vibrational theory bonds ~ springs e = ½ kx m1 mchem213/213-3-18.pdf · vibrational theory p.55 c...

47
VIBRATIONAL THEORY p.55 C H m 1 m 2 bonds ~ springs E = ½ kx 2 m 1 m 2 m 1 m 2 m 2 m 1 stretch equilibrium compress 0 r o r x x r o - x r o + x x is + or - x 2 is +

Upload: others

Post on 25-Oct-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

VIBRATIONAL THEORY p.55

C H

m1 m2

bonds ~ springs

E = ½ kx2

m1 m2

m1 m2

m2m1 stretch

equilibrium

compress

0 ror

xx

ro - x ro + x

x is + or -x2 is +

Page 2: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

distance

m2m1

m1 m2

m1 m2

ro

ro

Graph ½ kx2 gives a parabola

SIMPLE HARMONIC OSCILLATOR

p. 55

Page 3: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

vk

m mm m

o

12

1 2

1 2

for a SHOk = force constant = reduced mass

C------H O------H

when m1 is very large, does not change muchhowever (OH) > (CH) so k(OH) > k(CH)

3000cm-1 3400 cm-1

p. 55

CH) = 12/13 = 0.923

(OH) = 16/17 = 0.941

Page 4: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

However, if the light element is different: p. 56

C----H C-----D1 2

CH CD

12 112 1

12 212 2

vk

m mm m

o

12

1 2

1 2

vv

v v

v v v

v cm cm

C D

C H

C H

C D

CD CH

CH

CD

CD CH CH

CD

1213

1424

12

300012

21001 1

k’s aresame

= 0.92 = 1.7

or CH (0.92/1.7)1/2

= 2200 cm-1 Huge difference

Page 5: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

A spring (SHO) has all energies possible,MOLECULES DO NOT

only one fundamental frequency (spacings equal, h)

Ev = (v + ½)h

p. 57

Page 6: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

normally, only a one level jump allowed p. 57

in IR, only lowest level is populated

hot lines, overtones weak

Page 7: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

p. 58

v=0

v=1

v=2

v=3

Internuclear separationro average bond length

ground vibrational state

fundamental frequency of vibration, E = ho

1st overtonehot line,

Dissociation energy

REAL MOLECULES: Not a simple parabola!

o o E0→E2

Eo = 1/2 ho

E1 = 3/2 ho

E2 = 5/2 ho - a ‘bit’

E3 = 7/2 ho - a ‘bit’ more

Ev ≈ (v + ½)h

Page 8: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

so in CO 0 = 2143 cm-1, 1 = 4250 cm-1 not 4286 cm-1

Reminder:Intensity of band depends on change in dipole during stretch or bend

CH3C CH CH3C CCH3weak 2150 cm-1 no IR band

CH3C Nstrong 2250 cm-1

p. 59

Page 9: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

X-----Y has one stretching vibration ONLY

What about X---Y---Z ?

Separate atoms EACH need an x, y, z co-ordinate

So N atoms require 3N coordinates to specify positionBUT not all movements of atoms in space correspond toa vibration:

p. 59

3 possible translations along x, y or z AND3 possible rotations around x, y and z do NOTchange the relative positions of the atoms

Page 10: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

In general, if molecule has N atoms

there are only 3N-6 possible fundamental vibrations

[3N-5 if molecule is linear]

HO

H

HO

H

bent, triatomic3N-6 = 3(3)-6=33 fundamental frequencies

symmetric stretch3650 cm-1

HO

H

asymmetric stretch3750 cm-1

HO

H

bend1600 cm-1

Energy look at this one

p. 59/60

Page 11: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress
Page 12: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress
Page 13: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress
Page 14: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress
Page 15: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress
Page 16: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress
Page 17: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

+-

During the vibration, the bond dipole changes

but it is the VECTOR SUM that is important,If this changes during vibration = IR active

p. 60

Page 18: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

HO

H

HO

H

bent, triatomic3N-6 = 3(3)-6=33 fundamental frequencies

symmetric stretch3650 cm-1

HO

H

asymmetric stretch3750 cm-1

HO

H

bend1600 cm-1

Energy

p.60

Page 19: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

3750 asym3650 sym

1600 bend

p. 60

(overlapping) Structure is ‘hairy’ due torotational fine structure:more on this shortly

Page 20: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

CO2

= 0 = 0

= 0p. 61

Page 21: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

C

linear, triatomic3N-5 = 3(3)-5=44 fundamental frequencies

symmetric stretch1330 cm-1

IR inactive (Raman active)

asymmetric stretch2550 cm-1

IR active

bends (degenerate)670 cm-1

IR active

Energy

O O

CO O CO O

CO O

CO O

CO2p. 61

Page 22: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

asymmetricstretch

symmetricstretch bends

Energy

Z X Z Y where X is lighter than Y

Z X Z X Z X

wavenumber (cm-1)

>

>

>>

>

SUMMARYp. 62

Reduced mass effect:

Force constant effect:

Page 23: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

(1) C≡X C=X C-X X=C,O,N

~2200 cm-1 ~1650 cm-1 ~1100 cm-1

(2) C-F C-Cl C-Br C-I

1050 cm-1 725 cm-1 650 cm-1 550 cm-1

(3) M-F M-Cl M-Br M-Iwhere Metal is more massive, e.g. Sn, Pb

600 cm-1 350 cm-1 225 cm-1 150 cm-1

From these, you can predict many others!

p. 62

Page 24: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

POCl3 shows IR bands at 1290, 582, 486, & 267 cm-1

Problem:

O=PClCl

Cl

Cl > O, so P-O > P-Cl, so P-O is likely the highest = 1290 (plus P-O has some double bond character)

stretches > bends asym str > sym str

582 = asym str; 486 sym str; 267 is a bend

Note: 3N-6 = 9, so there are 5 other fundamentals

*** not always obvious what these are, i.e. Raman(IR inactive) or degenerate or combination bands

p. 62

Page 25: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

Methane, CH4 likewise only shows 4 bands but has 9 {3N-6} fundamentals (others degenerate)

H

H H

HH

H H

HH

H H

HH

HH

H

asym stralwaysIR active

sym strif atoms sameNOT IR activedipoles cancel

sym bendNOT IRactive

bendIR ACTIVE

3020 cm-1 2914 (Raman) 1520 (Raman) 1305

p. 63

Page 26: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

3020 cm-1 2914 (Raman) 1520 (Raman) 1305

p. 63

Page 27: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

Vibrational ModeAssignments

Tabulated forMany CommonGeometries

Manualpages 65-68

Page 28: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

ROTATIONAL LINES: the hairy bits

3020 cm-1 is 0but many lines

caused by many rotational energy levels,much closer spaced than vibrational levels

p. 63

Page 29: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

m1 m2

ro

(b) rotation around thecenter of gravity,perpendicular to the bond

(a) rotationalong the axis ofthe bond

p. 69

Compared to stretching the bond, rotationaround the bond axes takes relatively littleenergy

Page 30: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

m1 m2

ro

(b) rotation around thecenter of gravity,perpendicular to the bond

(a) rotationalong the axis ofthe bond

Eh

IJ J B J J

J rotational quantumnumber

B in Joulesh

I

B in cmh

I c

rotation

2

2

2

2

12

81 1

0 1 2 3

8

8

( ) ( )

, , , ...

( )

( )

I = r2

= reduced mass= m1m2 /(m1+m2)

note: E = hc/

I = Moment of inertia

B = constant for a particular bond

From quantum mechanics

p. 69

Page 31: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

Erot = B J (J+1) J = 0, 1, 2, 3, 4,....

J=0, E0=0 J=1, E1=2B J=2, E2=6B J=3, E3=12B

p. 70

Rotational energy level spacing increases with J

02B

6B

12B

20B

J=0J=1

J=2

J=3

J=4

E=2B

E=4B

E=6B

E=8B

E 2B 4B 6B 8B

J=0 J=1 J=1 J=2 J=2 J=3 J=3 J=4

E

Lines are equally spaced 2B apart

Rotational levels

Absorption spectrum

E = 8B

E = 6B

E = 4B

E = 2B

J0→J1 J1→J2 J2→J3 J3→J4

Page 32: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

In spectrum of CO, lines are equally spaced p. 71

Notes:

Missing ‘middle’

Right side slightly larger

‘grass’ due to 13C

Page 33: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

spacing hI

Ihspacing

rm m

m mr

rh

spacing

2 8

4

21

2

2

2

22 1 2

1 2

2

( )

( )

C-------Or

Spacing can give r

p. 71

Page 34: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

Why this shape?

p. 71

Page 35: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

p. 72

Page 36: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

P Branch R Branch – high energy sidep. 71

Page 37: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

Why the difference in intensities?

Energy levels are Boltzmanndistributed

more molecules in lowerenergy levels

But also, level J has a degeneracy of 2J+1 (from quantum)

J1

0

2J+1 sum up =

p. 71

Page 38: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

Real molecules:

as bond stretches, r increases so I = r2, increases and B decreases: spacing (2B) decreases as go to higher J

as I gets large (in large molecules), B and hence spacinggets smaller and smaller, so only see rotational lines forsmall molecules

In larger molecules, there is an I value for each axis (x, y, z)giving rise to 3 sets of overlapping rotational lines

p. 71

Page 39: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

H C N principal axis of rotation

vibration parallel to principal axis of rotationhas selection rule of J = +/- 1 (ie: J not 0)so no Q branch seen in the stretching regions (CH ~3300 cm-1)

H C N

H C Nbend perpendicular to principal axis of rotationhas selection rule of J = 0, +/- 1 so Q branch is seen in the bending region (~720 cm-1)

PQ

R

P R

3300 cm-1

720 cm-1

When we see the Q (middle) branch: p. 73

ASSIGNMENT 3

Page 40: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

Summary: Rotational fine structure

• During vibrational transitions, changes in rotational state can also occur

• Rotational state changes have a selection rule ΔJ = ± 1 or ΔJ = 0, ±1 depending on molecular symmetry and type of vibration

• Rotational levels are spaced increasingly far apart according to E = B(J)(J+1)

• Many J levels are occupied at room temperature and the number of equal energy levels (the degeneracy) of a given J is actually 2J+1

• Thus transition V=0 to V=1 is accompanied by a change in J but since there are many starting J states occupied, you get an equally spaced progression of absorptions to the higher energy side (R branch) if ΔJ = +1, to the lower energy side (P branch) if ΔJ = -1 and right at the fundamental frequency ν0 (Q branch) if ΔJ = 0

• The Q branch will NOT be observed if the vibration is along the principle axis of rotation (bond axis) of a linear molecule

Page 41: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

INORGANIC APPLICATIONS

Group frequencies used less, e.g. P=O ~ 1140-1300cm-1

GEOMETRY information from IR, consider the following:

Cl----Hg----ClHg

Cl Cl

Inactive in IR Active in IR

In fact we find:

413 (IR, asym stretch), 360 (Raman, sym stretch), 70 (bend)

so this suggests the molecule is linear

p. 75

Symmetric stretch is only IR active if bent

Page 42: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

HN

HH F

BF

F

trigonal pyramid trigonal planar

manual, p 75

Raman onlyp. 75

Page 43: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

Co

NH3

O

NH3NH3

NH3

H3N

C

O

O

Co

NH3

NH3NH3O

O NH3

CO

+

Br-

+

Cl-COO

O

2-

free carbonateIR shows asym at ~1500cm-1

but no sym (~1000cm-1) due to the symmetry of the CO3

2-

[Co(NH3)5CO3]Br IR shows a band in the sym region (~1100cm-1) which shows that the

CO32- fragment is no longer symmetric,

so it must be bonded to the metal center

[Co(NH3)4CO3]Cl IR shows a band in the sym region

(~1050cm-1) which shows that the CO32-

fragment is bonded to the metal, but in a different way than in [Co(NH3)5CO3]Br

as the sym has decreased

Structure of complexes

p. 76

Page 44: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

METAL CARBONYLS

0 (CO) = 2143 cm-1, but Cr(CO)6 has 2100, 2000, 1985 cm-1

OCM

M OC

M OC

empty full

-bonding orbital

Donates electron density to metal … BUT

:

:

p. 77

Page 45: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

empty antibonding (p*)filled d

puts electron density back on carbon

because this electron density is in an antibondingorbital, bond weakens, frequency decreases

p. 77

Page 46: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

M OC ~ CM O

2100 – 2000 typically

C

O

M M

sometimes, CO can bridgetwo metals

then ~ 1850 cm-1

p. 78

Page 47: VIBRATIONAL THEORY bonds ~ springs E = ½ kx m1 mchem213/213-3-18.pdf · VIBRATIONAL THEORY p.55 C H m1 m2 bonds ~ springs E = ½ kx2 m1 m 2 m1 m2 m1 m2 stretch equilibrium compress

terminal CO

bridging CO

CoC

CCo

O

O

CC

CCC

CO

O

OO

O

O

p. 78