vedat s. arpaci and poul s. larsen, prentice-hall...

13
1 Convection Heat Transfer Textbook: Convection Heat Transfer Adrian Bejan, John Wiley & Sons Reference: Convective Heat and Mass Transfer Kays, Crawford, and Weigand, McGraw-Hill Convection Heat Transfer Vedat S. Arpaci and Poul S. Larsen, Prentice-Hall Inc 1. Fluid Properties and Conservation Laws 2. External/Internal Laminar Flows 3. External/Internal Natural Convection 4. External/Internal Turbulent Flows 5. High Speed Flows Content: Grading: HW (30%)+Midterm (30%) + Final (30%) + Report (15%) Convection Heat Transfer

Upload: vanthuan

Post on 22-Feb-2018

229 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Vedat S. Arpaci and Poul S. Larsen, Prentice-Hall Incww2.me.ntu.edu.tw/course/heatflow/heat024/introduction.pdf · 1 Convection Heat Transfer Textbook: Convection Heat Transfer Adrian

1

Convection Heat Transfer

Textbook: Convection Heat Transfer

Adrian Bejan, John Wiley & Sons

Reference: Convective Heat and Mass Transfer

Kays, Crawford, and Weigand, McGraw-Hill

Convection Heat Transfer

Vedat S. Arpaci and Poul S. Larsen, Prentice-Hall Inc

1. Fluid Properties and Conservation Laws

2. External/Internal Laminar Flows

3. External/Internal Natural Convection

4. External/Internal Turbulent Flows

5. High Speed Flows

Content:

Grading: HW (30%)+Midterm (30%) + Final (30%) + Report (15%)

Convection Heat Transfer

Page 2: Vedat S. Arpaci and Poul S. Larsen, Prentice-Hall Incww2.me.ntu.edu.tw/course/heatflow/heat024/introduction.pdf · 1 Convection Heat Transfer Textbook: Convection Heat Transfer Adrian

2

Wanted

• friction force: 0 cos f

S

F dA

Skin friction coefficient 221

0

UC f

• pressure drag: 0 sin p

S

F P dA

form drag coefficient21

2

pp

FC

U A

Wanted

• heat transfer rate at the surface

no-slip hypothesis at wall : pure conduction adjacent to the wall

Fourier’s law: 0

0

yy

Tkq

• convection heat transfer coefficient: TThq 00

TT

y

Tk

hei y

0

0 ..

• local Nusselt number:k

hxNux

stationary whenratefer heat trans

flow in whenratefer heat trans~

Page 3: Vedat S. Arpaci and Poul S. Larsen, Prentice-Hall Incww2.me.ntu.edu.tw/course/heatflow/heat024/introduction.pdf · 1 Convection Heat Transfer Textbook: Convection Heat Transfer Adrian

3

Wanted

• averaged convection heat transfer coefficient:

avg

x

avg

xx T

dxqx

T

qh

1

0

00

0

total heat transfer rate over (0,x) = 0 0

0

x

x avgq dx x h T

• overall Nusselt number: k

x

T

q

k

xhNu

avg

xxx

00

0

Analysis Methods

• scaling analysis : qualitative analysis

magnitude of order

related to what parameters and how?

• integral analysis : quantitative analysis

magnitudes with a little errors

related to what parameters and how?

• similarity analysis : exact analysis

under model assumptions

• perturbation analysis : critical analysis

near some critical point

Page 4: Vedat S. Arpaci and Poul S. Larsen, Prentice-Hall Incww2.me.ntu.edu.tw/course/heatflow/heat024/introduction.pdf · 1 Convection Heat Transfer Textbook: Convection Heat Transfer Adrian

4

Fluid Properties

(1) viscosity coefficient: secm ; secmkg 2

• Newtonian Fluids:

2 usually assumed ( , Landau & Lifschifz, 1959)

3

jiji ji ji ji ji

j i

k

k

uup p

x x

uu

x

Fluid Mechanics

• temperature dependence:

PT ,

r cT T T

as :liquid

as :gases

T

T

Page 5: Vedat S. Arpaci and Poul S. Larsen, Prentice-Hall Incww2.me.ntu.edu.tw/course/heatflow/heat024/introduction.pdf · 1 Convection Heat Transfer Textbook: Convection Heat Transfer Adrian

5

Fluid Properties

(2) thermal conductivity: secm ; KmW 2pckk

• temperature dependence:

PTkk ,

• Fourier’s Law: Tkq )mW flux,(heat 2

isotropic k usually assumed

as :liquid

as :gases

Tk

Tk

r cT T T

rc

kk

k

Page 6: Vedat S. Arpaci and Poul S. Larsen, Prentice-Hall Incww2.me.ntu.edu.tw/course/heatflow/heat024/introduction.pdf · 1 Convection Heat Transfer Textbook: Convection Heat Transfer Adrian

6

Dimensionless Parameters

(1) Reynolds number: force viscous

force inertial~Re

UL

(2) Prandtl number: diffusionthermal

diffusion momentum~Pr

(3) Eckert number: massunit per differenceenthalpy

massunit per energy kinetic~

2

Tc

UEc

p

Re Re turbulent flowscr>

timeconvection char.

timediffusion char.~Re

2

UL

L

High speed flows significant viscous dissipation

Ec << 1 negligible viscous dissipation

Time Derivatives

Eulerianderivative

Lagrangian/material derivative

Du

Dt t

total derivative observer

dV

dt t

Page 7: Vedat S. Arpaci and Poul S. Larsen, Prentice-Hall Incww2.me.ntu.edu.tw/course/heatflow/heat024/introduction.pdf · 1 Convection Heat Transfer Textbook: Convection Heat Transfer Adrian

7

Conservation Laws

massunit per quantity physical some Let

CV

Vd (CV) volumecontrol the withinquantity ofamount total

CS

dAnu

(CS) surface control the throughquantity of rateoutflow

CVCS

VdqdAnu sources Vd

t :requires onConservati

CV

q source per unit time per unit volume

dm dV

Differential Form

CV CV

Conservation law: sources t CV

dV u dV qdV

• Consider an infinitesimal control volume VdCV

Divergence Theorem: Vdx

aVdadAna

V j

j

VS

t

dV u dV qdV

qu

t

CV

Conservation requires: sources t CS CV

dV u ndA qdV

Page 8: Vedat S. Arpaci and Poul S. Larsen, Prentice-Hall Incww2.me.ntu.edu.tw/course/heatflow/heat024/introduction.pdf · 1 Convection Heat Transfer Textbook: Convection Heat Transfer Adrian

8

Mass Conservation

qu

t

0 t

u

• mass: , no source1 0 q

0t t

Du u u

D

1 1 volume change rate per unit volume

t

D Du

D Dt

vector identi

t

:

y

a a a

CV

total amount of quantity within the control volume (CV) dV

Momentum Conservation

• momentum iu

fluids gsurroundin itsby CV theon acting force source CV

Vdq

= body forces + contact forces

CV

i ji j

CS

X dV n dA CV

jii

jCV

X dV dVx

Divergence Theorem: Vdx

aVdadAna

V j

j

VS

CV

total amount of quantity within the control volume (CV) dV

+ jii

j

q Xx

Page 9: Vedat S. Arpaci and Poul S. Larsen, Prentice-Hall Incww2.me.ntu.edu.tw/course/heatflow/heat024/introduction.pdf · 1 Convection Heat Transfer Textbook: Convection Heat Transfer Adrian

9

Momentum Conservation

qu

t

j

jiiii x

Xuuu

t

Newtonian fluid: t

jiii i

i j

u pu u X

x x

Newtonian fluid: ji ji jip

0tiu u

• momentum iu

+ jii

j

q Xx

jiji ji

j j

px x

jiji

j j

p

x x

ji

i j

p

x x

Energy Conservation

• total energy: energy) (potential mass)unit per energy (internal 21 Vuue ii

body force X V

• sources

gssurroundin itsby CV theon done work

CV ofinto/out diffusionheat

generationheat exteranl

ji j i

CV CS CS

qdV q ndA n dA u

ijij

ux

qqu

t

ji ij jip

Divergence Theorem: Vdx

aVdadAna

V j

j

VS

j ji ia u

Page 10: Vedat S. Arpaci and Poul S. Larsen, Prentice-Hall Incww2.me.ntu.edu.tw/course/heatflow/heat024/introduction.pdf · 1 Convection Heat Transfer Textbook: Convection Heat Transfer Adrian

10

• kinetic energy equation: jiii i

i j

Du pu X

Dt x x

Energy Conservation

12 i i i i ji

i j

De u u V q q pu u

Dt x x

• total energy equation:

0i i i i ii

DV V Vu u X u X

Dt t x

jii ii i ji

i i j j

u upp u u

x x x x

upqq Dt

De

• thermal energy equation:

iji

j

u

x

X V

upqq Dt

De

thermal (internal) energy

the time change rate of the internal energy of an infinitesimal

control volume = the heat generation rate

+ the net heat diffusion rate

+ pressure work rate done by surrounding fluid

+ viscous dissipation rate

Page 11: Vedat S. Arpaci and Poul S. Larsen, Prentice-Hall Incww2.me.ntu.edu.tw/course/heatflow/heat024/introduction.pdf · 1 Convection Heat Transfer Textbook: Convection Heat Transfer Adrian

11

Thermal Energy Conservation

21 1

2 2j ji i

j i j i

ji

j i

uu

x x

u uu u

x x x x

2

2j ji i

j i j i

u uu u

x x x x

iji

j

j

iij x

u

x

u

Newtonian fluid:

jiij

j

i

j

i

i j

u

x

u u

xx x

u

viscous dissipation rate = rate at which kinetic

energy is irreversibly converted to thermal energy by viscosity

j

iij x

u

upqq Dt

De

2

2j ji i

j i j i

u uu u

x x x x

viscous dissipation rate

j

iij x

u

4

2 3j j ji i i

j i j i i j

u u uu u u

x x x x x x

222 23

3 3 31 2 1 2 1 2

, 11 2 3 1 2 1 3 2 3

8 8 8 8

2 3 3 3 3ji

i j j ii j

uu u u uu u u u u u

x x x x x x x x x x x

22 2 2

3 31 1 2 2 1 1

1 1 2 2 1 1 3 3

2223

3 32 2

, 12 2 3 3

4 42 2

3 3

2 42

3ji

i j j ii j

u uu u u u u u

x x x x x x x x

uu u uu u

x x x x x x

22 223

3 31 2 1 2

, 11 2 1 3 3 2

4

2 3ji

i j j ii j

uu u uu u u u

x x x x x x x x

> 0

Page 12: Vedat S. Arpaci and Poul S. Larsen, Prentice-Hall Incww2.me.ntu.edu.tw/course/heatflow/heat024/introduction.pdf · 1 Convection Heat Transfer Textbook: Convection Heat Transfer Adrian

12

upqq Dt

De

Temperature-based

h e p dh de dp Tds pd dp Tds dp (first law)

p T

s sds dT dp

T p

( , )s T p

( , ) ( , ) ( , )

( , ) ( , ) ( , ) pT

s s T p p

p p T p T p T T

(Maxwell relation)

,1

,

s T

p

p

sdT dp

T

p

sdh T dT T dp

T

Temperature-based

1p

dpdh c dT T

1p

Dh DT Dpc T

Dt Dt Dt

pp

hc

T

p

sT

T

p

sdh T dT T dp

T

,h h T p

upqq Dt

De

Page 13: Vedat S. Arpaci and Poul S. Larsen, Prentice-Hall Incww2.me.ntu.edu.tw/course/heatflow/heat024/introduction.pdf · 1 Convection Heat Transfer Textbook: Convection Heat Transfer Adrian

13

• enthaphy h e p

upqq Dt

De

1

1 1De Dp p D

Dt D

Dh De Dp pu

t DtDt Dt Dt

Dt

DpTqq

Dt

DTcp

Temperature-based

1 p

DT Dp Dpc T q q p u p u

Dt Dt Dt

1p

Dh DT Dpc T

Dt Dt Dt

Temperature

• Assumptions: (1) negligible compressibility effect 0

(2) no external heat generation 0q

(3) negligible viscous dissipation 1Ec 0

(4) Fourier’s Law: Tkq

TkTut

Tc

Dt

DTc pp

Dt

DpTqq

Dt

DTcp

1 1

p pT T

= thermal expansion coefficient