vol 7-1-041 055 azridjal aziz, distribution of two-phase flow in a distributor

Upload: azridjal-aziz

Post on 03-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Vol 7-1-041 055 Azridjal Aziz, DISTRIBUTION OF TWO-PHASE FLOW IN A DISTRIBUTOR

    1/15

    JournalofEngineeringScienceandTechnologyVol.7,No.1(2012)41-55SchoolofEngineering,TaylorsUniversity

    41

    DISTRIBUTIONOFTWO-PHASEFLOWINADISTRIBUTOR

    AZRIDJALAZIZ1,2

    ,AKIOMIYARA1,

    *,FUMIAKISUGINO1

    1DepartmentofMechanicalEngineering,SagaUniversity,

    1Honjomachi,Saga-shi,8408502,Japan2DepartmentofMechanicalEngineering,RiauUniversity

    KampusBinaWidya,Km12,5,Sp.Baru,Panam,Pekanbaru,28293,Indonesia

    *CorrespondingAuthor:[email protected]

    Abstract

    The flow configuration and distribution behavior of two-phase flow in a

    distributormadeofacrylicresinhavebeeninvestigatedexperimentally.In this

    study, air and water were used as two-phase flow working fluids. The

    distributor consistsofone inlet andtwo outlets,which are set asupper and

    lower,respectively.Theflowvisualizationatthedistributorwasmadebyusing

    a highspeedcamera. The flow rates of air and water flowing out from the

    upperandloweroutletbranchesweremeasured.Effectsofinclinationangleof

    the distributor were investigated. By changing the inclination angle from

    verticaltohorizontal,unevendistributionswerealsoobserved.Thedistribution

    of two-phase flow through distributor tends even flow distribution on the

    vertical position and tends uneven distribution on inclined and horizontal

    positions. It is shown that even distribution could be achieved at high

    superficialvelocitiesofbothairandwater.

    Keywords:Two-phaseflow,Distributor,Distribution,Visualization,Angle.

    1.Introduction

    Flowmal-distributionoftwo-phaseflowmixturesinheatexchangerswithparallel

    flowcircuitsreducethethermalperformancewheretheheattransferoccurs.Often,flowratesthroughthechannelsarenotuniformandintheextremecase,almostno

    flowthroughsomeofthem,whichexhibitsapoorheatexchangingperformance.

    The situation becomesmorecomplicatedespeciallywith two-phase flows [1]. In

    evaporators,uniformdistributionisessentialtoavoiddry-outphenomenonandthe

    resulting poor heat exchange performance. In condensers, uneven distributionof

    liquidcouldcreatezonesofreducedheattransferduetohighliquidloading.Thus,

  • 7/28/2019 Vol 7-1-041 055 Azridjal Aziz, DISTRIBUTION OF TWO-PHASE FLOW IN A DISTRIBUTOR

    2/15

    42A.Azizetal.

    JournalofEngineeringScienceandTechnologyFebruary2012,Vol.7(1)

    Nomenclatures

    A Area,m2

    Q Volumetricflowrate,L/min

    R Deviationratio

    U Superficialvelocity,m/s

    Subscripts

    1 Outlet1

    2 Outlet2

    G Gasphase,airL Liquidphase,water

    in the design and optimization of compact heat exchangers with parallel flow

    technologies, understanding of two phase distribution in themanifolds aregreat

    importance[2-4].

    Tae and Cho [5] have investigated two-phase flow distribution and phase

    separationthroughvarioustypesofbranchtubesinsingleT-junction.Wenetal.

    [6] investigated how to improving two-phase refrigerant distribution in themanifoldoftherefrigerationsystemwiththreedifferentdistributorconfiguration.

    Manyvariablesaffectthedistributionoftwo-phasemixtures,includinggeometric

    factors(manifoldcross-sectiondesign,branchcouplings,location,andorientation

    of the tubes) and onthe inlet flowconditions (flowrate, flowstructure, vapor

    fraction, and heat load on the tubes). Due to this complexity, no general

    physically basedmethodhasbeendevelopedto describetheflowconditions in

    heat exchangermanifolds andpredict thetwo-phase flowdistribution.Kimand

    Sin[7]studiedairandwatertwo-phaseflowdistributioninaparallelflowheat

    exchanger.Duetocomplexity,onlyalimitednumberofstudieshaveinvestigated

    thephenomenonthatoccursintwo-phaseflowdistributors.

    Recently,theuseofsmalldiametertubeisbecomingofinterestinimproving

    the heat exchanger performance,but a largepressuredropwillbe occurin thesmalltubeand itwould bedecrease the heat transferperformance. Inorder to

    reduce the pressure drop and to obtain a higher heat transfer coefficient of

    refrigerant flow, the flowmust bedistributed into severalchannels byusinga

    distributor.Therefrigerantdistributorwilldistributerefrigerantflowequallyfrom

    thethermostaticexpansionvalveintoeachevaporatorchannel.

    To keep the heat exchanger performance, refrigerant should be distributed

    equally througheachpipe.However,the refrigerantflowthroughdistributoris

    noteasyflowdividedequally,andthedriftconditionoftherefrigerantflowwill

    beinfluencedbytheshapeandpositionofthedistributor.Sometimes,itcouldbe

    leadto decreaseof heat exchangerperformance. It isnecessarytomaintainthe

    performance of the heat exchanger by minimizing this drift condition. In air

    conditioners,vaporandliquidofarefrigerantflowthroughdistributor.Although

    air andwater flow in the distributor issomewhat different from the two-phaserefrigerantflow,experimentsofthedistributionofair-watertwo-phaseflowgive

    valuableinformation.Flowobservationsarepossibleonlyforairandwaterflow.

    Inthisstudy,experimentalresearchisaimedtoclarifygeneralcharacteristics

    offlowanddeviationofair-watertwo-phaseflowsthroughthedistributor.The

  • 7/28/2019 Vol 7-1-041 055 Azridjal Aziz, DISTRIBUTION OF TWO-PHASE FLOW IN A DISTRIBUTOR

    3/15

    DistributionofTwo-phaseFlowinaDistributor43

    JournalofEngineeringScienceandTechnologyFebruary2012,Vol.7(1)

    flowratesofeachphaseflowingintheoutletafterdistributorbranchesupperand

    lower were measured. To understand the two-phase flow behavior in the

    distributor,flowdistribution patternsofairandwaterhavebeen observedbya

    high-speedcamera.Effectsof inclinationangleofthedistributoronflowpattern

    andflowrateofairandwaterwerealsoinvestigated.

    2.Experiments

    2.1.Experimentalapparatusandprocedure

    Figure 1 illustrates the experimental apparatus. The experimental apparatus

    consistsofairandwatersupplysystem,mergingsection,distributortestsection,

    twogas-liquid separator, airmeasuring bath, andwatermeasuring cylinder.Air

    flowrateandwaterflowratebeforeenteringtotestsectionaresetupusingaflowmeterandair-waterwillmixinthemergingsection.

    The test section consistsof anentrance tubewithdiameter of8 mm and a

    distributorwithtwooutlet tubes,upper and lowerwith diameter of5mm.The

    entrancetubehas400mmtubelengthfromthedistributorinlettoensureafully

    developedflow.Thedistributorwasmachinedand polished forma rectangular

    block of acrylic resin. The transparent block facilitates flow visualization

    observation.To investigatetheslopeeffectofthedistributor,theangledirectionof the test sectioncan changed toother angle. The whole test section and the

    detailofthedistributorareshowninFigs.2and3,respectively.Inthisstudyair

    and water wereused as two-phaseflowworking fluid.Waterwas suppliedby

    water source in laboratory. Air was supplied by air-compressor with set up

    pressure regulator. Both the air and water flow rate were controlled by using

    calibrated rotameter before entering the merging section. The accuracy of the

    rotameteris6%.

    Theexperimentswere conducted indifferentslopesof thedistributorin 0,45and90withvaryingairandwaterflowrates.Theinclinationangle0isused

    for horizontal position, 45 for inclined position and 90 is used for vertical

    position.Themeasurementsofairandwaterflowratesateachexitofdistributor

    weretakenafterthegas-liquidseparator.Airflowratewasmeasuredbytheair

    measuringbath andwater flowrate bythewatermeasuringcylinder.The flow

    Fig.1.ExperimentalApparatus.

  • 7/28/2019 Vol 7-1-041 055 Azridjal Aziz, DISTRIBUTION OF TWO-PHASE FLOW IN A DISTRIBUTOR

    4/15

    44A.Azizetal.

    JournalofEngineeringScienceandTechnologyFebruary2012,Vol.7(1)

    visualizationandphotographs of flow patternswere capturedusing highspeed

    videocamera(KeyenceMotionAnalyzingVW-6000)atshutterspeed1/30.000

    second,frameratepersecond(fps)at500fps,andreproductionspeedat15 fps.

    Duringthewholeseriesoftests,severalrunsweremadetochecktherepeatability

    of the data. The data presented are average values of ten measurements. The

    errorsoftheairandwaterflowratemeasurementsareconsideredtobeacceptable

    andtheyareevaluatedas6.14%and5.19%,respectively.

    TheuncertaintieswereestimatedusingthemethodsuggestedbyBell[8]and

    Moffat[9].Themeasurementuncertaintiesoftheairandwaterflowrateswere4.0%and1.9%,respectively.

    2.2.Datareduction

    Theair-watervolumetricflowratewastakenafterflowout fromthegas-liquidseparator.Thevolumetricflowratesofairinoutlet1andoutlet2areQ

    G1andQ

    G2

    and the volumetric flow rates of water are QL1 and QL2, respectively. The

    deviation ratioR defined withEqs. (1) and (2). Theair deviation ratio isRG,

    andthewaterdeviationratioisRL.Where,subscriptGisforairandsubscriptL

    forwater.

    ( ) ( )2121 GGGGG QQQQR += (1)

    ( ) ( )2121 LLLLL QQQQR += (2)

    R=1statesthatallfluidflowoutfromtheupperoutlet,R=0statesthatthere

    isnodeviation,andR=-1statesthatallfluidflowoutfromtheloweroutlet.

    ThesuperficialvelocitiesUofeachfluidaredefinedwithEqs.(3)and(4).UG

    istheairsuperficialvelocityandUListhewatersuperficialvelocity.

    AQUGG

    = (3)

    AQU LL = (4)

    whereAisflowareaofinlettube.

    400mm

    70mm

    Fig.2.TestSection.

    Distributor

    88mmmm55mmmm

    55mmmm

    InletOutlet1

    Outlet2

    Fig.3.Distributor.

  • 7/28/2019 Vol 7-1-041 055 Azridjal Aziz, DISTRIBUTION OF TWO-PHASE FLOW IN A DISTRIBUTOR

    5/15

    DistributionofTwo-phaseFlowinaDistributor45

    JournalofEngineeringScienceandTechnologyFebruary2012,Vol.7(1)

    3.ResultsandDiscussion

    TheexperimentalconditionsareplottedonflowpatternmapsasshowninFigs.

    4(a)and4(b),whichareMandhanemapforhorizontalflowandSekoguchimap

    forverticalflow.InFig.4(a),solidlinesindicatecriteriaofMandhaneetal.[10]

    anddashedlinesindicatecriteriaofBaker[11].TheSekoguchimap[12]isfor

    upward and concurrent vertical flow. Three types of symbols mean different

    inclination,suchasblackcirclefor0,squarefor45,andtrianglefor90.

    The experiment was carried out on the condition of the water superficial

    velocityUL isconstant with changingconditionsof air superficialvelocityUG

    Fig.4.ExperimentalConditionsonFlowPatternMaps.

    101

    100

    101

    102

    101

    100

    SuperficialGasvelocity[m/s]

    SuperficialLiquidVelocity[m/s]

    Bubbleflow

    Slugflow

    Frothflow

    Annularflow

    B S6

    B F10

    S F10

    S F6

    F A10

    F A6

    (c) (d) (e)

    (h) (i) (j)

    (m)(n)

    (o)

    (r) (s) (t)

    (w) (x) (y)

    (b)

    (g)

    (l)

    (q)

    (v)

    (a)

    (f)

    (k)

    (p)

    (u)

    (z)

    (aa)

    (ab)

    (ac)

    (ad)

    (ad)

    (b)Sekoguchi[12]MapforVerticalFlow.

    101

    100

    101

    102

    101

    100

    Dispersedflow

    BubbleElongated

    Bubbleflow

    Stratifiedflow

    Slugflow

    Waveflow

    AnnularAnnularMistflow

    SuperficialGasVelocity[m/s]

    SuperficialLiquidVelocity[m/s]

    (c) (d) (e)

    (h) (i) (j)

    (m)(n) (o)

    (r) (s) (t)

    (w) (x) (y)

    (b)

    (g)

    (l)

    (q)

    (v)

    (a)

    (f)

    (k)

    (p)

    (u)

    (z)

    (aa)

    (ab)

    (ac)

    (ad)

    (ad)

    (a)Mandhane[10]andBaker[11]MapsforHorizontalFlow.

  • 7/28/2019 Vol 7-1-041 055 Azridjal Aziz, DISTRIBUTION OF TWO-PHASE FLOW IN A DISTRIBUTOR

    6/15

    46A.Azizetal.

    JournalofEngineeringScienceandTechnologyFebruary2012,Vol.7(1)

    fromlowtohighorviceversa.Experimentaldatahavebeenobtainedunderthe

    conditionsof superficialvelocities of air andwater, which are 0.06,0.15,0.7,

    3.31,17.92m/sforairand0.03,0.06,0.33,0.82,3.54m/sforwater,respectively.

    In the present experiment, developed two-phase flows,which are achieved

    beforethedistributor,agreetotheseflowpatternmapsforboththeconditionsof

    horizontal and vertical. The experiments cover stratified flow, wavy flow,

    elongatedbubbleflow,dispersedflow,slugflow,bubbleflow,andannularflow.

    Identificationoftheflowpatternswerecarriedoutusingflowpatternssuggested

    byMassoud [13]andGhiaasiaan [14].Theexperimentsof differentdistributorinclination angle at 0, 45 and 90 were conducted under same superficial

    velocitycondition,thoughtheyaresomediscrepancies.

    Typicalphotographsoftheobservedflowpatternsfordistributorposition0o

    (horizontal)areshowninTable1thatcorrespondingwithpointa,b,c,d,ande,

    wheretheairsuperficialvelocityisvariedfromlowtohigh(0.06m/sto19.57

    m/s)andwatersuperficialvelocityiskeptathighvelocity,around3.54m/s.

    Table1.ObservedFlowPatternforPointofa,b,c,d,andeatHigh

    SuperficialVelocitiesofWaterrelativelyConstantandvariesofAir

    fromLowtoHighatDistributorPosition0o.

    FlowPatternImage PointSuperficial

    Velocity

    Deviation

    Ratio

    a UG=0.06m/s

    UL=3.85m/s

    RG=0.198

    RL=-0.041

    b UG=0.14m/s

    UL=3.80m/s

    RG=0.036

    RL=-0.059

    c UG=0.70m/s

    UL=3.66m/s

    RG=0.255

    RL=-0.018

    d UG=2.46m/s

    UL=3.58m/s

    RG=0.486

    RL=-0.075

    e UG=19.57m/s

    UL=2.83m/s

    RG=0.091

    RL=-0.023

    Dispersedbubblyflow

    Dispersedbubblyflow

    Dispersedbubblyflow

    Annulardispersedflow

    Annulardispersedflow

  • 7/28/2019 Vol 7-1-041 055 Azridjal Aziz, DISTRIBUTION OF TWO-PHASE FLOW IN A DISTRIBUTOR

    7/15

    DistributionofTwo-phaseFlowinaDistributor47

    JournalofEngineeringScienceandTechnologyFebruary2012,Vol.7(1)

    Fortheallconditions,thewaterdeviationratiosRLarenegativethoughthey

    areclosetozeroasshowninTable1. Itshowedthattheevenlydistributionofwateronthedistributorinupperoutletandloweroutletcouldachievedatthehigh

    watersuperficialvelocitywithincreasingoftheairsuperficialvelocity.

    Ontheotherhand,theairdeviationratiosRGarepositiveanditisnotsimple

    variation.Increasingtheairsuperficialvelocity,RGdecreasesfirst,increases,and

    decreasesagain.Theflowpatternoftheseconditionsisvariedasfollows.Atthe

    pointsaandb,smallbubblesareuniformlydistributedthoughthepointbismore

    uniform.However,theflowpatternbecomestheannulardispersedflowatpointdwheretheairslugtendstoflowupperpartofthetube.Increasingairvelocity,the

    flow ismoredisturbed and air isevenlydistributed. Inthehighwater velocity

    region,thewaterflowisdominantandtheairvelocityhasinsignificanteffect.

    Theflowpatternidentificationbyvisualobservationisquitesubjective,itis

    necessarytodefinetheassociatedflowpatternindetails.Thedescriptionofflow

    patternonMandhane [10] and Baker [11] flow patternmap givenin Fig. 4(a)agreewiththeflowpatternimageasshowninTable1.

    Thisflowpatterncoverdispersedbubblyflowandannulardispersedflowfor

    highliquidsuperficialvelocityand it isagreewithflowpattern fromMassoud

    [13]andGhiaasiaan[14].Itcanbeconcludedthattheequalliquiddistribution,

    whichisrequiredtokeephighperformanceofevaporator,isonlyaccomplished

    undertheconditionofhighvaporandliquidvelocities.

    Theexperimentalresultswithtypicalphotographforpointofy,t,o,j,andeat

    distributor position 0o (horizontal) are shown in Table 2. The air superficial

    velocityiskeptathighvelocity,around18m/s,andwatersuperficialvelocityis

    variedfrom0.03m/sto2.83m/s.TheairdeviationratiosRGarepositiveforall

    theconditions,thoughtheyareratherclosetozeroasshowninTable2.

    Itindicatedthatevenifthehighairsuperficialvelocity,theairflowslightly

    driftsto upperoutlet independently ofwater flow rate.On the otherhand, the

    waterdeviationratiosRLarenegativethoughthevalueisapproachingzerowitha

    gradualincreasingofwatersuperficialvelocity.Thevisualizedflowregime(seeTable2)canbefurtherclassifiedintoannular

    flow, annularmist flow, and annular dispersed flow. It can be confirmedwith

    Mandhane[10]andBaker[11]flowpatternmapasshowninFig.4(a).Itcanbe

    explainedthatfromTable2theuniformdistributionofairwasobtainedathigher

    air velocity, where at these conditionRG approaches zero. The more uniform

    distributionforwatercanbeachievedwithincreasingwatervelocity.

    Figure5showstheexperimentalresultsofdistributorposition0o(horizontal)

    withdeviationratioonsuperficialvelocitiesofairandwaterwhichare0.06,0.15,0.7, 3.31, 17.92 m/s for air and 0.03, 0.06, 0.33, 0.82, 3.54 m/s for water,

    respectively.Figure5(b)showstheflowpatternmapofMandhane[10]andBaker

    [11]forhorizontalpositionwithcirclemarkforexperimentalresults.

    Atwatersuperficialvelocityconstanton0.03,0.06,0.33,0.82,3.54m/swithair superficial velocity is varied from low to high (0.06m/s to 17.92m/s) asshowninFig.5(a),theflowdistributionofairinthedistributortendstoevenly

    distributed at high air superficial velocity, the air deviation ratios RG in this

    conditionispositivethoughtheyareratherclosetozero.

  • 7/28/2019 Vol 7-1-041 055 Azridjal Aziz, DISTRIBUTION OF TWO-PHASE FLOW IN A DISTRIBUTOR

    8/15

    48A.Azizetal.

    JournalofEngineeringScienceandTechnologyFebruary2012,Vol.7(1)

    Ontheotherhand,atairsuperficialvelocityconstanton0.06,0.15,0.7,3.31,

    17.92m/swithwatersuperficialvelocityisvariedfromlowtohigh(0.03m/sto

    3.54m/s)asshowninFig.5(a),theflowdistributionofwaterinthedistributor

    tendstoevenlydistributedathighwatersuperficialvelocity.

    ThewaterdeviationratiosRLinthisconditionisnegative,thoughthevalueis

    approachingzerowithincreasingwater superficialvelocity.So itcanbestated

    that the deviation ratios R are approaching zero or it tends evenly flow

    distributionthroughthedistributorathighsuperficialvelocitiesofairandwater.

    Table2.ObservedFlowPatternforPointofy,t,o,j,andeatHighSuperficialVelocitiesofAirrelativelyConstantandvariesin

    WaterfromLowtoHighatDistributorPosition0o.

    FlowPatternImage PointSuperficial

    Velocity

    Deviation

    Ratio

    yUG=17.90m/s

    UL=0.03m/sRG=0.082

    RL=-0.773

    tUG=16.64m/sUL=0.06m/s

    RG=0.114RL=-0.391

    oUG=17.38m/s

    UL=0.33m/s

    RG=0.134

    RL=-0.185

    jUG=18.11m/s

    UL=0.81m/s

    RG=0.133

    RL=-0.093

    eUG=19.57m/s

    UL=2.83m/s

    RG=0.091

    RL=-0.023

    TheairdeviationratiosRG forpoint u, v andp arenegativefordistributorposition0o (horizontal) asshown inTable3 and Fig.5(a) witharrows sign.It

    meansthatforthiscondition,bothairandwatertendtoflowoutatloweroutlet

    (seeflowpatternimageinTable3),almostnofluidflowoutattheupperoutletinthiscondition.Whenthesuperficialvelocitybothairandwaterareverylow,most

    oftheairaccompanieswiththewaterflowingoutfromtheloweroutlet.

    Annularflow

    Annularflow

    Annularmistflow

    Annularmistflow

    Annulardispersedflow

  • 7/28/2019 Vol 7-1-041 055 Azridjal Aziz, DISTRIBUTION OF TWO-PHASE FLOW IN A DISTRIBUTOR

    9/15

    DistributionofTwo-phaseFlowinaDistributor49

    JournalofEngineeringScienceandTechnologyFebruary2012,Vol.7(1)

    Figure6showstheexperimentalresultsofdistributorposition45o(inclined)

    withdeviationratioonsuperficialvelocitiesofairandwaterwhichare0.06,0.7,

    17.92m/s for air and 0.03,0.33, 3.54 m/s for water, respectively. Figure 6(a)

    shows thesuperficial velocity forairandwater with deviationratio,where theexperimentalresultsmarkedwithacircle.

    Deviationratioispositiveforair(RG)andnegativeforwater(RL).Figure6(b)showstheflowpatternmapofMandhane[10]andBaker[11]atinclinedposition

    45owithcirclemarkforexperimentalresults.Thiscircleismatchwiththecircle

    inFig6(a).Atwatersuperficialvelocityconstanton0.03,0.33,3.54m/swithair

    superficialvelocityisvariedfrom0.06m/sto17.92m/s,theflowdistributionof

    Fig.5.ExperimentalConditionsinCircleMark

    onDeviationRatioandFlowPatternMapsfor0o.

    101

    100

    101

    102

    101

    100

    Dispersedflow

    BubbleElongated

    Bubbleflow

    Stratifiedflow

    Slugflow

    Waveflow

    AnnularAnnularMistflow

    SuperficialGasVelocity[m/s]

    SuperficialLiquidVelocity[m/s]

    (c) (d) (e)

    (h) (i) (j)

    (m)(n) (o)

    (r) (s) (t)

    (w) (x) (y)

    (b)

    (g)

    (l)

    (q)

    (v)

    (a)

    (f)

    (k)

    (p)

    (u)

    (z)

    (aa)

    (ab)

    (ac)

    (ad)

    (b)Mandhane[10]andBaker[11]MapforHorizontalFlow.

    (a)SuperficialVelocityonDeviationRatio.

    v

    y,t,o,j,e

    a,b,c,d,e

    RL

    RG

    u,p

  • 7/28/2019 Vol 7-1-041 055 Azridjal Aziz, DISTRIBUTION OF TWO-PHASE FLOW IN A DISTRIBUTOR

    10/15

    50A.Azizetal.

    JournalofEngineeringScienceandTechnologyFebruary2012,Vol.7(1)

    air tends to even distribution athigh air superficial velocity.Although the air

    deviation ratioRG at pointe isbigger than the pointo andy, it isresulted of

    inclined position45o and high air superficialvelocity; air tends to flowout at

    upperoutletbecauseofgravity.

    Table3.ExperimentalConditionsforPointofu,v,andpatvariesSuperficialVelocitiesofAirandWateratDistributorposition0

    o(Horizontal).

    FlowPatternImage PointSuperficial

    Velocity

    Deviation

    Ratio

    uUG=0.07m/s

    UL=0.03m/s

    RG=-0.464

    RL=-0.753

    vUG=0.16m/s

    UL=0.03m/s

    RG=-0.916

    RL=-1

    pUG=0.07m/s

    UL=0.06m/s

    RG=-0.462

    RL=-0.891

    For all conditions, the air deviation ratiosRG are positive though they are

    ratherclosetozero,asshowninFig.6(a)witharrows(alsoseeTables4and5).

    Ontheotherhand,wheretheairsuperficialvelocityiskeptconstanton0.06,0.7,

    17.92m/sandwatersuperficialvelocityisvariedfrom0.03m/sto3.54m/s,the

    waterdeviationratiosRLarenegativethoughthevaluesareapproachingzerowith

    increasingwatersuperficialvelocity.Itmeansthattheflowdistributionofwater

    tends to evenly distribution with increasing water superficial velocity. So it

    showedthatequalflowdistributionthroughthedistributoratinclinedposition45o

    occursathighsuperficialvelocitiesofairandwater.

    The flow pattern image for point y, o and e at distributor position 45o

    (inclined)areshowninTable4,wheretheairsuperficialvelocityiskeptathighvelocityaround17m/s,andwatersuperficialvelocityisvariedfrom0.03m/sto

    2.97m/s.

    At this condition, equal distribution of air achieved with decreasing water

    superficialvelocity.ComparetoTable2,it showedthattheairflowdistribution

    tendsmoreunevendistribution thanexperimental conditioninTable2. Onthe

    other hand, the water deviation ratiosRL are negative, though the values are

    approaching zero andmoreevenly distribution achievedwith increasing water

    superficial velocity.These are similar to experimental results in Table 2.The

    typicalphotographsofobservedflowpatternasshowninTable4,coverannular

    flow, annular mist flow and annular dispersed flow, it can be confirmedwith

    Mandhane[10]andBaker[11]flowpatternmapasshowninFig.6(b).

    Stratifiedflow

    Stratifiedflow

    Stratifiedflow

  • 7/28/2019 Vol 7-1-041 055 Azridjal Aziz, DISTRIBUTION OF TWO-PHASE FLOW IN A DISTRIBUTOR

    11/15

    DistributionofTwo-phaseFlowinaDistributor51

    JournalofEngineeringScienceandTechnologyFebruary2012,Vol.7(1)

    Fig.6.ExperimentalConditionsinCircleMarkon

    DeviationRatioandFlowPatternMapsfor45 o.

    The flow pattern image for point a, c and e at distributor position 45o

    (inclined) are shown inTable5 where the water superficial velocityis kept at

    highvelocityaround3.54m/s,andairsuperficialvelocityisvariedfrom0.06m/s

    to16.37m/s.

    Inthiscondition,thevalueofwaterdeviationratiosRLisapproachingzeroand

    evenly distributionachievedwithincreasingair superficialvelocity.On theother

    hand,atwatersuperficialvelocityaround3.54m/s,theairdeviationratios RGareapproachingzerowithlittlediscrepancyat pointe,airtendstoflowoutatupper

    outletbecauseofgravity.Thevisualized flow regimeasshown inTable5 cover

    dispersedbubblyflowandannulardispersedflow;itcangivegoodagreementwith

    Mandhane[10]andBaker[11]flowpatternmapasshowninFig.6(b).

    (a)SuperficialVelocityonDeviationRatio.

    o,y

    e

    RL

    RG

    a,c,e

    101

    100

    101

    102

    101

    100

    Dispersedflow

    BubbleElongated

    Bubbleflow

    Stratifiedflow

    Slugflow

    Waveflow

    AnnularAnnularMistflow

    SuperficialGasVelocity[m/s]

    SuperficialLiquidVelocity

    [m/s]

    (c) (e)

    (m) (o)

    (w) (y)

    (a)

    (k)

    (u)

    (z)

    (ac)

    (ad)

    (b)Map[10,11]forHorizontalFlow.

  • 7/28/2019 Vol 7-1-041 055 Azridjal Aziz, DISTRIBUTION OF TWO-PHASE FLOW IN A DISTRIBUTOR

    12/15

    52A.Azizetal.

    JournalofEngineeringScienceandTechnologyFebruary2012,Vol.7(1)

    Table4.ExperimentalConditionsforPointofy,o,andeat

    varyingSuperficialVelocitiesofWaterfromLowtoHighandAir

    relativelyConstantatDistributorPosition45 o.

    FlowPatternImage PointSuperficialVelocity

    DeviationRatio

    y UG=17.76m/s

    UL=0.03m/s

    RG=0.097

    RL=-0.519

    o UG=16.52m/s

    UL=0.32m/s

    RG=0.112

    RL=-0.144

    e UG=16.37m/s

    UL=2.97m/sRG=0.251

    RL=-0.117

    Table5.ExperimentalConditionsforPointofa,c,andeat

    varyingSuperficialVelocitiesofAirfromLowtoHighandWater

    relativelyConstantatDistributorPosition45 o.

    FlowPatternImage PointSuperficial

    Velocity

    Deviation

    Ratio

    aUG=0.06m/s

    UL=3.84m/s

    RG=0.178

    RL=-0.016

    cUG=0.84m/s

    UL=3.72m/s

    RG=-0.042

    RL=0.014

    eUG=16.37m/s

    UL=2.97m/s

    RG=0.251

    RL=-0.117

    Experimentalresultsofdistributorpositionindifferentinclination(angle0o,

    45oand90o)onsuperficialvelocitiesofairandwateratpoint z,c,ab,ac,andad

    areshowninFig.7(a).TheflowpatternmapofMandhane[10]andBaker[11]in

    Fig.7(b)showstheexperimentalconditionsinwhichtheyareindicatedthepoints

    withcirclemark.In theseconditions,thedistributionof two-phaseflowthrough

    Annularflow

    Annularmistflow

    Annulardispersedflow

    Dispersedbubblyflow

    Annulardispersedflow

    Dispersedbubblyflow

  • 7/28/2019 Vol 7-1-041 055 Azridjal Aziz, DISTRIBUTION OF TWO-PHASE FLOW IN A DISTRIBUTOR

    13/15

    DistributionofTwo-phaseFlowinaDistributor53

    JournalofEngineeringScienceandTechnologyFebruary2012,Vol.7(1)

    distributor tends unevenly flow distribution on horizontal position and tends

    evenlyflowdistributionontheverticalpositionasshowninFig.7(a)andTable6.

    ThedeviationratiosRareapproachingzerobothforairandwaterwithchanging

    inclination form horizontal (0o) to vertical (90

    o). It can be concluded that the

    equal fluid distribution both air and water, it is achieved by changing the

    inclinationanglefromhorizontalpositiontoverticalposition.

    (a)DistributorInclinationonDeviationRatio.

    (b)SekoguchiMap[12]forVerticalFlow.

    Fig.7.ExperimentalConditionsinCircleMarkonDeviationRatio

    andFlowPatternMapsforDifferentInclination.

    Theobservedflowpatternatpointz,c,ab,ac,andadatdistributorposition90o(vertical)showninTable6anditwasplottedonMandhaneBakermap[10,

    11]andSekoguchimap[12]withcirclemarkfortestresults.Theexperimental

    resultscoverslugflowwithsmallbubble,dispersedbubbleflow,frothflowandannular flow. It can be confirmed with Sekoguchi flow pattern map [12] for

    verticalpipewithgoodagreementasshowninFig.4(b).

  • 7/28/2019 Vol 7-1-041 055 Azridjal Aziz, DISTRIBUTION OF TWO-PHASE FLOW IN A DISTRIBUTOR

    14/15

    54A.Azizetal.

    JournalofEngineeringScienceandTechnologyFebruary2012,Vol.7(1)

    Table6.ObservedFlowPatternforPointofz,c,ab,ac,andad

    atDistributorPosition90o.

    FlowPatternImage PointSuperficial

    Velocity

    Deviation

    Ratio

    z UG=0.37m/sUL=0.31m/sRG=0.268RL=-0.169

    cUG=0.95m/sUL=3.7m/s

    RG=-0.173RL=0.029

    abUG=1.62m/s

    UL=0.17m/s

    RG=-0.062

    RL=0.029

    acUG=3.46m/s

    UL=0.83m/s

    RG=-0.029

    RL=0.04

    adUG=4.71m/s

    UL=0.02m/sRG=-0.002

    RL=-0.077

    4.Conclusions

    Theexperimental studywas carried out to characterize the flowconfigurations

    and to clarify the distribution characteristics of air and water two-phase flow

    throughthedistributor.Theobservedflowpatternand thedistributiondeviation

    of two-phase flow were explained and the conclusions of this study could be

    drawnasfollow:

    Attheinletofthedistributor, theobservedflowpatternsofhorizontal andverticaltwo-phaseflowsagreedwellwiththeMandhane-Bakerflowmapfor

    horizontalflowandtheSekoguchimapforverticalflow,respectively.

    Forhorizontalandinclinedconditions,theevendistributionoftwo-phaseflowinadistributorachievedonlyathighsuperficialvelocitiesofbothairandwater.

    ThedeviationratiosRareapproachingzero(evendistribution)withincreasingairandwatersuperficialvelocitiesandbychangingtheinclinationanglefrom

    horizontal toverticalposition.However, thereis someinexplicablebehavior

    andcriteriaoftheevendistributionhavenotbeenfullyclarified.

    Slugflow

    Dispersedbubbleflow

    Slugflowwithsmallbubble

    Frothflow

    Annularflow

  • 7/28/2019 Vol 7-1-041 055 Azridjal Aziz, DISTRIBUTION OF TWO-PHASE FLOW IN A DISTRIBUTOR

    15/15

    DistributionofTwo-phaseFlowinaDistributor55

    JournalofEngineeringScienceandTechnologyFebruary2012,Vol.7(1)

    References

    1. Lee, J.K.;andLee,S.Y. (2004).Distributionof two-phase annular flowatheader-channeljunctions.ExperimentalThermalandFluidScience,28(2-3),217-222.

    2. Vist, S.; and Pettersen, J. (2004). Two-phase flowdistribution in compactheatexchangermanifolds.ExperimentalThermalandFluidScience,28(2-3),

    209-215.

    3. Marchitto, A.; Devia, F.; Fossa, M.; Guglielmini, G.; and Schenone, C.(2008).Experimentson two-phaseflowdistribution insideparallelchannelsof compact heat exchangers. International Journal of Multiphase Flow,

    34(2),128-144.

    4. Yoshioka,S.; Kim,H.; and Kasai, K. (2008). Performance evaluation andoptimization of a refrigerant distributor for air conditioner. Journal of

    ThermalScienceandTechnology,3(1),68-77.

    5. Tae, S.J.; and Cho, K. (2003). Two-phase flow distribution and Phaseseparation through both horizontal and vertical branches. KSME

    InternationalJournal,17(8),1211-1218.

    6. Wen, M.Y.; Lee, C.H.; and Tasi, J.C. (2008). Improving two-phaserefrigerantdistribution in themanifoldof therefrigerationsystem.Applied

    ThermalEngineering,28(17-18),2126-2135.

    7. Kim,N.-H.;andSin,T.-R.(2006).Two-phaseflowdistributionofair-waterannular flow in a parallel flow heat exchanger.International Journal of

    MultiphaseFlow,32(12),1340-1353.

    8. Bell,Stephanie. (2001).ABeginnersguide to uncertaintyof measurement(Issue2).UK:NationalPhysicalLaboratory.

    9. Moffat, R.J. (1988). Describing the uncertainties in experimental results.ExperimentalThermalandFluidScience,1(1),3-17.

    10. Mandhane,J.M.;Gregory,G.A.;andAziz,K.(1974).Aflowpatternmapforgas-liquid flow in horizontal pipes. International Journal of MultiphaseFlow,1(4),537-553.

    11. Baker,O.(1954).Designofpipelinesforsimultaneousflowofoilandgas.Oil&GasJournal,53,185-195.

    12. JSME.(2006).Handbookof gas-liquidtwo-phaseflowtechnology(2ndEd.).Japan:CoronaPublishingCo.Ltd.(inJapanese).

    13. Massoud, M. (2005).Engineering thermo fluids (Thermodynamics, FluidMechanics, and HeatTransfer) (1

    st Ed.).Germany:Springer-VerlagBerlin

    Heidelberg.

    14. Ghiaasiaan, S. M. (2008). Two-phase flow, boiling and condensation (InConventionalandMiniatureSystems) (1stEd.).UK:CambridgeUniversityPress.