vector-boson-scattering – vbfnlo updaterauch/talks/2013_rauch_bnljamboree.pdf · 2013. 10....

23
INSTITUTE FOR THEORETICAL PHYSICS Vector-Boson-Scattering – VBFNLO update Michael Rauch | BNL VBF/VBS Jamboree, Jul 2013 www.kit.edu KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Upload: others

Post on 12-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • INSTITUTE FOR THEORETICAL PHYSICS

    Vector-Boson-Scattering – VBFNLO update

    Michael Rauch | BNL VBF/VBS Jamboree, Jul 2013

    www.kit.eduKIT – University of the State of Baden-Wuerttemberg andNational Research Center of the Helmholtz Association

  • Outline

    VBFNLO overview

    Recent enhancements

    Semileptonic decays

    Form factor tool

    Backgrounds: QCD-WZjj

    Parton-shower matching: VBF-H

    M. Rauch – Vector-Boson-Scattering – VBFNLO update BNL VBF/VBS Jamboree, Jul 2013 2/23

  • Introduction

    VBFNLO

    Fully flexible parton-level Monte Carlo for processes with electroweak bosons

    accurate predictions needed for LHC(both signal and background)MC efficient solution for high number of final-state particles(decays of electroweak bosons included)

    general cuts and distributions of final-state particles

    various choices for renormalization and factorization scales

    any pdf set available from LHAPDF(or hard-wired CTEQ6L1, CT10, MRST2004qed, MSTW2008)

    event files in Les Houches Accord (LHA) or HepMC format (LO only)

    M. Rauch – Vector-Boson-Scattering – VBFNLO update BNL VBF/VBS Jamboree, Jul 2013 3/23

  • Process overviewList of implemented processes

    vector-boson fusion production at NLO QCD of

    Higgs (+NLO EW, NLO SUSY)Higgs plus third hard jet

    }

    (including Higgs decays)Higgs plus photon

    vector boson (W, Z, γ)two vector bosons (W+W−, W±W±, WZ, ZZ; Wγ will be in final VBFNLO 2.7.0)

    diboson production

    diboson (WW, WZ, ZZ, Wγ, Zγ, γγ) (NLO QCD)diboson via gluon fusion (WW, ZZ, Zγ, γγ)

    (part of NNLO QCD contribution to diboson)diboson (WZ, Wγ) plus hard jet (NLO QCD)

    triboson production

    triboson (all combinations of W, Z, γ) (NLO QCD)triboson (Wγγ) plus hard jet (NLO QCD)

    Higgs plus two jets via gluon fusion (one-loop LO)(including Higgs decays)

    new physics models

    anomalous Higgs couplingsanomalous triple and quartic gauge couplingsHiggsless and spin-2 models

    Intermediate state Higgs boson in all processes included where applicable

    M. Rauch – Vector-Boson-Scattering – VBFNLO update BNL VBF/VBS Jamboree, Jul 2013 4/23

  • Implementation Details

    Helicity amplitude method [Hagiwara, Zeppenfeld]

    Same building blocks for different Feynman graphs⇒ Compute only once per phase-space point and reuse (”leptonic tensors”)→ Significantly faster than generated code (up to factor 10)

    +

    e+νe

    µ+µ−γ

    Z/γ∗

    W+W+

    q̄′

    q̄ge+

    νe

    µ+µ−γ

    Z/γ∗

    W+W+

    q̄′

    gq

    · · ·+

    2

    M. Rauch – Vector-Boson-Scattering – VBFNLO update BNL VBF/VBS Jamboree, Jul 2013 5/23

  • Implementation Details

    Catani-Seymour dipole subtraction scheme

    σNLO = =

    m+1[dσR |ǫ=0 − dσA|ǫ=0]

    ︸ ︷︷ ︸

    real emission

    +

    m

    [dσV +

    1

    dσA]ǫ=0

    ︸ ︷︷ ︸

    virtual contributions

    +

    m

    dσC

    ︸ ︷︷ ︸

    finite collinear term

    Photon isolation à la FrixioneProcesses with real photons in final state can have configurationswith photon collinear to final-state quark → QED divergenceSimple (e.g. R) separation cut between photon and jet not infrared safe→ Frixione photon isolation

    i

    ETi Θ(δ − Riγ) ≤ pTγ1 − cos δ1 − cos δ0

    (for all δ ≤ δ0 = 0.7)

    ⇒ Efficiently suppresses fragmentation contribution

    M. Rauch – Vector-Boson-Scattering – VBFNLO update BNL VBF/VBS Jamboree, Jul 2013 6/23

  • Diboson-VBF production

    [Bozzi, Jäger, Oleari, Zeppenfeld; hep-ph/0603177, hep-ph/0604200, hep-ph/0701105]

    [Denner, Hosekova, Kallweit (W+W+)]

    Part of the NLO wishlist[Les Houches 2005]

    background to Higgs searches

    access to anomalous triple andquartic gauge couplings

    Implementation:

    modular structure→ reuse building blocksleptonic decays included

    only t- and u-channel diagrams(s-channel implementedseparately as triboson process)

    no interference effects fromidentical leptons

    u

    c

    u

    c

    νµ

    µ-

    e+

    νe

    W+ W-

    γ,Z

    (a)

    νµµ-

    e+

    νe

    u

    c

    u

    c

    γ,Z

    γ,Z

    ΓVα

    (b)

    νµ

    µ-

    e+νe

    u

    c

    u

    cW+

    W-

    W

    (c)

    νµµ-

    e+

    νe

    u

    c

    u

    cγ,Z

    γ,Z

    TVVαβ

    (d)

    νµ

    µ-

    e+νe

    u

    c

    u

    c

    W+

    γ,Z

    W-

    TW+Vαβ

    (e)

    e+

    νe

    νµ

    µ-u

    c

    u

    c

    W-

    γ,Z

    W+

    TWαβ

    V-

    (f)

    M. Rauch – Vector-Boson-Scattering – VBFNLO update BNL VBF/VBS Jamboree, Jul 2013 7/23

  • Semileptonic Decays

    [New in VBFNLO 2.7.0beta: Feigl]

    Vector bosons have significant branching fractions into qq̄ final statesBR(W → qq̄) ≃ BR(Z → qq̄) ≃ 70%⇒ Extend decay modes and let one vector boson decay hadronically⇒ semi-leptonic final states

    Vector-boson-fusion processes only contain t-channel exchange

    s-channel contribution can be viewed astriboson production with one vector boson decaying hadronically

    interference between s- and t-channel small⇒ can be treated as separate process↔ s-channel contribution small in phenomenologically interesting

    phase-space regions (Mjj,cut ≫ MV )

    M. Rauch – Vector-Boson-Scattering – VBFNLO update BNL VBF/VBS Jamboree, Jul 2013 8/23

  • Semileptonic Decays

    Semileptonic decays implemented in the following channels:pp → VVjj via VBF with VV ∈ W+W−, W±W±, W±Z , ZZpp → Hjj → VVjj via VBF with VV ∈ W+W−, ZZpp → VV with VV ∈ W+W−, W±Z , ZZpp → W+W−Z (other combinations will follow soon)

    Factor K = 1 + αsπ

    for V → qq̄ decay can be added asNLO approximation for decay(assuming resonant V production dominates)Non-resonant contributions includedVirtual photon decays γ∗ → qq̄

    can form single jet in real emission partquarks massless ⇒ divergence ↔ pion mass as regulator in reality⇒ technical cut → cross section depends on value⇒ estimate size from e+e− → hadrons without modelling resonances explicitly

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    1 10

    σ [

    mb

    ]

    √s [GeV]

    e+e

    - data from R

    NLO approx

    resonances

    NLO incl. res.

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    0 20 40 60 80 100 120 140

    /dm

    Z,h

    ad [fb

    / G

    eV

    ]

    mZ,had [GeV]

    thresholds from e+e

    - → hadrons

    M. Rauch – Vector-Boson-Scattering – VBFNLO update BNL VBF/VBS Jamboree, Jul 2013 9/23

  • Tagging jet definition

    two widely separated jets characteristic VBF signatureleptonic decays: two hardest jetssemileptonic decays: jet can come from vector boson decay ⇒ not a good choicealternatives:

    two jets with largest distance in rapidity→ works for signal, but bad background rejectionseparate phase space explicitly:• tagging jets: |ηtag| > ηc , η1 × η2 < 0• vector boson decay products: |ηdecay| < ηc• require high-pT jet in central region

    pp → W+W− jj via VBF, inclusive cuts

    0

    0.05

    0.1

    0.15

    0.2

    -5 -4 -3 -2 -1 0 1 2 3 4 5

    η

    1/σ * dσ/dη for softer tagging jet

    leptonic decay, tag = hardest

    semileptonic decay, tag = hardest

    semileptonic decay, tag = max eta dist

    pp → H(→ W+W−)jj

    0

    0.5

    1

    1.5

    2

    2.5

    3

    -5 -4 -3 -2 -1 0 1 2 3 4 5

    /dη

    [fb

    ]

    ηtag,pTmin

    mH = 700 GeV

    tag = forward region

    tag = true VBF jets

    tag = hardest

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    -5 -4 -3 -2 -1 0 1 2 3 4 5

    /dη

    [fb

    ]

    ηtag,pTmin

    mH = 700 GeV, demand hard central jet

    tag = forward region

    tag = true VBF jets

    tag = hardest

    M. Rauch – Vector-Boson-Scattering – VBFNLO update BNL VBF/VBS Jamboree, Jul 2013 10/23

  • Anomalous quartic gauge couplings

    Vector-boson scattering ideal process to test anomalous quartic gauge couplings[New in VBFNLO 2.7.0beta: Feigl, Schlimpert]

    Dimension-8 operators in Lagrangian(Φ Higgs doublet, Wµν /Bµν : SU(2)/U(1) field strength tensors):

    LM,2 ∝ [BµνBµν ] ×[(

    DβΦ)†

    DβΦ

    ]

    LT ,1 ∝[WανWµβ

    [

    WµβWαν

    ]

    . . .

    (at least) four gauge fields in each term → modify quartic gauge couplingstriple gauge couplings contribute as well

    M. Rauch – Vector-Boson-Scattering – VBFNLO update BNL VBF/VBS Jamboree, Jul 2013 11/23

  • Form factor tool

    Contribution of higher-dimensional operators can violate unitarityabove certain energy scale → unphysical

    Determine energy scale of unitarity violation → Partial-wave analysisConsider amplitudes for on-shell VV → VV scattering (V ∈ W , Z , γ)Decompose into series of partial waves with coefficients ai , i = 0, 1, 2, . . .→ Condition for unitarity conservation: |Re(ai )| <

    12

    Strongest bound typically from i = 0 → check only this contribution

    ⇒ maximal energy scale ΛmaxEnsure unitarity at higher energies by applying form factor

    Unitarity preserved by new-physics contributions entering at or before Λmax→ acts as cut-offeffective implementation in low-enery theory ⇒ form factorexplicit form model-dependent → choice arbitraryVBFNLO: dipole form factor

    F(s) =1

    (

    1 + sΛ2

    FF

    )n Λ2FF, n: free parameters

    Determine maximal ΛFF from given anomalous couplings, n and maximum energyconsidered

    → implemented in form factor tool available from VBFNLO web sitehttp://www.itp.kit.edu/˜vbfnloweb/wiki/doku.php?id=download:formfactor

    M. Rauch – Vector-Boson-Scattering – VBFNLO update BNL VBF/VBS Jamboree, Jul 2013 12/23

  • Example output

    [...]

    Reading in anomalous couplings parameter:

    SQRT_S = 14000.

    FFEXP = 2.0000

    FS0 = 0.10000E-09

    FS1 = 0.10000E-09

    [...]

    Checking tree-level unitarity violation with on-shell W+W- -> W+W- scattering

    using the largest helicity combination of the zeroth partial wave...

    [...]

    Checking tree-level unitarity violation with on-shell VV->VV scattering

    including all Q=0 channels involving W and Z bosons using the largest

    helicity combination of the zeroth partial wave...

    [...]

    Results for each channel, taking only the helicity combination with the largest

    contribution to the zeroth partial wave into account:

    FFscale_WWWW = 688. GeV ( without FF: |Re(pwave_0)| > 0.5 at 0.8 TeV )

    [...]

    No tree-level unitarity violation in W+W- -> AA scattering found.

    [...]

    Results for each channel, taking contributions from all helicity combinations to

    the zeroth partial wave into account by diagonalizing the T-matrix:

    FFscale_WWWW_diag = 688. GeV ( without FF: |Re(pwave_0)| > 0.5 at 0.8 TeV )

    [...]

    FFscale_VVVV_Q_0 = 622. GeV ( without FF: |Re(pwave_0)| > 0.5 at 0.7 TeV )

    [...]

    M. Rauch – Vector-Boson-Scattering – VBFNLO update BNL VBF/VBS Jamboree, Jul 2013 13/23

  • Anomalous quartic gauge couplings

    Normalized /pt distribution

    0

    1

    2

    3

    4

    5

    6

    7

    8

    0 200 400 600 800 1000

    1/σ

    dσ/d/p

    T

    [1

    0−

    3G

    eV

    −1]

    /pT [GeV ]

    Standard Model

    fM2/Λ4 = 800 TeV−4

    fT1/Λ4 = 25 TeV−4

    fWWW /Λ2 = 10 TeV−2

    Normalized |η|maxℓ

    distribution

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    0 0.5 1 1.5 2 2.5

    1/σ

    dσ/d|η|m

    ax

    |η|maxℓ

    Standard Model

    fM2/Λ4 = 800 TeV−4

    fT1/Λ4 = 25 TeV−4

    fWWW /Λ2 = 10 TeV−2

    Anomalous couplings enhance predominantly high-energy region

    ∆σ ∼ O(1 − 4%) for total cross section,∆σ ∼ O(20 − 100%) in high-energy region, mT

    WW> 800 GeV

    Visible changes in distributions, different for individual couplings

    → distinguish between different couplings

    M. Rauch – Vector-Boson-Scattering – VBFNLO update BNL VBF/VBS Jamboree, Jul 2013 14/23

  • QCD-Diboson production

    W+ W+jj and W+ W−jj known at NLO QCD for some time[Melia, Melnikov, Röntsch, Zanderighi; Greiner, Heinrich, Mastrolia, Ossola, Reiter, Tramontano]

    W+W−jj

    + diagrams where quark line without attached vectorbosons is replaced by gluons

    W+W−jj & W+W+jj(latter after changing quarkflavors appropriately)

    M. Rauch – Vector-Boson-Scattering – VBFNLO update BNL VBF/VBS Jamboree, Jul 2013 15/23

  • WZjj production

    [Campanario, Kerner, Le, Zeppenfeld; will be in final VBFNLO 2.7.0]

    QCD-induced WZjj production (O(α4α2s))Born: 90 subprocesses

    virtual corrections: up to rank-5 hexagons

    real emission: 146 subprocesses

    M. Rauch – Vector-Boson-Scattering – VBFNLO update BNL VBF/VBS Jamboree, Jul 2013 16/23

  • Speed comparison

    W+Zjj @ LO

    runtime for 0.1% accuracy:

    VBFNLO: 8 min

    Sherpa: 5 h

    MadGraph 5: 1 month(based on extrapolation:

    0.7% in 14 hours)

    W+Zjj @ NLO

    runtime for 1% accuracy:

    VBFNLO: 2-3 h

    Origin of better performance

    get rid of numerical instabilities

    combine and reuse similarcontributions

    good phase-space generator

    W+W+jj @ NLO

    VBFNLO:

    30 min for 1% accuracy

    POWHEG-BOX:

    200 jobs, 3 days each

    best result:8% accuracy

    median:60% accuracy

    worst result:off by factor 106

    (with error as large)

    combined result:1.1% (weighted mean)

    M. Rauch – Vector-Boson-Scattering – VBFNLO update BNL VBF/VBS Jamboree, Jul 2013 17/23

  • Scale variation

    pp → e+νeµ+µ−jj ,√

    S = 14 TeV

    cuts

    pT ,j > 20 GeV |ηj | < 4.5pT ,ℓ > 20 GeV |ηℓ| < 2.5

    mℓ+ℓ− > 15 GeV /pT > 30 GeV

    Rjj > 0.4 Rℓℓ > 0.4

    Rjℓ > 0.4

    PDFMSTW 2008 with nF = 4

    scale

    µ = µF = µR

    =1

    2

    jet

    pT ,jet + ET ,W + ET ,Z

    with ET ,V =√

    p2T ,V

    + m2V

    0µ/µ

    ›110 1 10

    [ fb

    0

    5

    10

    15

    20

    25

    30

    = 14TeVsLONLO

    -W

    )(

    jj+X

    ±

    µ±µeν± e→pp

    +W

    -W

    → scale dependence strongly reduced

    M. Rauch – Vector-Boson-Scattering – VBFNLO update BNL VBF/VBS Jamboree, Jul 2013 18/23

  • Distributions

    pT ,j

    [ fb

    /TeV

    ]T

    ,j/d

    pσd

    ›310

    ›210

    ›110

    1

    10

    210

    = 14TeVsLONLO

    jj+X-µ+µeν+ e→pp

    1j

    2j

    [ TeV ]T,j

    p0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    K

    0.6

    0.8

    1

    1.22j

    1j

    mjj

    [ fb

    /TeV

    ]jj

    /dm

    σd

    ›210

    ›110

    1

    10

    210

    = 14TeVsLONLO

    jj+X-µ+µeν+ e→pp

    [ TeV ]jjm0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

    K

    0.4

    0.6

    0.8

    1

    → Differential K factor varying in distributions

    M. Rauch – Vector-Boson-Scattering – VBFNLO update BNL VBF/VBS Jamboree, Jul 2013 19/23

  • Matching with Parton Shower

    [New in VBFNLO 2.7.0 beta + upcoming Herwig++ release: Arnold et al.]

    VBFNLO interfaced to Herwig++

    requires some process-dependent modifications⇒ currently only VBF-Higgs production, further processes will follow→ Matching NLO calculations with parton shower

    NLO calculation

    normalization correct to NLO

    additional jet at high-pTaccurately described

    theoretical uncertainty reduced

    low-pT jet emission badlymodelled

    parton level description

    LO + parton shower

    LO normalization only

    further high-pT jets badlydescribed

    Sudakov suppression at small pT

    events at hadron level possible

    ⇒ Herwig++ package Matchbox [Gieseke, Plätzer]Parton shower based on Catani-Seymour dipoles

    Matching methods: MC@NLO and POWHEG 0

    0.002

    0.004

    0.006

    0.008

    0.01

    0.012

    0 50 100 150 200 250 300 350 400 450 5001/σ

    dσ/

    dp⊥

    j1[1

    /Ge

    V]

    p⊥j1 [GeV]

    VBFNLO

    Matchbox

    NLO validation plot

    M. Rauch – Vector-Boson-Scattering – VBFNLO update BNL VBF/VBS Jamboree, Jul 2013 20/23

  • Shower effects at LO

    0.01

    0.1

    1

    10

    0 20 40 60 80 100

    /dp

    Tj3

    [fb

    /Ge

    V]

    pTj3 [GeV]

    transverse momentum pTj3

    LO, default shower

    LO, dipole shower

    NLO, parton level

    Transverse momentum of third hardest jet

    0

    2

    4

    6

    8

    10

    12

    -4 -2 0 2 4

    /dy

    j3[fb

    ]

    yj3

    rapidity yj3

    LO, default shower

    LO, dipole shower

    NLO, parton level

    Rapidity of third hardest jet

    additional radiation by shower createdmainly between jets and beam axis(color connections)

    dipole shower “interpolates” betweenNLO behavior in central region andshower behavior at small angles

    M. Rauch – Vector-Boson-Scattering – VBFNLO update BNL VBF/VBS Jamboree, Jul 2013 21/23

  • NLO matching

    0

    2

    4

    6

    8

    10

    -4 -2 0 2 4

    /dy

    j3[fb

    ]

    yj3

    rapidity yj3

    MC@NLO

    POWHEG

    NLO, parton level

    Rapidity of third hardest jet

    0

    2

    4

    6

    8

    10

    12

    -6 -4 -2 0 2 4 6

    /dy∗ j3

    [fb

    ]

    y∗j3

    y∗j3

    MC@NLO

    POWHEG

    NLO, parton level

    LO, dipole shower

    y∗j3 = yj3 −12

    (

    yj1 + yj2

    )

    M. Rauch – Vector-Boson-Scattering – VBFNLO update BNL VBF/VBS Jamboree, Jul 2013 22/23

  • Conclusions

    New features in VBFNLO

    Semi-leptonic decays for VVjj , VV , WWZForm factor tooldetermine energy bound for unitarity violation in anomalous gauge couplingscalculate necessary form factor

    QCD-WZjj at NLO QCDfast implementation in VBFNLO

    Matching with parton shower

    VBFNLO is a flexible parton-level Monte Carlo for processes with electro-weak bosons

    Code available at

    http://www.itp.kit.edu/vbfnlo

    VBFNLO is collaborative effort:

    K. Arnold, J. Bellm, G. Bozzi, M. Brieg, F. Campanario, C. Englert, B. Feigl, J. Frank,T. Figy, F. Geyer, N. Greiner, C. Hackstein, V. Hankele, B. Jäger, M. Kerner, G. Klämke,M. Kubocz, C. Oleari, S. Palmer, S. Plätzer, S. Prestel, MR, H. Rzehak, F. Schissler,O. Schlimpert, M. Spannowsky, M. Worek, D. Zeppenfeld

    Contact: [email protected]

    M. Rauch – Vector-Boson-Scattering – VBFNLO update BNL VBF/VBS Jamboree, Jul 2013 23/23

    http://www.itp.kit.edu/[email protected]