vehicle scheduling problems

58
Ralf Borndörfer DFG Research Center MATHEON “Mathematics for key technologies” Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) Löbel, Borndörfer & Weider GbR (LBW) [email protected] http://www.zib.de/borndoerfer Martin Grötschel Beijing Block Course “Combinatorial Optimization at Work” September 25 – October 6, 2006 09M1 Lecture Vehicle Scheduling Problems

Upload: others

Post on 14-May-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Vehicle Scheduling Problems

Ralf Borndörfer DFG Research Center MATHEON “Mathematics for key technologies”Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)Löbel, Borndörfer & Weider GbR (LBW)

[email protected] http://www.zib.de/borndoerfer

Martin GrötschelBeijing Block Course

“Combinatorial Optimization at Work”

September 25 – October 6, 2006

09M1 LectureVehicle Scheduling Problems

Page 2: Vehicle Scheduling Problems

Ralf Borndörfer

2

BVG (Berlin)

Page 3: Vehicle Scheduling Problems

Ralf Borndörfer

3

bus costs (DM) urban % regional

73.5 195,000

30,000

12,900

10,000

18,000

5,000

18,000

288,900

7.4

3.2

2.9

4.7

1.0

7.1

100.0

crew

depreciation

calc. interest

materials

fuel

repairs

other 34,000 7.2

total

%

349,600 67.5

35,400 10.4

15,300 4.5

14,000 3.5

22,200 6.2

5,000 1.7

475,500 100.0

Leuthardt Survey(Leuthardt 1998, Kostenstrukturen von Stadt-, Überland- und Reisebussen, DER NAHVERKEHR 6/98, pp. 19-23.)

Page 4: Vehicle Scheduling Problems

Ralf Borndörfer

4

Vehicle Utilization

Page 5: Vehicle Scheduling Problems

Ralf Borndörfer

5

"Camel Curve"

68

Page 6: Vehicle Scheduling Problems

Ralf Borndörfer

6

Interlining

too short to turntoo long to wait

best choice

Page 7: Vehicle Scheduling Problems

Ralf Borndörfer

7

Sea Freight(Koopmans 1965, 7 sources, 7 sinks, all sea links)

Page 8: Vehicle Scheduling Problems

Ralf Borndörfer

8

Optimal Allocation of Scarce Resources(Nobel Price in Economics 1975)

Leonid V. Kantorovich Tjalling C. Koopmans

Page 9: Vehicle Scheduling Problems

Ralf Borndörfer

9

Single Depot Vehicle Scheduling

The Assignment ProblemInput: 3 Buses, 3 trips, costs

Output: cost minimal assignment

1 2 3

34

33

76 7

8 10

1 2 3

SolutionCost = 20

Buses

Trips

Page 10: Vehicle Scheduling Problems

Ralf Borndörfer

10

SolutionCost = 17

Single Depot Vehicle Scheduling

The Greedy-Heuristikheuretikos (gr.): inventiveheuriskein (gr.): to find

1 2 3

34

33

76 7

8 10

1 2 3

Buses

Trips

Page 11: Vehicle Scheduling Problems

Ralf Borndörfer

11

Single Depot Vehicle Scheduling

The Greedy-Heuristikheuretikos (gr.): inventiveheuriskein (gr.): to find

1 2 3

34

33

76 7

8 10

1 2 3

Buses

Trips

SolutionCost = 16

Page 12: Vehicle Scheduling Problems

Ralf Borndörfer

12

OptimumCost = 15

Single Depot Vehicle Scheduling

The "Primal Problem"Minimum Cost

Assignment

The "Dual Problem"Maximum Sales Revenues

"Shadow Prices"

5 4 0

34

33

76 7

8 10

7 8 9

Buses

Trips

Page 13: Vehicle Scheduling Problems

Ralf Borndörfer

13

Mathematical Models(Assignment Problem)

Graph Theoretic Model Integer Programming Model

Linear Programming Relaxation

1 2 3

34

33

76 7

8 10

1 2

11 12 13

21 22 23

31 32 33

11 12 13

21 22 23

31 32 33

11 21 31

12 22 32

13 23 33

11 33

11 33

min 3 3 43 7 67 8 10

s.t. 111111

, , 0, , {0,1}

+ ++ + ++ + +

+ + =+ + =+ + =+ + =+ + =+ + =

≥∈

……

x x xx x xx x xx x xx x xx x xx x xx x xx x xx xx x

3

Page 14: Vehicle Scheduling Problems

Ralf Borndörfer

14

"Shadow Prices"

Page 15: Vehicle Scheduling Problems

Ralf Borndörfer

15

Single Depot Vehicle Scheduling

The „Successive Shortest Path“ Algorithm

0 0 033

443

3

33 7

7

66

77 8

81010

0 0 0

Page 16: Vehicle Scheduling Problems

Ralf Borndörfer

16

Single Depot Vehicle Scheduling

The „Successive Shortest Path“-Algorithm

0 0 033

443

3

33 7

7

66

77 8

81010

0 0 0

00 0 0

000

Boundcost = 15Partial sol.cost = 0

Buses

Trips

Page 17: Vehicle Scheduling Problems

Ralf Borndörfer

17

Single Depot Vehicle Scheduling

The „Successive Shortest Path“ Algorithm

0 0 030

403

0

30 7

4

62

74 8

5106

0 0 0

00 0 0

000

+3+3

+0 +0 +0Bound

cost = 10Partial sol.cost = 3

+4

Buses

Trips

Page 18: Vehicle Scheduling Problems

Ralf Borndörfer

18

Single Depot Vehicle Scheduling

The „Successive Shortest Path“ Algorithm

0 0 030

40-3

0

30 7

4

62

74 8

5106

3 3 4

00 0 0

000 Buses

Trips

Boundcost = 10Partial sol.cost = 3

Page 19: Vehicle Scheduling Problems

Ralf Borndörfer

19

Single Depot Vehicle Scheduling

The „Successive Shortest Path“ Algorithm

0 0 030

40-3

0

30 7

4

62

74 8

5106

3 3 4

00 0 0

000

+0+0

+0 +0 +0

+0

Buses

Trips

Boundcost = 10Partial sol.cost = 6

Page 20: Vehicle Scheduling Problems

Ralf Borndörfer

20

Single Depot Vehicle Scheduling

The „Successive Shortest Path“ Algorithm

0 0 0-30

403

0

-30 7

4

62

74 8

5106

3 3 4

00 0 0

000 Buses

Trips

Boundcost = 10Partial sol.cost = 6

Page 21: Vehicle Scheduling Problems

Ralf Borndörfer

21

Single Depot Vehicle Scheduling

The „Successive Shortest Path“ Algorithm

0 0 0-30

403

0

-30 7

4

62

74 8

5106

3 3 4

00 0 0

000

+5+4

+5 +4 +0

+5

Buses

Trips

Bound= 15

= 15

costPartial sol.cost

Page 22: Vehicle Scheduling Problems

Ralf Borndörfer

22

Single Depot Vehicle Scheduling

The „Successive Shortest Path“ Algorithm

5 4 030

-403

1

-30 7

3

61

70 -8

0101

7 8 9

00 0 0

000 Buses

Trips

Boundcost = 15Partial sol.cost = 15

Page 23: Vehicle Scheduling Problems

Ralf Borndörfer

23

The „Successive Shortest Path“ AlgorithmPath Search

Solution + Proof

Efficient

Single Depot Vehicle Scheduling

5 4 030

403

1

30 7

3

61

70 8

0101

7 8 9

Buses

Trips

Boundcost = 15Solution

cost = 15

Page 24: Vehicle Scheduling Problems

Ralf Borndörfer

24

D D 1 2 3

D D 1 2 3

4

4

1

1

2

2

3

3

D

D

4

4

Single Depot Vehicle Scheduling(Assignment Model)

1

1

2

2

3

3

D

D

4

4

D D 1 2 3

D D 1 2 3

4

4

D D 1 2 3

D D 1 2 3

4

4

Page 25: Vehicle Scheduling Problems

Ralf Borndörfer

25

SPEC

Page 26: Vehicle Scheduling Problems

Ralf Borndörfer

26

Vehicle Scheduling

InputTimetabled and deadhead tripsVehicle types and depot capacitiesVehicle costs (fixed and variable)

OutputVehicle rotations

ProblemCompute rotations to cover all timetabled trips

GoalsMinimize number of vehiclesMinimize operation costsMinimize line hopping etc.

Page 27: Vehicle Scheduling Problems

Ralf Borndörfer

27

Graph Theoretic Model

Page 28: Vehicle Scheduling Problems

Ralf Borndörfer

28

Example: Regensburg

Page 29: Vehicle Scheduling Problems

Ralf Borndörfer

29

Vehicle Scheduling

Definition + cost of deadhead tripsPrecise control at point, time, or tripChanges of vehicles, lines, modes, turning, etc.Automatic generation of pull-out-pull-in tripsMaintencance of all possible deadhead trips

Depot capacities (soft)

Fleet minimum: pull-in tripsNo line changes: interlining tripsTurning: turnsPeaks: pull-in/pull-out tripsDepot capacities: soft upper limits

Page 30: Vehicle Scheduling Problems

Ralf Borndörfer

30

Timelines

d

d

Page 31: Vehicle Scheduling Problems

Ralf Borndörfer

31

Integer Programming Model(Multicommodity Flow Problem)

0

min

0 , Vehicle flow

0 Aggregated flow

1 Timetabled trips

Depot capacities

{0,1} , Deadhead trips

− = ∀

= ∀

= ∀

≤ ∀

∈ ∀

∑∑

∑ ∑

∑∑ ∑∑

∑∑

d dij ij

d ij

d dij jk

i kd dij jk

d i d kdij

d id

j dj

dij

c x

x x j d

x x j

x j

x d

x ij d

κ

Page 32: Vehicle Scheduling Problems

Ralf Borndörfer

32

Theoretical Results

Observation: The LP relaxation of theMulticommodity Flow Problem is in general notinteger.

Theorem: The Multicommodity Flow Problem isNP-hard.

Theorem (Tardos et. al.): There are pseudo-polynomial time approximation algorithms to solve the LP-relaxation of Multicommodity FlowProblems which are faster than general LP methods.

Page 33: Vehicle Scheduling Problems

Ralf Borndörfer

33

Lagrangean Relaxation

min

0

=

=

T

bBx dx

c xAx

min (

0

max )+ −

=

T b

dx

c x Ax

Bxλ

λ

(max min )+ −Ti ii

bc x Axλ

λ( )max fλ

λ

=

==

x1

x2

x3x4

P(A,b)

f1

f2

f3

f4fP(A,b)∩P(B,d)

Page 34: Vehicle Scheduling Problems

Ralf Borndörfer

34

Bundle Method(Kiwiel [1990], Helmberg [2000])

Max

X polyhedral (piecewise linear)

λ

f

λ1

1fλ

λ2

λ3

μ μ μλ λ= + −T T( ) ( )f c x b Ax

+ = − −2

1ˆ ˆargmax ( )

2k

k k kuf

λλ λ λ λ

∈=ˆ ( ) : min ( )

kk Jf fμμ

λ λ

∈= + −T T( ) : min ( )

x Xf c x b Axλ λ

Page 35: Vehicle Scheduling Problems

Ralf Borndörfer

35

Primal Approximation

Theorem

∈⇒ ( )k k Nx converges to a point { }∈ = ∈: ,x x Ax b x X

T( ) ( )k k kf c x b Axλ λ= + −k̂f

z

f

λ

1kf +

1kλ +

+∈

= ∑1k

kJ

x xμ μμ

α

+∈

= + −∑11ˆ ( )

k

k kJ

b Axu μ μ

μλ λ α

0 ( )kb Ax k− → →∞

Page 36: Vehicle Scheduling Problems

Ralf Borndörfer

36

Quadratic Subproblem

− −2ˆ ˆmax ( )

2k

k kuf λ λ λ(1)

μ

λ λ

λ μ

− −

≤ ∈

2ˆmax2

s.t. ( ), for all

kk

k

uv

v f J

(2)

μ μ μ μμ μ

μμ

μ

α λ α

α

α μ

∈ ∈

− −

=

≤ ≤ ∈

∑ ∑

21ˆmax ( ) ( )

2

s.t. 1

0 1, for all

k k

k

kJ J

J

k

f b Axu

J

(3)

Page 37: Vehicle Scheduling Problems

Ralf Borndörfer

37

Bundle Method(IVU41 838,500 x 3,570, 10.5 NNEs per column)

50

100

150

200

250

300

350

400

20 40 60 80 100 120 140 sec

450

bundlevolumebarrier

cascent

Page 38: Vehicle Scheduling Problems

Ralf Borndörfer

38

Lagrangean Relaxation I

0

min

0 , Vehicle flow

0 Aggregated flow

1 Timetabled trips

Depot capacities

{0,1} , Deadhead trips

− = ∀

= ∀

= ∀

≤ ∀

∈ ∀

∑∑

∑ ∑

∑∑ ∑∑

∑∑

d dij ij

d ij

d dij jk

i kd dij jk

d i d kdij

d id

j dj

dij

c x

x x j d

x x j

x j

x d

x ij d

κ

Page 39: Vehicle Scheduling Problems

Ralf Borndörfer

39

Lagrangean Relaxation I

Subproblem: Min-Cost-Flow (single-depot)

0

min

Vehicle flow0 Aggregated flow

1 Timetabled trips

Depot capacities

{0,1} , Deadhead trips

max 0+

= ∀

= ∀

≤ ∀

∈ ∀

⎡ ⎤⎛ ⎞− −⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦

∑∑

∑∑ ∑∑

∑∑

∑ ∑d dij ij

d ij

d dij jk

d i d kdij

d id

j dj

dij

d dij jk

i k

c x

x x j

x j

x d

x ij d

x xλ

λ

κ

Page 40: Vehicle Scheduling Problems

Ralf Borndörfer

40

Lagrangean Relaxation II

0

min

0 , Vehicle flow

0 Aggregated flow

1 Timetabled trips

Depot capacities

{0,1} , Deadhead trips

− = ∀

= ∀

= ∀

≤ ∀

∈ ∀

∑∑

∑ ∑

∑∑ ∑∑

∑∑

d dij ij

d ij

d dij jk

i kd dij jk

d i d kdij

d id

j dj

dij

c x

x x j d

x x j

x j

x d

x ij d

κ

Page 41: Vehicle Scheduling Problems

Ralf Borndörfer

41

Lagrangean Relaxation II

Subproblem: Several independent Min-Cost-Flows (single-depot)

0

min

0 , Vehicle flow

0 Aggregated flow

Timetabled tripsDepot capacities

{0,1} , Deadhead trips

max 1+

− = ∀

= ∀

≤ ∀

∈ ∀

⎛ ⎞−⎜ ⎟

⎝ ⎠

∑∑

∑ ∑

∑∑ ∑∑

∑∑d dij ij

d ij

d dij jk

i kd dij jk

d i d k

dj d

j

dij

dij

d i

c x

x x j d

x x j

x d

x ij d

λ

κ

Page 42: Vehicle Scheduling Problems

Ralf Borndörfer

42

Heuristics

Cluster First – Schedule Second"Nearest-depot" heuristic

Lagrange Relaxation II + tie breaker

Schedule First – Cluster SecondLagrange relaxation I

Schedule – Cluster – RescheduleSchedule: Lagrange relaxation I

Cluster: Look at paths

Solve a final min-cost flow

Plus tabu search

Page 43: Vehicle Scheduling Problems

Ralf Borndörfer

43

Lagrangean Relaxation Algorithm

Page 44: Vehicle Scheduling Problems

Ralf Borndörfer

44

Computational Results

BVG HHA VHH

depots 10 14

40

timetabled trips 25,000 16,000 5,500

deadheads 70,000,000 15,100,000 10,000,000

cpu mins 200 50 28

vehicle types 44

10

19

Page 45: Vehicle Scheduling Problems

Ralf Borndörfer

45

UmlaufoptimierungUmlaufoptimierung mit MICROBUS 2

26.02.2002 4Heiko Klotzbücher

Erzielte Einsparungen durch die Umlaufoptimierung:

Im Busbereich wurden bei einer Gesamtzahl von knapp über 200 Fahrzeugen 5 Busse eingespart.

Im Bahnbereich wurden aufgrund der fehlenden Leerfahrt-und Überholmöglichkeiten keine Fahrzeuge eingespart.

Slide of SWB

Page 46: Vehicle Scheduling Problems

Ralf Borndörfer

46

Discussion

PropertiesExploiting all degrees of freedom

Vehicle mix

ExtensionsTrip shifting → current work

Multiperiod scheduling

Periodic schedules

Assimilation

Balanced depot exchange

Maintenance constraints

IntegrationVehicle and duty scheduling → talk of M. Grötschel

Timetabling → next topic

Line planning → research

Page 47: Vehicle Scheduling Problems

Ralf Borndörfer

47

Trip Shifting

Page 48: Vehicle Scheduling Problems

Ralf Borndörfer

48

Integer Programming Model(Multicommodity Flow Problem)

,

, ,

,

0,

min

0 , , Vehicle flow

0 Aggregated flow

1 Timetabled trips

Depot capacities

{0,1} , , Deadhead trips

− = ∀

= ∀

= ∀

≤ ∀

∈ ∀

∑∑

∑ ∑

∑∑ ∑∑

∑∑

d dij ij

d ij

d dij jk

i kd dij jk

d i d k

dij

d i

dj d

j

dij

c x

x x j d

x x j

x j

x d

x ij d

ε εε

ε ε

ε εε ε

ε

εε

ε

ε

κ

ε

Page 49: Vehicle Scheduling Problems

Ralf Borndörfer

49

Discussion

PropertiesExploiting all degrees of freedom

Vehicle mix

ExtensionsTrip shifting → current work

Multiperiod scheduling

Periodic schedules

Assimilation

Balanced depot exchange

Maintenance constraints

IntegrationVehicle and duty scheduling → talk of M. Grötschel

Timetabling → next topic

Line planning → research

Page 50: Vehicle Scheduling Problems

Ralf Borndörfer

50

Efficiency

50

60

70

80

90

100

55 60 65 70 75 80 85 90Efficiency of Vehicle Schedule [%]

Effic

ienc

y of

Dut

ySc

hedu

le [%

] 53,44% 58,00% 63,90%

A

B C

(A) Sequential Scheduling(B) Duty Oriented Vehicle Scheduling(C) Integrated Scheduling

Page 51: Vehicle Scheduling Problems

Ralf Borndörfer

51

Regional Scenarios

Max. duty time 8:00

6:00

6:00 2:00

2:00 6:00

6:00 2:00

2:00

hh:mm deadhead trip (1:00)timetabled trip

6:00

6:00 2:00

2:00

Page 52: Vehicle Scheduling Problems

Ralf Borndörfer

52

δδ

=

= ∀= ∀ ∈= ∀ ∈

+

=∈

T

out

in

T(ISP) min(1a)(1b)(1c

0, depots ( ( )) 1, \ { } ( ( )) 1, \ {)

(2a)}

{0,

1

{0,1}

(2b)(3) 0

,1}

D

m n

c xN

d y

A

x Dx v v V tx v v V

yBy b

x Dyy

s

Cx

⎧= ⎨⎩

1, if deadhead covers duty element :

0, elsedt

d tC

⎧= ⎨⎩

1, if duty d covers duty elements :

0, sonstdt

tD

Integer Programming Model

Page 53: Vehicle Scheduling Problems

Ralf Borndörfer

53

Lagrangean Relaxation

Dual Problem: Find multipliers λ maximizing f

Primal Problem: Find fractional solution(x,y)∈[0,1]mxn fulfilling (1), (2), (3)

Note: Integrality relaxed

∈∈

=

=

−− +

=

T T

y fulfills (2) and[0,

T T

fulfills (1) and{0,1 1]}

( ) :

max

: ( ) : (

mam x (n ( ))

)

inm

V D

yx

x

c C d D y

f

f f

λ

λ

λ

λ

λ

Page 54: Vehicle Scheduling Problems

Ralf Borndörfer

54

Trip Scheduling

InputLines with lengths and speed profilesPassenger volume, frequency, and regularity profilesVehicle types with speeds and capacitiesDepot capacities

OutputTrips and vehicle rotations for all lines

ProblemSchedule trips and vehicle rotations to transport passengers

GoalsMaximize trip regularityMinimize number of passengers left behindMinimize number of vehicles

Page 55: Vehicle Scheduling Problems

Ralf Borndörfer

55

Graph Theoretic Model

6:306:31

7:30

8:30

9:30

Page 56: Vehicle Scheduling Problems

Ralf Borndörfer

56

Integer Programming Model

00

0

min

0 , Vehicle flow

1 Timetabled trips

Frequencies

Pax volume

Depot capacities

{0,1} , Deadhead trips

− = ∀

≤ ∀

≥ ∀

≥ ∀

≤ ∀

∈ ∀

∑∑

∑ ∑

∑∑

∑∑

∑∑

dj

d j

d dij jk

i kdij

d idij

d ij H

d dij

d ij H

dj d

j

dij

x

x x j d

x j

x H

x d H

x d

x ij d

f

κ

κ

Page 57: Vehicle Scheduling Problems

Ralf Borndörfer

57

Computational Results

1 2

lines 11 38

2

frequency 12 38

pax/line/hour > 1,000 > 1,000

vehicles ~ 300 ~ 700

hours 3 3

vehicle types 2

Page 58: Vehicle Scheduling Problems

Ralf Borndörfer DFG Research Center MATHEON “Mathematics for key technologies”Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)Löbel, Borndörfer & Weider GbR (LBW)

[email protected] http://www.zib.de/borndoerfer

Martin GrötschelBeijing Block Course

“Combinatorial Optimization at Work”

September 25 – October 6, 2006

09M1 LectureVehicle Scheduling Problems

The End