles H2SO4 vapor profile Ionosphere

    Usuda deep space center

  • 1-m camera

    2-m camera

    Longwave IR camera

    Lightning and airglow camera

    Ultraviolet imager

  • 0 50 100velocity (m s-1)

    (km)100

    80

    60

    40

    20

    0

    Cloud layer

    Sounding regionR

    adio occultation

    CO

    (Near-IR

    )Low

    er cloud (Near-IR

    )

    Airglow

    (Visible)

    SO

    /Unknow

    n absorber (UV

    )

    Cloud top tem

    perature (IR)

    2

    CO

    absorption (Near-IR

    ) 2

    Lightning

    Surface (N

    ear-IR)

    Unknown momentum transport

    Altitude coverage

  • Observation sequence in each revolution300km x 13 RVenusPeriod: 30 hoursInclination: 172 deg Global images of

    atmosphere and ground surface (~24 hours)

    Close-up images / Lightning / Airglow (~3 hours x 2)

    Limb images (~1 hour)

    Resolution: 10-20 km

    Resolution: 1-10 kmResolution: 0.2-1 km

    Temperature/H2SO4vapor by radio occultation

  • Orbital motion roughly synchronized with the super-rotational flow near the cloud base

    60 m/s westward flow near the cloud base

    Spacecraft

  • 100-300 km

    Movement with time

    Derivation of cloud motion vectors every 2 hours

    Cloud tracked winds on the Earth

    Accurate derivation of eddy motions embedded in the background super-rotation

  • 0 km

    50 km

    35-50 km

    100 km

    65 km

    NightsideDayside

    SO2 / Unknown absorber (UVI

    Cloud top temperatureLIR

    Lower clouds IR1 Carbon monooxide

    IR2

    TemperatureH2SO4 vapor RS

    Cloud motion vectors

    Airglow LAC

    Lightning LACActive volcanism / Surface material IR1

    Cloud top height IR2

    3-D global meteorological data

    Lower clouds IR1/IR2

  • Search for hot lava by taking global pictures at 1.01m several times per orbit

    Emissivity distribution of the ground surface

    Cloud feature is distinguished from surface feature by taking motion pictures and using 1.7m and 2.3m images which reflect cloud feature but not the surface feature.

    Optical sounding of ground surface

  • Schedule2004 Proto Model (Phase-B) start2006 Flight Model design/manufacturing start2009 Final integration test2010 Launch / Arrival at Venus

    IR2 test modelM-V rocket of JAXA

    JAXAs Venus Climate Orbiter (PLANET-C) overviewVenus and EarthScience goalsHierarchy of Earths meteorologyHierarchy of Venus meteorologyConcept of meteorological satelliteSpacecraftAltitude coverageObservation sequence in each revolution3-D global meteorological dataOptical sounding of ground surfaceSchedule