vlsi eng cmos parta layout 20110301

22
VLSI Engineering (EC31004) Spring 2010-11 Last updated: 30Mar 2011 (working document) 1 EC31004: VLSI Engineering Notes Filename: VLSI_Eng_CMOS_Layout_<date>.doc Content 1. Circuit layout .......................................................................................................................................................... 2 1.1. Layout and various design flows ...................................................................................................................... 2 1.1.1. FPGA based design .................................................................................................................................... 3 1.1.2. Gate array based design.............................................................................................................................. 8 1.1.3. Standard-cell based design ......................................................................................................................... 9 1.1.4. Full-custom based design ......................................................................................................................... 13 1.2. Full-custom layout techniques ........................................................................................................................ 15 1.2.1. Transistor using multiple fingers .............................................................................................................. 16 1.2.2. Stacking of multiple transistors ................................................................................................................ 19 1.2.3. Matching of transistors ............................................................................................................................. 19 1.3. CMOS Latch-up ............................................................................................................................................. 22 1.4. Stick diagrams ................................................................................................................................................ 29 1.5. Resistor layout ................................................................................................................................................ 34 1.5.1. Sheet resistance ........................................................................................................................................ 34 1.6. Capacitor layout .............................................................................................................................................. 39 VLSI Engineering (EC31004) Spring 2010-11 Last updated: 30Mar 2011 (working document) 2 1. Circuit layout 1.1. Layout and various design flows FPGA Gate array Standard-cell Full-custom

Upload: rajeev-ranjan

Post on 26-Nov-2014

140 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: VLSI Eng CMOS PartA Layout 20110301

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 1

EC31004: VLSI Engineering Notes

Filename: VLSI_Eng_CMOS_Layout_<date>.doc

Content

1. Circuit layout .......................................................................................................................................................... 2

1.1. Layout and various design flows ...................................................................................................................... 2

1.1.1. FPGA based design .................................................................................................................................... 3

1.1.2. Gate array based design .............................................................................................................................. 8

1.1.3. Standard-cell based design ......................................................................................................................... 9

1.1.4. Full-custom based design ......................................................................................................................... 13

1.2. Full-custom layout techniques ........................................................................................................................ 15

1.2.1. Transistor using multiple fingers .............................................................................................................. 16

1.2.2. Stacking of multiple transistors ................................................................................................................ 19

1.2.3. Matching of transistors ............................................................................................................................. 19

1.3. CMOS Latch-up ............................................................................................................................................. 22

1.4. Stick diagrams ................................................................................................................................................ 29

1.5. Resistor layout ................................................................................................................................................ 34

1.5.1. Sheet resistance ........................................................................................................................................ 34

1.6. Capacitor layout .............................................................................................................................................. 39

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 2

1. Circuit layout

1.1. Layout and various design flows

FPGA

Gate array

Standard-cell

Full-custom

Page 2: VLSI Eng CMOS PartA Layout 20110301

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 3

1.1.1. FPGA based design

Figure 1. FPGA based IC layout : two-dimensional array of CLBs

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 4

Figure 2. FPGA based IC layout: switch matrix connecting the CLBs

Page 3: VLSI Eng CMOS PartA Layout 20110301

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 5

Figure 3. FPGA based IC layout: Internal of a CLB – Xilinx XC3000 family example

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 6

Figure 4. FPGA based IC layout: Internal of a CLB – Xilinx XC4000 family example

Page 4: VLSI Eng CMOS PartA Layout 20110301

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 7

Figure 5. FPGA based IC layout: internal of a 16x2 single-port memory block – Xilinx XC4000 family example

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 8

1.1.2. Gate array based design

First-phase: generic-mask for array of transistors

Second-phase: circuit specific mask for transistor interconnects

Figure 6. Gate-array based IC layout: Transistors in first-phase, circuit-specific metal-layers in second-phase

Page 5: VLSI Eng CMOS PartA Layout 20110301

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 9

1.1.3. Standard-cell based design

Standard-cell library

o Development resource and development time for full-custom

Each library-cell has the following information:

o Logic simulation model

o Delay-time vs. load capacitance

o Place-and-route information

System integration:

o Rows of cells channel

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 10

Figure 7. A standard-cell IC layout block-diagram

Page 6: VLSI Eng CMOS PartA Layout 20110301

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 11

Figure 8. A standard-cell IC layout with one global signal-bus

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 12

Figure 9. Standard-cell IC layout showing channel routing without using over-the-cell routing

Page 7: VLSI Eng CMOS PartA Layout 20110301

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 13

1.1.4. Full-custom based design

Layout starting from device level

Figure 10. NMOS transistor layout in n-well process

Figure 11. PMOS transistor layout in n-well process

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 14

Figure 12. CMOS inverter layout in n-well process

Page 8: VLSI Eng CMOS PartA Layout 20110301

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 15

1.2. Full-custom layout techniques

Figure 13. Various transistor custom layout scheme and the effect on drain-capacitance

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 16

1.2.1. Transistor using multiple fingers

Figure 14. Using multiple fingers of wide transistor

Reduction in height for very wide transistors

Reduction in distributed resistance along the poly-gate (from poly-gate to Metal-1 contact)

Page 9: VLSI Eng CMOS PartA Layout 20110301

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 17

Figure 15. Transistor layout examples: 1 finger vs. 2 finger vs. 3 finger

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 18

Figure 16. Custom layout examples for 2-input NAND gate with and without fingers

Page 10: VLSI Eng CMOS PartA Layout 20110301

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 19

1.2.2. Stacking of multiple transistors

Figure 17. Transistor layout: transistor stacking

Reduction in size happening because of:

o Common M2-drain and M1-source (M2-source or M1-drain) area

o Removal of contacts from M2-drain and M1-source (or M2-source and M1-drain)

1.2.3. Matching of transistors

Multiple objectives of matching

o Achieving the geometric ratio needed in electrical design

o Minimizing the effect of spatial gradation of process parameters

o Minimizing the effect of adjacent device (passive / active) structure

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 20

Figure 18. Transistor layout matching: before layout optimization

Figure 19. Transistor layout matching: after layout optimization

Page 11: VLSI Eng CMOS PartA Layout 20110301

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 21

Figure 20. Layout matching: (1) size matching, (2) gradient, (3) parasitic coupling

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 22

1.3. CMOS Latch-up

Parasitic shorting of VDD and GND

In normal operation, the parasitic transistors are OFF

Triggering through the undesired transient-current through VDD or GND

Figure 21. CMOS inverter vertical cross-section showing parasitic transistor

Page 12: VLSI Eng CMOS PartA Layout 20110301

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 23

VDD

GND

RWELL

RSUB

Figure 22. CMOS inverter parasitic transistors: equivalent circuit for latch-up consideration

Example:

o Current surge from VDD

voltage drop across RWELL

VBE developed for the parasitic PNP transistor

o The current in-turn drops across RSUB

VBE developed for the parasitic NPN transistor

o The current in-turn drops across RWELL … and so on

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 24

Current in the loop is self-sustained once it develops thyristor characteristics

Layout guidelines: weaken the parasitic effect

o Increase # of contacts for WELL and P-SUB (in the above example) reduce RSUB and RWELL

o Use continuous strip of guard-band or guard-rail for substrate and well contact

o Reduce physical spacing between PMOS and P-sub contact

Reduce physical spacing between NMOS and N-well contact

o Avoid resistive VDD and GND (e.g. do not use poly-Si or diffusion area; instead, use metal)

o Place internal circuitry away from external pads

o Consider latch-up possibility when SOURCE terminal of NMOS or PMOS are not at the same

potential of p-substrate or N-well, respectively

Page 13: VLSI Eng CMOS PartA Layout 20110301

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 25

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 26

Figure 23. Transistor with multiple gates: internal area may not be covered by tub / substrate contacts

Page 14: VLSI Eng CMOS PartA Layout 20110301

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 27

Figure 24. Hard-tie for tub (well) / substrate contacts

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 28

Figure 25. Soft-tie for tub (well) / substrate contacts

Page 15: VLSI Eng CMOS PartA Layout 20110301

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 29

1.4. Stick diagrams

Figure 26. inverter schematic and corresponding stick-diagram and its actual layout (standard-cell approach)

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 30

Figure 27. inverter schematic and corresponding stick-diagram using fingered transistors (standard-cell approach)

Page 16: VLSI Eng CMOS PartA Layout 20110301

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 31

Figure 28. inverter layout using fingered transistors (standard-cell approach) and the equivalent circuit

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 32

Figure 29. CMOS NOR gate layout : stick-diagram and actual layout (standard-cell approach)

Page 17: VLSI Eng CMOS PartA Layout 20110301

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 33

Figure 30. CMOS NAND2 gate layout : stick-diagram and actual layout (standard-cell approach)

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 34

1.5. Resistor

1.5.1. Sheet resistance

Resistance per-square

Let, conductor length = L, conductor width = W, conductor thickness = t, resistivity of material =

R = RS (L / W),

where, sheet resistance, RS = ( / t)

Resistance = (Sheet resistance) * (Length-to-width ratio)

Figure 31. sheet resistance

Example [in ohm / square]:

o Metal1-Metal2 : 0.05 to 0.10

o Top-metal : 0.03 to 0.05

Page 18: VLSI Eng CMOS PartA Layout 20110301

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 35

o Poly-Si : 15 to 30

o Poly-Si with silicide (e.g. TiSi2) : 4 to 5

o Diffusion (n+, p+) : 50 to 150

o n-well / p-well : 1K to 2K

Figure 32. resistor: unit-cell and large resistor using multiple unit-cells

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 36

Figure 33. resistor: use of guard-rings to reduce noise injection from substrate

Page 19: VLSI Eng CMOS PartA Layout 20110301

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 37

Figure 34. resistor: matching of two resistors

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 38

Figure 35. resistor matching: interdigitated or interlacing approach

Figure 36. resistor matching: common-centroid approach

Page 20: VLSI Eng CMOS PartA Layout 20110301

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 39

1.6. Capacitor

Figure 37. capacitor: poly-poly cap example

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 40

Figure 38. capacitor: area-capacitance and fringing capacitance

Area-capacitance and Fringe-capacitance

Area-capacitance per unit-area and fringe-capacitance per unit-length between the layers (e.g. Metal1 to

Metal2) are given for any particular process

Page 21: VLSI Eng CMOS PartA Layout 20110301

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 41

Figure 39. capacitor: poly-poly cap using multiple fingers

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 42

Figure 40. capacitor: poly-poly cap using unit-cell: close to circular shape (sharp corners avoided)

Typical capacitance values for thin-oxide / gate-oxide of thickness (xOX) 100 angstrom = 864 x 10-18 F / um2

Typical capacitance values (0.25 um process) for adjacent layers -- examples:

Typ. area-capacitance (10-18 F / um2) Typ. fringe-capacitance (10-18 F / um)

Metal1 – poly-Si 57 54

Metal2 – Metal1 36 45

Metal3 – Metal2 41 49

Metal4 – Metal3 35 45

Page 22: VLSI Eng CMOS PartA Layout 20110301

VLSI Engineering (EC31004) Spring 2010-11

Last updated: 30Mar 2011 (working document) 43

Metal5 – Metal4 38 52

Typical capacitance values (0.25 um process) for different layers -- examples:

Typ. area-capacitance (10-18 F / um2) Typ. fringe-capacitance (10-18 F / um)

Metal3 – Metal1 15 27

Metal4 – Metal2 15 27

Metal4 – Metal1 8.9 18

Metal5 – Metal3 14 27

Metal5 – Metal2 9.1 19

Metal5 – Metal1 6.6 14