voltage upgrading of overhead lines.pdf

Upload: dkymq

Post on 02-Jun-2018

253 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    1/64

    June 2010

    Magne Eystein Runde, ELKRAFT

    Master of Science in Electric Power EngineeringSubmission date:

    Supervisor:

    Norwegian University of Science and Technology

    Department of Electric Power Engineering

    Voltage Upgrading of Overhead Lines

    Anders Tuhus Olsen

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    2/64

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    3/64

    Problem DescriptionStatnett wants to increase the transmission capacity in their 300 kV overhead lines by upgrading

    the operating voltage to 420 kV. To make this possible some modifications must be done. Insulator

    strings have to be elongated or replaced and the air clearances must be increased. EN standards

    provide guidelines for how to calculate the air clearances adequately to provide required safety

    margins.

    It turns out that the formulas given by the standards provide greater safety margin than

    appropriate for upgraded transmission lines. Proper minimum air clearances represent a great

    potential for saving money when upgrading the voltage on overhead lines. It is therefore desirable

    to calculate the air clearances on the basis of smaller safety margins than described in the

    standard.

    Assignment given: 15. January 2010

    Supervisor: Magne Eystein Runde, ELKRAFT

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    4/64

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    5/64

    III

    SummaryStatnettwantstoincreasethetransmissioncapacityintheir300kVoverheadlinesbyupgradingthe

    operatingvoltageto420kV.Tomakethispossiblesomemodificationsmustbedone.Insulator

    stringshavetobeelongatedbytwotofourinsulatorsandtheairclearancesmustbechecked.EN

    standardsprovideguidelinesforhowtocalculatetheairclearancesadequatelytoproviderequired

    safetymargins.

    Itturnsoutthattheformulasgivenbythestandardsprovidegreatersafetymarginthanappropriate

    forupgradedtransmissionlines.Byfindingnewpropersafetymargins,severaltowerswhich

    otherwisewouldhavetoberebuilttofulfilltherequirementsforclearances,canstayunmodified.

    Whenconsideringthenumberoftowersinanaveragetransmissionline,thereisobviouslyagreat

    potentialforsavingmoneybyputtingsomeeffortlookingintoproperminimumairclearances.By

    reducetheairclearancebyapproximately10cm,6.5mill.NOKweresparedina65kmtransmission

    line.Itisthereforedesirabletocalculatetheairclearancesonthebasisofsmallersafetymargins

    than

    described

    in

    the

    standard,

    but

    which

    is

    still

    within

    acceptable

    safety

    limits.

    In

    the

    formulas

    for

    minimumdistances,thestatisticalwithstandvoltageU50%,gapfactorsandaltitudefactorsare

    examinedforthecasesofoperatingvoltage,switchingimpulseandlightningimpulse.

    DiscrepanciesbetweentestresultsfromalaboratoryworkconductedbySTRIandcalculationsbased

    ontheENstandardofU50%,havebeendiscovered.TestedU50forswitchingimpulsesare59%

    higherthanU50fromthestandard.Thesameappliesforlightningimpulseswherethetestedvalueis

    12%higherthanthestandard.Thisgivesreasontoassumethestandardtobesomewhat

    conservative.

    Further,discrepanciesarefoundbetweenthestandardEN50341thatsaysthatthegapfactorwhen

    aninsulatorispresentisthesameasifnoinsulatorispresent,andCigrreport72,whichsaysthat

    thegapfactorshouldbecorrectedforthepresenceofinsulators.Correctionforinsulatorswilllead

    toalowergapfactori.e.lowerbreakdownstrengthalongtheinsulatorstringthanintherestofthe

    airgap.Itturnsoutthatthecombinationofrainandinsulatorstringreducethegapfactorandthus,

    thewithstandstrengthinthecasesofswitchingimpulsesintheorderof613%forVstring

    insulatorsand2034%forIstringinsulatorsandforcontinuouspowerfrequencyvoltageinthe

    orderof25%forVstringinsulatorsand3340%forIstringinsulators.

    RainhasnoinfluenceonthewithstandstrengthofIstringsorVstringsexposedtolightningimpulses.

    Severalpreviousresearches[1][2]showsthesametendenciesoflackofcorrelationbetweenU50andgapfactorswhenairgapswithinsulatorstringsareexposedtolightningimpulses.Thus,thegap

    factorisnotsufficienttodescribethedischargecharacteristicsofairgapswithinsulatorstrings

    exposedtolightningimpulses.

    Itisfoundthattheairgapbetweenphaseandguywirehasapproximately7%greaterwithstand

    strengththanovertheinsulatorstringinatowerwindow.Thisadditionalsafetymarginisadesirable

    propertyintermsthattheguywiresaretheweakestpointofatower.Thisshouldhoweverbe

    verifiedbyfullscalelaboratorytestsasthisismainlyvalidforthecaseofonlytheconductorguy

    wiregapwithoutthepresenceoftheotherairgapsthatrepresentthetowerwindow.

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    6/64

    IV

    PrefaceThisprojectisdoneincooperationwithStatnettandGrazUniversityofTechnologyandaddressesa

    realproblemconcerningvoltageupgradingofoverheadlinesintheNorwegiangrid.Theprojectis

    stronglylinkedtothestandardsofinsulationcoordination.Alargepartoftheworkhastherefore

    beenlookingintowhatthestandardscontainandwhattheyarebasedon.

    IwanttothankmyacademicsupervisorsMagneRundefromNTNUandSonjaMonicaBerlijnfrom

    Statnettfortheircontributiontothisprojectreport.

    IwouldalsoliketothankmybrotherHvardTuhusOlsenforlanguagerevisionofthisreport.

    AndersTuhusOlsen

    Trondheim11.06.2010

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    7/64

    V

    TableofContentsSummary................................................................................................................................................III

    Preface....................................................................................................................................................IV

    Tablelist................................................................................................................................................VII

    Tableoffigures.....................................................................................................................................VIII

    Symbollist..............................................................................................................................................IX

    Definitions..............................................................................................................................................IX

    Gapfactor...........................................................................................................................................IX

    Operatingconditions..........................................................................................................................IX

    Fastfrontovervoltage.........................................................................................................................X

    Slowfrontovervoltage........................................................................................................................X

    Continuouspowerfrequencyvoltage.................................................................................................X

    Minimumelectricalclearances...........................................................................................................X

    1 Introduction.....................................................................................................................................1

    2 Scopeandlimitations......................................................................................................................3

    3 Societyandeconomy......................................................................................................................3

    4 Gapfactors......................................................................................................................................3

    4.1 Rodplanegap..........................................................................................................................3

    4.2 Actualairgaps.........................................................................................................................4

    4.2.1 ParisandCortina.............................................................................................................5

    4.2.2 Cigr72technicalbulletin...............................................................................................7

    4.3 Influenceofinsulators...........................................................................................................12

    4.4 Influenceofrain....................................................................................................................13

    4.5 Conclusionofthechapter.....................................................................................................13

    5 Minimumairclearances................................................................................................................14

    6 Wind..............................................................................................................................................15

    6.1 EffectofwindonIstrings.....................................................................................................15

    7 Towers...........................................................................................................................................18

    7.1 Modificationoftowers..........................................................................................................18

    7.2 Alternativemeasuresfornarrowtowers..............................................................................19

    8 Airgapinsulatorconfigurations....................................................................................................21

    8.1 Fourdifferentalternativeconfigurations..............................................................................21

    9 Theoryvs.laboratorytesting........................................................................................................25

    9.1 Researchreport1:STRI.........................................................................................................25

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    8/64

    VI

    9.1.1 Lightningimpulse..........................................................................................................26

    9.1.2 Switchingimpulse..........................................................................................................28

    9.2 Researhreport2:EFI.............................................................................................................30

    9.2.1 Gapfactors....................................................................................................................32

    9.2.2 U50disruptivedischargetest.........................................................................................38

    9.3 Conclusionofthechapter.....................................................................................................42

    10 Acasestudy...............................................................................................................................43

    10.1 KristiansandArendal.............................................................................................................43

    10.2 Findingsofthecasestudy.....................................................................................................47

    10.3 Savingpotential.....................................................................................................................47

    10.4 Conclusionofthechapter.....................................................................................................47

    11 Newlaboratorytest...................................................................................................................48

    11.1 Testproposal.........................................................................................................................48

    12 Discussion..................................................................................................................................49

    13 Conclusion.................................................................................................................................51

    14 Bibliography...............................................................................................................................52

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    9/64

    VII

    TablelistTable1AirgapconfigurationsandtheirrespectivegapfactorsproposedbyL.Paris[3]......................6

    Table2Insulator andairgapconfigurations.......................................................................................21

    Table3Airclearancesforconfiguration14andminimumrequiredairclearances............................23

    Table4Conductorcrossarmcalculatedfora250/2500spositiveswitchingimpulse,(SI)underdry

    andwetconditions.Gapfactorsaregiveninparentheses.Altitudeof500m,towerheight=25m,

    guywireangleof40.............................................................................................................................24

    Table5U50,50%flashoverprobabilityforlightningimpulse(LIdry)...................................................26

    Table6U50,50%flashoverprobabilityforswitchingimpulse(SIwet)................................................28

    Table7U10,10%flashoverprobabilityforswitchingimpulse(SIwet)................................................30

    Table8Gapfactorsforouterphaseatlightningimpulse.....................................................................35

    Table9Gapfactorsformidphaseatlightningimpulse........................................................................35

    Table10Gapfactorsforouterphaseatswitchingimpulse..................................................................36

    Table11Gapfactorsformidphaseatswitchingimpulse....................................................................36

    Table12Gapfactorsforouterphaseatpowerfrequencyvoltage......................................................37Table13Gapfactorsformidphaseatpowerfrequencyvoltage.........................................................37

    Table14Conductorcrossarmexposedtoa1.2/50spositivelightningimpulse,(LI)underdry

    conditions..............................................................................................................................................38

    Table15Conductorcrossarmcalculatedfora1.2/50spositivelightningimpulse,(LI)underdry

    conditions.Samegeometryasabove...................................................................................................38

    Table16Towerwindowexposedtoa1.2/50spositivelightningimpulse,(LI)underdryandwet

    conditions..............................................................................................................................................39

    Table17Towerwindowcalculatedfora1.2/50spositivelightningimpulse,(LI)underdryandwet

    conditions..............................................................................................................................................39

    Table18Conductorcrossarmexposedtoa200/3000spositiveswitchingimpulse,(SI)underdry

    conditions..............................................................................................................................................40

    Table19Conductorcrossarmcalculatedfora250/2500spositiveswitchingimpulse,(SI)under

    dryconditions.Samegeometryasabove.............................................................................................40

    Table20Towerwindowexposedtoa200/3000spositiveswitchingimpulse,(SI)underdryandwet

    conditions..............................................................................................................................................40

    Table21Towerwindowcalculatedfora250/2500spositiveswitchingimpulse,(SI)underdryand

    wetconditions.......................................................................................................................................41

    Table22Towerwindowcalculatedfora250/2500spositiveswitchingimpulse,(SI)underdryand

    wetconditions

    and

    for

    different

    swing

    angles.

    The

    air

    gap

    between

    phase

    and

    guy

    wire

    and

    the

    lengthoftheinsulatorstringisboth2.56m.........................................................................................41

    Table23SwinganglesforaselectionoftowerofthetransmissionlineKristiansandArendal...........45

    Table24MeasuredminimumdistancesfortowermidphaseconductedbyStatnett.The

    correspondingswinganglesaregiveninparenthesis...........................................................................46

    Table25MinimumrequireddistancesfortowermidphasecalculatedaccordingtoEN50341.........46

    Table26Comparisonoftable24(measuredminimumclearances)andtable25(requiredminimum

    clearancesaccordingtoEN50341).......................................................................................................46

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    10/64

    VIII

    TableoffiguresFigure1Theprojectpresentedbyaflowchart......................................................................................2

    Figure2InfluenceoftheradiusRofsphericalelectrodesonU50underpositivepolarity[2]................4

    Figure3Conductorcrossarm[2]............................................................................................................7

    Figure4Towerwindow[2].....................................................................................................................8

    Figure5Probabilityforflashoverasafunctionofvoltageamplitudegivenasstandarddeviations..10

    Figure6Minimumairclearancesforthreedifferentoperatingconditions.........................................14

    Figure7Windmovestheconductortowardthetower........................................................................16

    Figure8Verticalandhorizontalspanlengths.Visthelengthbetweenthelowerpointsoftheline

    withintwospanswhileHisthelengthbetweenthemiddleoftwospans..........................................17

    Figure9CalculationsofswinganglesoftheinsulatorstringsinPLSCADData)nowind,b)3year

    windandc)50yearwind......................................................................................................................17

    Figure10ExtensionofanIstringinsulator...........................................................................................18

    Figure11ExtensionofaVstringinsulator...........................................................................................19

    Figure12Fittingequipmentbetweenphaseandinsulator..................................................................19Figure13Towerwindowofatensiontowerwithsupportinginsulator..............................................20

    Figure14Supportinginsulator..............................................................................................................20

    Figure15Armourrod............................................................................................................................21

    Figure16Testobjectsimulatingthetowerwindow.............................................................................25

    Figure17Cumulativenormaldistributionprobabilitycurvesforflashoverforlightningimpulse(LIdry)

    and15insulators(1.96m).....................................................................................................................27

    Figure18Cumulativenormaldistributionprobabilitycurvesforflashoverforswitchingimpulse(SI

    wet)and15insulators(1.96m)............................................................................................................29

    Figure19Testobjectusedtosimulatethetowerarrangement.Figurea)andb)representstheouter

    phase.Swingangleissimulatedaccordingtofigureb).Figurec)representsthemidphase[7].........31

    Figure20Voltageimpulse.Xaxis:T1=timetothepeakvalueoftheimpulseisobtained,T2=timeto

    halfofthepeakvalueoftheimpulseremains.Td=timewheretheimpulsehasavoltagelevel

    between0.9and1.0PU.Yaxis:ValueofthevoltageoftheimpulseinPU.........................................32

    Figure21Gapfactorforpositivepolarityswitchingimpulsetowerwindow(midphase)asafunction

    ofthestrikedistance.............................................................................................................................33

    Figure22Gapfactorforpositivepolarityswitchingimpulsetowerwindow(midphase)asafunction

    ofthestrikedistance[7].......................................................................................................................34

    Figure23TestobjectproposedbyMichaelHintereggerattheGrazUniversityofTechnology..........48

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    11/64

    IX

    Symbollist

    Symbol Unit Explanation

    Kg gapfactor

    Kg_sf gapfactorslowfrontwaveforswitchingimpulse

    Kg_ff gapfactorfastfrontwaveforlightningimpulse

    Kg_pf gapfactorforpowerfrequencyoperatingvoltage

    Ka atmosphericcorrectionfactor

    Kcs statisticalcoordinationfactor. Kcscomesfromchoosingariskoffailure

    oftheinsulationthathasbeenprovenfromexperiencetobeacceptable

    H m heightfromphasetoground

    d1 m lengthoftheinsulatorstring

    d2 m distancefromphasetotowerpole

    d m distancefromphasetotowerconstruction

    m withofthetowerpole

    U50 kV thevoltagethatgivesaprobabilityof50%foraflashovertooccurfor

    selfrestoringinsulation

    U10 kV thevoltagethatgivesaprobabilityof10%foraflashovertooccurfor

    selfrestoringinsulation

    kg/m3

    airdensity

    Dpp m minimumrequiredairclearancephasetophase

    Del m minimumrequiredairclearancephasetoearth

    Definitions

    Gapfactor

    Gapfactoristherelationshipbetweentheflashovervoltageforarodplanegapandtheflashover

    voltageofapracticalairgapofidenticalsizeandforapositivevoltageimpulse.

    ThegapfactorisgivendirectlyforswitchingovervoltageasKg_sf.Thegapfactorforlightningimpulse

    isderivedfromtheswitchingovervoltagegapfactorasKg_ff=0.74+0.26Kg_sfandthegapfactorfor

    powerfrequencyvoltageisderivedfromswitchingimpulsegapfactorasKg_pf=1.35Kg_sf0.35Kg2_sf

    Operatingconditions

    Thestandardshavedefinedthreedifferentoperatingconditionsthatdescribethewindconditions

    andtheworstandmostlikelycorrespondingelectricalstress.

    Nowind:Lightningimpulse(LI).

    3yearsreturntime:Switchingimpulse(SI).

    50yearsreturntime:Powerfrequency(PF).

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    12/64

    X

    Fastfrontovervoltage

    Fastfrontovervoltagesofimportanceforoverheadlinesaremainlylightningovervoltagesduetoa

    directstriketothephaseconductor.Therepresentativevoltagestressischaracterizedbythe

    standardlightningimpulsewaveshape(1.2/50s).Fastfrontovervoltagesarealsoreferredtoas

    lightningimpulse(LI)inthestandardsforinsulationcoordinationandareusedasdimensioncriteria

    fordeterminingnecessaryairclearanceatnowindconditions.

    Slowfrontovervoltage

    Slowfrontovervoltagecanoriginatefromfaults,switchingoperationsordistantdirectlightning

    strikestooverheadlines.Slowfrontovervoltagesofimportanceforoverheadlinesareovervoltages

    causedbyearthfault,energizationandreenergization.Thestandardswitchingimpulsewaveshape

    is(250/2500s).Slowfrontovervoltagesarealsoreferredtoasswitchingimpulses(SI)inthe

    standardsforinsulationcoordinationandareusedasadimensioncriteriafordeterminingnecessary

    airclearanceatwindspeedwith3yearsreturntime.

    Continuouspowerfrequencyvoltage

    Thecontinuouspowerfrequencyvoltage(PF)isconsideredasconstantandequaltothepeakvalue

    ofthehighestsystemvoltage( 2 Us)whichisthehighestvalueofoperatingvoltagethatoccurs

    undernormaloperatingconditionsatanytimeandanypointinthesystem.Inthestandardsfor

    insulationcoordination,powerfrequencyvoltageisusedasdimensioncriteriafordetermining

    necessaryairclearanceatextremewindconditionswith50yearsreturntime.

    Minimumelectricalclearances

    FivetypesofelectricalclearancesareconsideredinthepresentstandardEN50341:

    Del Minimumairclearancerequiredtopreventadisruptivedischargebetweenphase

    conductorsandobjectsatearthpotentialduringfastfrontorslowfrontovervoltages.

    Delmaybeeitherinternalwhenconsideringconductortotowerstructureclearance,

    orexternalwhenconsideringaconductortoobstacleclearance.

    Dpp Minimumairclearancerequiredtopreventadisruptivedischargebetweenphase

    conductorsduringfastfrontorslowfrontovervoltages.Dppisaninternalclearance.

    D50Hz_p_e Minimumairclearancerequiredtopreventadisruptivedischargeatpower

    frequencyvoltagebetweenaphaseconductorandobjectsatearthpotential.D50Hz_p_e

    isaninternalclearance.

    Thismasterthesismainlydealswiththeissuesrelatedtominimumairclearanceswithinthetowers

    relatedtovoltageupgrading.TheairclearancesthataretreatedinthisthesisarethereforeonlyDel

    andD50Hz_p_e.

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    13/64

    1

    1 IntroductionThemaingridinNorwaywasbuiltduringthetimeperiodfrom1960to1990.Sincethenthedemand

    forelectricityhasconstantlyincreased,causinghigherrequirementstothegridsabilitytotransmit

    electricity.Inordertomeettoadysandfuturerequirementsfortransmissioncapacityandsecurity

    ofsupply,measuresmustbetaken.Oneoptionistobuildnewtransmissionlines.Thisishowever

    ratherexpensiveandtimeconsumingasthisrequirestheacquisitionoflicensesfordevelopmentof

    newlines.Anotherpossibleoptiontomeettherequirementforhighertransmissioncapacityis

    increasingthecapacityoftheexistingtransmissionlines.Anincreaseofcapacityintransmissionlines

    canbedoneeitherbyincreasingthecurrentorincreasingthevoltage.Increasingthecapacityby

    increasingthecurrentlevelmeansthetemperatureoftheconductors,thustheactivelosseswill

    increase.Toallowahigherconductortemperatureonemustmakesuretomakeuseoftheproper

    conductorthatisdesignedforhighoperatingtemperatures.Alternativelyonecanreplacethe

    existingconductorswithconductorsofgreatercrosssection.Thisprojectexclusivelydealswiththe

    otheralternativeforincreasingthetransmissioncapacity,whichistoincreasetheoperatingvoltage.

    Whenupgradingtheoperatingvoltage,insulatingcoordinationhastobedoneoveragaininorderto

    obtainsufficientinsulationstrengthforthenewvoltagelevel.Insulatingcoordinationistheselection

    oftheinsulatingstrengthconsistentwiththeexpectedovervoltagetoobtainanacceptableriskof

    failure.

    Thetowergeometryanddimensionsareoriginallydesignedforanoperatingvoltageof300kV.To

    allowthesetowerstobeexposedtohigherelectricalstressthantheyareoriginallydesignedfor,

    somemeasuresmustbedone.Theinsulatorstringshavetobeelongatedorreplacedandtheair

    clearanceshavetobeincreasedinordertoachievesufficientdielectricstrength.Thetighter

    dimensionsina300kVtower,comparetoa420kVtower,limitstheextensionoftheinsulatorsandthepossibleminimumdistances.

    Thestandardsforinsulationcoordinationprovideguidelinesforminimumairclearances.Ithas

    provendifficulttomaintaintheminimumairclearanceswithinthestandardsrequirementswithout

    doingmajormodificationstothetowers.However,theregulationssaythatitisnotanabsolute

    requirementtofollowthemethodforinsulatingcoordinationdescribedbythestandards.The

    standardsareprovidedasarecommendationtohowthingsshouldbeperformedtoensuresufficient

    safetyandsecurityofsupply.Theregulationsrequirethatalldeviationsfromthestandardsmustbe

    documentedtocomplywithapplicablelawsandregulationstoensurethesafety.Thismasterthesis

    willexaminethepossibilitiesforvoltageupgradingoftightdimensionedtowerswhichlimitsthe

    possibilitiesforvoltageupgradingaccordingtostandards.Whendifferentsolutionsareconsidered,

    economy,safetysecurityofsupplymustbeconsidered.

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    14/64

    2

    Aflowchartismadetogivethereaderabetteroverviewofthedifferentissuesthatareinvestigated

    andhowtheinvestigationisperformed.

    Figure1Theprojectpresentedbyaflowchart

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    15/64

    3

    2 ScopeandlimitationsThisreportexaminesminimumairclearancesthatmaybeallowedinatower.Itisknownthat

    currentrequirementsforairclearancesthataregiveninthestandardsaresomewhatconservative

    andcannotbemetwithoutdoingmajormodificationstothetowers,whichinvolvesextensivecosts.

    Amajortaskistofindtheappropriateminimumclearancesthatcanallowalargernumberoftowers

    tostayunmodifiedwithoutlackofthesecurityofsupply.Thiswillalwaysbeanassessmentofcost

    andreliability.

    Gapfactorswillbeexaminedandthegapfactorsrecommendedbythestandardsarecomparedto

    gapfactorsproposedotherresearchwork.Theimpactoftheswingangleoftheinsulatorandthe

    insulatoritselftothegapfactorisexamined.ThestatisticalwithstandvoltageU50willbeexamined

    forlightningimpulses,switchingimpulsesandcontinuous50Hzpowerfrequencyvoltage.

    Otheraspectsofinterestofvoltageupgradingthatarenotincludedinthisreportarelocationof

    surgearrestorsandcoronanoise.

    3 SocietyandeconomyTheideaofupgradingtransmissionlinesistogetagridwithhighercapacityatlowerinvestmentcost

    andwithlessenvironmentalimpactthanbuildingnewtransmissionlines.Accordingly,when

    upgradingtransmissionlines,oneshouldtothegreatestextentpossiblemakeuseoftheexisting

    lines,insulators,towersandotherequipment.Theenvironmentalaspectofvoltageupgradingisof

    greatimportanceintodayssocietywherethereisalotoffocusonenvironmentfriendlyenergy

    production.Environmentfriendlypowertransmissionshouldbeanaturalpartofthis.

    4 GapfactorsDeterminingtheelectricalwithstandstrengthofairgapsisdonebydisruptivedischargetestsin

    laboratories.Onedesiredoutcomeofsuchtestsistofindthevoltageamplitudethatgivesa50%

    probabilityforflashover,U50.Thevoltageamplituderequiredtogiveaflashoverisstrongly

    dependentontheshapeoftheelectrodes.Onthebasisofthisphenomenon,thegapfactorwas

    introducedinordertocorrectthediscrepancybetweenareferencegapwhereitselectricproperties

    wasknownandtheshapeoftheactualelectrode.Thegapfactorkgisamultiplyingfactorwhich

    characterizestheshapeoftheelectrodesofanairgap,thusdischargecharacteristicsofanyairgaps

    canbedeterminedbymultiplyingthegapfactorwiththedischargecharacteristicsofareferencegap.

    Amongthedifferentairgapsofspacingd,thepositivepolarityrodplanegaphasthelowest

    withstandstrengthandwasthereforeusedasareferencegapwithagapfactorkg=1.

    4.1 Rod-planegap

    Therodplanegapisawellknowngapconfigurationusedinlaboratorytesting.Theradiusof

    curvatureoftherod(anode)isdecisiveforthevalueoftheflashovervoltage.Forpositivepolarity

    impulse,themorepointedtheanode,thelowertheflashovervoltageofalargeairgap.Forthe

    cathodeapplies:themorepointedthecathode,thegreatertheflashovervoltageofalargeairgap.

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    16/64

    4

    TheU50valueremainsconstantwhentheanoderadiusislessthanacertaincriticalvalueRcriticalwhich

    isdependentonairgapspacingasshowninfig.2.

    Figure2InfluenceoftheradiusRofsphericalelectrodesonU50underpositivepolarity[2].

    Fromfig.2itcanbeseenthatforairgapsof2metresandupthecriticalradiusisR>0.1metresi.e.

    forthemajorityofpracticalproblems,theanoderadiusislessthanthecriticalradius.Inthiscasethedielectricwithstandstrengthonlydependsonthelengthoftheairgap,whichmeansthatformost

    practicalairgapstherodplanegapstaysvalidasareferencegapwhendeterminingthegapfactor.

    4.2 Actualairgaps

    Thegapfactorkg,originallyproposedbyL.ParisandR.Cortina[1]in1968,istherelationofflashover

    voltageforarodplanegapandapracticalairgapofidenticalgaplength,d.Theynotedthatthatall

    curvesofU50asafunctionofgapspacingdhadessentiallythesameshapeforatowerconfiguration

    andarodplanegap.Aconductorplanegap,whichhasshowntohavethesametendencyasarodplanegap,providedagoodbasisfordeterminingtheelectricalpropertiesofactualairgapswitha

    referencetothewellknownrodplaneconfiguration.In1967LuigiParispublishedtheIEEEresearch

    articleInfluenceofAirGapCharacteristicsofLinetoGroundSwitchingSurgeStrength[3].The

    researchworkwasperformedbyapplyingimpulsewavessimulatingswitchingsurges.Themain

    purposeoftheresearchwastoinvestigatethedependenceofairgapswitchingsurgeperformance

    upongapgeometry.Mostofthetestsweremadewitha120/4000simpulsewavesincethis

    particularwaveshapeisrecognizedforhavingthelowestpositivepolaritywithstandvoltageforrod

    rodandrodplanegaps.Onthebasisofthetestresultstherewasdrawnsomeconclusionsaboutthe

    influenceoftheelectrodeshapetotheelectricwithstandstrengthU50ofairgaps.Onthebasisofthe

    testresultstheauthorproposedthegapconfigurationswiththecorrespondinggapfactors,kggiven

    intable1.

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    17/64

    5

    4.2.1 ParisandCortina

    In1968LuigiParisandRosarioCortinapublishedtheIEEEresearcharticleSwitchingandLightning

    ImpulseDischargeCharacteristicsofLargeAirgapsandLongInsulatorStrings[1].Thisarticlewas

    publishedasasecondpartofthearticlewrittenbyL.Paristhepreviousyear,andalsoincludesthe

    behaviourofairgapswhenexposedtothe1.2/50slightningimpulse.Oneofthediscoveriesthey

    madewasthattheimpactoftheshapeoftheelectrodestothedischargevoltageforlightning

    impulsesissimilarinbehaviourtothatseenforswitchingimpulses,whenthereisnoinsulatorstring

    betweentheelectrodes.However,theinfluenceofelectrodeshapeislesssignificantforlightning

    impulsesinairgapswithoutaninsulatorstringthroughit.Theyalsofoundthattheshapeofthe

    insulatorsinaninsulatorstringhasaveryslightinfluenceonthebehaviouroftheairgap,meaning

    thatintroducinganinsulatorstringbetweentheelectrodescanbeconsideredingeneral,leavingthe

    typeofinsulatoroutofconsideration.Forlightningimpulsesappliesthattheinfluenceofthe

    electrodeshapeismuchgreaterinthecaseofairgapswithaninsulatorstringbetweenthe

    electrodes.Thearticleconcludesthatthegapfactorkgisnotsufficientfordefinitionofthebehaviour

    ofair

    gaps

    with

    an

    insulator

    string

    through

    itwhen

    the

    air

    gap

    isexposed

    tolightning

    impulses

    with

    positiveornegativepolarityunderdryandwetconditions,andindryconditionsfornegativepolarity

    switchingimpulses.Negativepolarityimpulsesarehowevernotinterestinginthiscontextsincethe

    flashovervoltageinanairgapisconsiderablyhigherinthiscase. Onthebasisoftheresearchwork

    theyproposedthesemiempiricalformula:

    0.650 500U d S kV (4.1)

    fordeterminingthedischargevoltageU50ofanrodplaneairgapoftwotosevenmetresfora

    positivepolarityswitchingimpulsewhereU50isinkVanddinmeters.

    Byapplyingthegapfactor,kgtotheformula,itisvalidforallairgapsthatarecharacterizedbyagap

    factor:

    0.650 500 gU d k S kV (4.2)

    Fordevelopingequation4.1theauthorsusedapositiveswitchingimpulsewithawaveshape

    120/4000swhichisconsideredasthemostcriticalwaveshapeforrodrodandrodplanegaps.

    Thus,theequationisnotbasedonthesamewaveshapeastheoneusedtodefinetheswitching

    impulseintheENstandardof250/2500s.

    IntheIEEEresearchreportInfluenceofAirGapCharacteristicsonLine toGroundSwitchingSurge

    Strength[3],aselectionoftypicalgapconfigurationswaspresentedasshownintable1.Thegap

    factorsforthedifferentairgapconfigurationssuggestedintable1weredevelopedthroughseveral

    disruptivedischargetestswhereaswitchingimpulsewaveof120/4000s,recognizedforhavingthe

    lowestpositivepolaritywithstandvoltageforrodrodandrodplanegaps,wasused.

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    18/64

    6

    Table1AirgapconfigurationsandtheirrespectivegapfactorsproposedbyL.Paris[3].

    Electrodes Testarrangement Gapfactor,kg

    Energized Grounded Without

    insulatorstring

    WithI andV

    insulatorstring

    Rod Plane 1.00 1.00

    Rod Structure(under) 1.05

    Conductor Plane 1.15

    Conductor Window 1.20 1.15

    Conductor Structure(under) 1.30

    Rod Rod(h=3m

    under)

    1.30

    Conductor Structure(over

    andlaterally)

    1.35 1.30

    Rod Rod(h=6m

    under)

    1.40

    Conductor Rope 1.40

    Conductor Rod(h=3m

    under)

    1.65

    Conductor Crossarmend 1.50

    Conductor Rod(h=6m

    under)

    1.90

    Conductor Rod(over) 1.90 1.75

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    19/64

    7

    4.2.2 Cigr72technicalbulletin

    AsitappearsfromtheIEEEresearcharticleSwitchingandLightningImpulseDischarge

    CharacteristicsofLargeAirgapsandLongInsulatorStrings[1],thegapfactordependsonthetype

    ofelectricalstresstheairgapisexposedto.Inairgapswithoutinsulatorstring,bothswitching and

    lightningimpulsescanbedescribedbyagapfactor.TheCigr72technicalbulletinsuggestsgap

    factorsforlightningimpulsesandcontinuouspowerfrequencyvoltagenamedkg_ff(ff=fastfront

    wave)andkg_pf(pf=powerfrequency)respectively.Thegapfactorskg_ffandkg_pfarederivedfrom

    theswitchingimpulsegapfactorasfollows:

    Whentheairgapisexposedtoalightningimpulse,thegapfactorkg_ffisexpressedintermsofkgas:

    _ 0.74 0.26g ff gk k

    (4.3)

    Whentheairgapisexposedtopowerfrequencyvoltage,thegapfactorkg_pfisexpressedintermsof

    kgas:

    2

    _ 1.35 0.35g pf g gk k k (4.4)

    InsomeliteratureincludingtheENstandards,thegapfactorforswitchingimpulseisnamedkg_sf(sf=

    slowfrontwave).Thisishoweverthesamegapfactorasthekggivenintablesforgapfactorssuchas

    table1andthetablesforgapfactorsfoundintheENstandards,i.e.thegapfactorsareprimarily

    givenforswitchingimpulsessothatkg_sf=kg.

    Conductorcrossarmistheairspacethatrepresentstheinsulationoftheouterphaseinatower.The

    insulationconsistsoftwoairgaps,d1whichisconductorcrossarmendandd2whichisconductor

    structure(laterally)ref.table1.

    Figure3Conductorcrossarm[2].

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    20/64

    8

    TheCigr72technicalbulletinsuggeststhefollowingformulaforthegapfactoroftheconductor

    crossarmconfiguration:

    18 2

    1 1

    1.45 0.015( 6) 0.35( 0.2) 0.135( 1.5)dg dHk ed d

    (4.5)

    Applicableinrange:

    d1=210m

    d2/d1=12

    /d1=0.11

    H/d1=210

    where

    Kggapfactor

    Hheightfromphasetoground

    d1lengthoftheinsulatorstring

    d2distancefromphasetotowerpole

    withofthetowerpole

    Thisformulawillinmostcasesgiveagapfactorcloseto1.45.Comparingthiswithtable1,thetwo

    airgaps,d1conductorcrossarmendandd2conductorstructure(laterally),havethegapfactors1.50

    and1.35respectively.Inpracticetheairgapconductorcrossarmendwithkg=1.50willbethe

    determinantairgapsinceinmostcasesd1

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    21/64

    9

    TheCigr72technicalbulletinsuggeststhefollowingformulaforthegapfactoroftheconductor

    towerwindowconfiguration:

    81.25 0.005( 6) 0.25( 0.2)dg Hk ed

    (4.6)

    Applicableinrange:

    d=210m

    /d=0.11

    H/d=210

    where

    Kggapfactor

    Hheightfromphasetoground

    ddistancefromphasetotowerconstruction

    withofthetowerpole

    Thisformulawillinmostcasesgiveagapfactorcloseto1.25.Ifinsteadusingtable1todetermine

    thegapfactorofthetowerwindow,oneobtainthethreeairgaps,conductorstructure(overwith

    insulatorstring),conductorstructure(laterally)andconductorrope,havingthegapfactors1.30,

    1.35and1.40respectively.Unliketheconductorcrossarmconfigurationoftheouterphase,the

    distancesfromconductortostructureareapproximatelythesameintheairspaceofthetower

    window.Inthiscaseallofthethreementionedairgapswillbedeterminantfortheinsulating

    strengthandmightbetreatedindividuallyratherthanasasingleairgap.

    Inthiscasetheformula3.6compliesonlypartlywiththesuggestedgapfactorsintable1,asit

    appearslowerthanthelowestsinglegapfactorofthetreeairgapsfromtable1.

    Asafirstapproximation,asthelowestsinglegapfactorofthethreementionedgapsis1.3,itmakes

    sensetouseacommongapfactorforthetowerwindowof1.25asaconservativevaluewhen

    designingnewtransmissionlines.Whenitcomestovoltageupgrading,theairclearanceswithinthe

    towerislimited,makingitinterestingtoexamineallrelevantairgapswithinthetowerwindow.

    Asstatedearlier,itisdesirablethatincaseofaflashover,thestrikeshouldgotothecrossarm

    ratherthantothefragileguywires.Accordingtothegapfactorsintable1,theconductorguywire

    airgaphasanelectricalwithstandstrengthof78%higherthanconductorcrossarm,giventhatthe

    airgapsareofidenticallength.Thismightbeexplainedbythestatementthataconductorandthusa

    guywireorarope,hasapproximatelythesamepropertiesasarodinanairgap.Theconductor

    structuregapwillthushavethesametendencyasarodplanegap,whiletheconductorguywiregap

    willhavethesametendencyasarodrodgapwhichisknownforhavinghigherbreakdownstrength

    thantherodplanegap.

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    22/64

    10

    Asalreadymentioned,thestandardsforinsulatingcoordinationrecommendagapfactorofkg=1.25.

    Ifinsteaddividingthetowerwindowintothethreementionedairgapswithkg=1.3,1.35and1.4

    onemightgetamoreaccuratedescriptionofthecharacteristicsoftheairgapandhencetowhich

    partofthetowerconstructionthestrikeismostlikelytogo.

    Inthestandardsforinsulationcoordination,therequiredwithstandvoltage,Urwforlightning andswitchingimpulsesissettobethevoltagethatgivesa10%probabilityforflashovertooccurinthe

    airgapi.e.Urw=U10.Thisvalueisobtainedbymoving1.3standarddeviationsdownfromU50onthe

    probabilitycurveinfig.5,endingupat10%probabilityforflashover.Requiredwithstandvoltageis

    calculatedbytheformula:

    10 50 1.3rwU U U Z kV (4.7)

    where

    Zisthestandarddeviation

    forlightningimpulsesZ=0.03U50

    forswitchingimpulsesZ=0.06U50

    Figure5Probabilityforflashoverasafunctionofvoltageamplitudegivenasstandarddeviations.

    0

    0,10,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1

    4 3 2 1 0 1 2 3 4

    Probability

    Standarddeviation

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    23/64

    11

    Iftheconductortraverseairgap,whichhasthelowestgapfactor,kg=1.3isusedasareferencegap,

    thisairgapshouldgivea10%probabilityforflashover.Onewillthenobtainthefollowing

    probabilitiesforthetwootherairgapstohaveaflashover:

    Conductortowerpole,kg=1.35

    50 _ 1.35 50 _ 1.30 50 _ 1.301.35

    1.041.30g g g

    k k kU U U kV

    (4.8)

    Knowingthatthestandarddeviation,Z=0.06U50forswitchingimpulses,thegapfactorofthe

    conductortowerpolecorrespondsto2/3ofthestandarddeviationforswitchingimpulses.Adding

    the2/3tothe1.3gives1.97standarddeviations,whichcorrespondtoaprobabilityforflashoverof

    2.5%ontheprobabilitycurveinfig.5.

    Conductorguywire,kg=1.40

    50 _ 1.40 50 _ 1.30 50 _ 1.301.40

    1.081.30g g gk k kU U U kV

    (4.9)

    correspondsto4/3ofthestandarddeviationforswitchingimpulses.Addingthe4/3tothe1.3gives

    2.63standarddeviations,whichcorrespondtoaprobabilityforflashoverof0.5%ontheprobability

    curveinfig.5.

    Usingthemethodfordeterminerequiredwithstandstrengthdescribedinthestandardforinsulating

    coordinationincombinationwiththegapfactorsproposedintable1,therearea10%probabilityfor

    theflashovertooccurovertheinsulatorstringtotraverse,2.5%probabilityfortheflashovertooccurtowardsthetowerpoleand0.5%probabilityfortheflashovertooccurtowardstheguywire.

    Towhatextenttheseresultsarevalidforactualcasesoftowerwindowshastobedeterminedby

    laboratorytesting.Itisalsoimportanttopointoutthatthisisonlyvalidincasesofswitching

    impulses.Thestandardsusethesamemethodfordeterminerequiredwithstandstrengthoflightning

    impulses.However,thegreatuncertaintyonthebehaviouroflightningstrikesinairgapshavingan

    insulatorstringthroughitmakesitimpossibletorelatetheprobabilityforflashovertogapthe

    factors.Thisisdiscussedinthenextchapter;Influenceofinsulators.Asthelightningstrikesseem

    toacthighlyunpredictableinsuchcases ,theguywireshouldbeprotectedincaseswherethe

    dimensionsinthetowerwindowaretightandthedistancefromtheconductortotraverseisequalto

    conductorguywire.This,amongothersolutions,isdiscussedinthechapterAlternativemeasures

    fortighttowers.

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    24/64

    12

    4.3 Influenceofinsulators

    Towhatextenttheinsulatorstringaffectstheelectricpropertiesofanairgapdependsonthewave

    shapeofthevoltagetheairgapisexposedto.Differentliteratureagreeonthatinthecaseof

    positivepolarityswitchingimpulses,theintroductionofaninsulatingmediumbetweenthe

    electrodescausesonlyaslightchangeinthebehaviouroftheairgapandthusthegapfactor.Asfor

    lightningimpulse,thepresenceofinsulatorsbetweentheelectrodesmayplayanimportantroleon

    thedischargeprocess,thusalsoheavilyaffectingthestatisticalwithstandvoltageU50.

    Therearemainlytwodifferentconfigurationsofcapandpininsulatorstringsthatareusedin

    overheadlines,IstringandVstring.Asthenameindicates,theIstringconfigurationconsistsofa

    singleverticallystringofcapandpininsulators,whiletheVstringconfigurationconsiststwostrings

    withanangleof45,formingaVshape.Inthecaseofcapandpininsulatorstrings,thefield

    distributionisevenlydistributedbythemetalliccapsandpins.

    Givenexperimentalerror,thestatisticaluncertaintyandtheimprecisenatureoftheevaluationof

    geometricalcharacteristicsoftheinsulatorlessairgap,thepresenceofdrycapandpininsulatorsin

    theairgapcanbesaidtonothaveasignificantimpactwithrespecttothedielectricstrengthwhen

    exposedtoslowfrontimpulsewavessuchasaswitchingimpulse.Cigrreport72indicatesan

    influencelessthan3%[2].Foranairgapwherecapandpininsulatorsarepresent,thegapfactoris

    givenby:

    1

    0.85 0.15 gk

    t gk e k

    (4.10)

    wherekgisthegapfactorforanairgapwithnoinsulatorstringgoingthroughit.

    Thisformulaindicatesaslightdecreaseofthewithstandstrengthofairgapswhereinsulatorsare

    present.

    TheParis/CortinaresearcharticleSwitchingandLightningImpulseDischargeCharacteristicsofLarge

    AirgapsandLongInsulatorStrings[1]concludesthatthefactorkgisnotsufficienttodefinethe

    behaviourofairgapswithinsulatorstringswhentheairgapisexposedtolightningimpulseswith

    positiveornegativepolarityunderdryandwetconditions,andindryconditionsfornegativepolarity

    switchingimpulses.Fortheseconditionstheauthorsnotedthatthebehaviourofthedischargeinthe

    airgapdidnotseeminanywaytobeconnectedwiththegapfactor.Sinceinsulatingcoordinationis

    basedonthemostseverecaseofswitching andlightningimpulses,onlythepositivepolarity

    impulsesareconsidered.Thus,forallpracticalpurposes,thegapfactorisnotsufficienttodescribe

    thedischargecharacteristicsofairgapswithinsulatorstringsexposedtolightningimpulses.

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    25/64

    13

    TestresultsfromtheresearchworkpresentedinCigrreport72showthesametendencieswhere

    thereisalackofcorrelationbetweenU50andgapfactorsundertheseconditions.Furthermore,the

    testresultsshowedthattheinfluenceofcapandpininsulatorsisreducedwhenthestressonthe

    firstinsulatoratbothextremitiesofthestringisreducedusingshieldingrings.

    4.4 Influenceofrain

    Testswhichhavebeencarriedoutshowthatrain,asaperturbationoftheinsulationmedium,hasno

    significanteffectonthedielectricstrengthofairgaps.However,duetostreamingofwater,therain

    canmodifytheshapeoftheelectrodesbyformationofcascadesofwaterdropletsalongthe

    insulatorstringandaccordinglydecreasethedielectricstrengthofanairgap[2].Theinfluenceof

    raintendstobemorepresentinIinsulatorsthantoVinsulatorsastheangleoftheVinsulator

    makestheraindrainawaymoreefficiently.Foranairgapwherethecombinationofcapandpin

    insulatorsandrainarepresent,thegapfactorisgivenby:

    1

    11 0.54 tkwet t

    k e k

    (4.11)

    wherektisthegapfactorforanairgapwherecapandpininsulatorsarepresent.

    Formula3.11indicatesaslightdecreaseofelectricwithstandstrengthinwetconditions.

    4.5 Conclusionofthechapter

    Anairgapinatransmissiontowercanbeseenasacomplexairgapwithmultipleelectrodes.This

    appliesespeciallyforthetowerwindow(seepart4.2.2fig.4).Hence,thetowerwindowmightbe

    describedmoreaccuratelybythethreegapfactorskg=1.3,1.35and1.4foundintable1.

    UsingthemethodfordeterminerequiredwithstandstrengthUrw=U10willresultina10%

    probabilityfortheflashovertooccurovertheinsulatorstringtotraverse,2.5%probabilityfortheflashovertooccurtowardsthetowerpoleand0.5%probabilityfortheflashovertooccurtowards

    theguywire.

    Thereisgreatuncertaintyaboutthebehaviourofaflashoverinairgapswithinsulatorsexposedto

    lightningimpulses.Thus,therelationshipbetweenelectrodeshapesandgapfactorsishardtodefine

    forthiswaveshape(seepart4.2.1).

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    26/64

    14

    5 MinimumairclearancesWhenupgradingthevoltage,newrequirementsaresettotheinsulationstrength.Whenspecifying

    theserequirements,thegoalisnotonlytoselectthenewinsulationstrength,butalsotoselectthe

    minimuminsulationstrengthorminimumairclearance.Minimumairclearanceisdirectlyconnected

    tothecost,sincetheminimumairclearanceiswhatdetermineswhetheratowerhastobemodified

    ornot.Figure6showsatowerwithclearancecirclesthatillustratestheminimumairclearancesfor

    thethreeoperationconditions:

    1.

    Nowind.Minimumairclearancedeterminedbylightningimpulse.

    2.

    3yearswind.Minimumairdeterminedbyswitchingimpulse.

    3.

    50yearswind.Minimumairclearancedeterminedby50Hzsystemvoltagepeakvalue

    ( 2sU ).

    Figure6Minimumairclearancesforthreedifferentoperatingconditions.

    Thecalculationsoftherequiredairclearancesforswitchingandlightningovervoltages,phaseto

    earthandphasetophase,DelandDpp,andfortheoperatingvoltagephasetoearthandphaseto

    phase,D50Hz_p_eandD50Hz_p_pinthestandardEN50341[4]arebasedonENV50196supportedbyEN

    6500711,EN600712[5]andCigrreport72"Guidelinesfortheevaluationofthedielectricstrength

    ofexternalinsulation[2].

    Thedielectricstrengthinanairgapdependsonsuchfactorsaselectrodegeometry,spacingandthe

    shapeandpolarityofthevoltageimpulse.Thebreakdownvoltageislowerforanimpulsewith

    positivepolaritythanforanimpulsewithnegativepolarity.Thebreakdownvoltagewithlightning

    impulsesincreasesapproximatelyproportionallytothespacing,whileitincreasesconsiderablymore

    slowlywithpositiveswitchingimpulsesandlargespacing.Consequentlyathighersystemvoltages

    300kVwheretherearelargeairgapspacinginthetowers,switchingimpulseplaysagreaterrolein

    insulationdesignthanlightningimpulse[6].

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    27/64

    15

    TheformulasforU50%forswitching andlightningimpulseandpowerfrequencyvoltageinairgaps

    giveninEN50341[4]arederivedfromexperimentsofarodplanegapastheelectrodeconfiguration.

    Theformulasaregivenby:

    U50forarodplanegapconfigurationforswitchingimpulsesorslowfrontwaveimpulses:

    50 _ 1080 ln 0.46 1 ;rp sf U d kV d m (5.1)

    U50forarodplanegapconfigurationforlightningimpulsesorfastfrontwaveimpulses:

    50 _ 530 ;rp ff U d kV d m

    (5.2)

    U50forarodplanegapconfigurationfor50Hzpowerfrequencyvoltage:

    1.250 _ 50 750 2 ln 1 0.55 ;rp HzU d kV d m (5.3)

    Inahighvoltagetowertheelectrodesarerepresentedbylinesandtowerconstruction.Gapfactors

    giveninthestandardEN50341correctforthediscrepancybetweenthegeometryofthevarious

    "electrodes"attheappropriateairgapsintowersandtherodplanegap.Consequentlytheformulas

    forU50rphavetobemultipliedbyacertaingapfactortodeterminethewithstandstrengthina

    certainpartofatower.

    6 Wind

    6.1

    EffectofwindonI-strings

    Istringsarenormallynotconstrainedfrommovementcausedbywind.Windcanmovethe

    conductorclosertothetower,thusdecreasingboththestrikedistancetothetowerpole,guywire

    andtraverse.ReducedstrikedistanceleadstodecreaseofU50,thusincreasingofSSFOR(Switching

    SurgeFlashoverRate).AresearchworkconductedbyEFIin1971[7]foundthatthewithstand

    strengthofanairgaptendstoreducegraduallywithincreasedinsulatorswing.TheU50isreducedby

    4%at10swingand17%at30swing.Furthertheyfoundthatat10swingtheflashoveroccurred

    alongtheinsulator,whilefor20swing,theflashovermostlyoccurredtothetraversethroughthe

    air.

    IntheeasternpartofNorwaythe3yearwindisnormally25m/sandthe50yearwindis32m/s.This

    windspeednormallycorrespondstoswinganglesofapproximately30and50respectively.

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    28/64

    16

    TheSSFORforanIstringcanbecalculatedbyconsideringeachwindspeedanditsprobabilityof

    occurrence.

    Figure7Windmovestheconductortowardthetower.

    Forawindspeedvimpingingontheconductor,theswingangleSis

    1 1.61tanS k v (6.1)

    where

    41 1.138 10 D W

    kV H

    (6.2)

    and

    D=conductordiameterincm,W=conductorweightinkg/m,V=verticalspanlength(fig.8),H=

    horizontalspanlength(fig.8)andv=windspeed.

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    29/64

    17

    Figure8Verticalandhorizontalspanlengths.Visthelengthbetweenthelowerpointsofthelinewithintwospanswhile

    Histhelengthbetweenthemiddleoftwospans.

    ForcalculationofswinganglesoftheinsulatorstringsaprogramnamedPLSCADDwhichisa

    computerprogramwithgraphicaluserinterfaceusedfordesigningofoverheadpowerlines.Figure9

    showstheanglesoftheinsulatorstringsinatoweratnowindconditions,3yearswindconditions

    and50yearswindconditions.

    Figure9CalculationsofswinganglesoftheinsulatorstringsinPLSCADData)nowind,b)3yearwindandc)50year

    wind.

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    30/64

    18

    7 Towers

    7.1

    Modificationoftowers

    Toallow420kVin300kVtowerstheinsulatorstringshavetobeextendedbytwotofourinsulators,

    dependingonthespaceavailableinthetowerwindowandwhetheritisaIstringasinfig.10oraV

    stringasinfig.11.Inanycaseitappliesthatextensionofinsulatorstringsreducesthedistanceand

    thusthesafetymarginstowardtheguywires.Eachofthetowersinatransmissionlineisuniquewith

    respecttoitsdimensions,meaningthatthesecuritymarginswillvaryfromonetowertoanother.

    Sometowersfulfilltherequirementswithouttheneedforfurtherinvestigationofthesafetymargins,

    whileothertowerswilldefinitelyhavetobemodifiedtobeabletobeupgraded.Foreveryother

    towerbetweenthesetwocases,onewillhavetoevaluateeachtowerparticularly.

    Thetowerscanthusbedividedintothreecategories:

    1. Ok

    2. Caseofdoubt

    3. Notok

    Figure10ExtensionofanIstringinsulator.

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    31/64

    19

    Figure11ExtensionofaVstringinsulator.

    7.2 Alternativemeasuresfornarrowtowers

    Fortowerscoveredbycategory1nomeasuresareneededotherthanextensionoftheinsulator

    strings.

    Towerscoveredbycategory2requireacloserinvestigationofthetowertoidentifythemostcritical

    airgap.Whenthisisidentifiedonecanstartevaluatingpossiblemeasures.Insuchcasesitmightbe

    enoughtojustdosomeminorchanges,suchasreplacingexistingfittingequipmentlocatedbetween

    phaseandinsulatorwithmorecompactequipment,asillustratedinfig.12willgainalimiteddistance

    intheairgap.

    Figure12Fittingequipmentbetweenphaseandinsulator.

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    32/64

    20

    Towerscoveredbycategory3requiremoreextensivemodificationofthetowertobeupgraded.

    SupportinginsulatorisasolutionwheretwocompositeinsulatorsformingaVasshowninfig.13and

    14.ItlockstheIstringinsulator,preventingitfromswingingtowardsthetowersideatwindy

    conditions.Thissolutionisusedontensiontowersaswelltosupportthelooppreventingitfrom

    movingtowardsthetowerconstructionasshowninfig.13.AnalternativeistoreplacetheIstring

    insulatorwithanordinaryVstringinsulatorseeninfig.11.

    Figure13

    Tower

    window

    of

    atension

    tower

    with

    supporting

    insulator.

    Figure14

    Supporting

    insulator.

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    33/64

    21

    Armourrod(fig.15)isahelicalsteelprotectionthatiswoundaroundtheguywiretoprotectitfrom

    damagecausedbyarcs.Thissolutionisusedwhenthereisanuncertaintyonwhereinthetower

    windowaflashoverwilltakeplace.Inpracticethisisdoneintowerswheretheairclearance

    betweenphaseandtraverseisequaltotheairclearancebetweenphaseandguywireinthetower

    window.

    Figure15Armourrod.

    8 Airgap-insulatorconfigurationsThischapterinvestigatesfourdifferentinsulator/airgapconfigurations.Theminimumairclearances

    requiredbytheENstandard,U50andgapfactorsindryandwetconditionsareinvestigatedfor

    differenttypeofelectricalstressandswingangles.

    8.1

    FourdifferentalternativeconfigurationsTransmissionlinesdesignedforvoltagelevelsof420kVwillnormallyhaveinsulatorstringsof18

    insulators.Duetolackofspaceinthevoltageupgradedtransmissionlines,itisfoundexpedientto

    useinsulatorstringsof17insulatorstoobtainsufficientreliability.However,dependingonthesizeof

    thetowersonemightevennothaveenoughspaceforaninsulatorstringof17insulators.Intowers

    withtightdimensions,onemustgodownto16insulatorstoprovidesufficientdistancebetween

    phaseandguywire.

    Inthecasesoftightdimensioning,onehastoacceptthatthereisahigherprobabilityforaflashover

    tooccurincasesofovervoltages.Itisthereforeofgreatimportancetodimensiontheinsulator/air

    gaprelationinawaythatanyflashoverfindsitswaytothetraverse,ratherthantotheguywire

    whichmightburnoff.Fourdifferentinsulator/airgaprelationsforthemidphasetowerwindowhave

    beenproposedbyStatnett:

    Table2Insulator andairgapconfigurations.

    Configuration No.ofinsulators Lengthofinsulator

    stringinmetres

    Distancetoguywirein

    metres

    1 16 2.55 2.55

    2 16 2.55 2.7

    3 17 2.72 2.72

    4 17 2.72 2.9

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    34/64

    22

    Thechoiceofinsulatorlengthversusdistancetoguywirewillbecompromisesoftheelectrical

    withstandperformanceofthetoweratdifferentoperatingconditions.Theinsulatorstringconsisting

    of16insulatorswillgivepoorerperformanceincaseofalightningstrikeandnowindthanan

    insulatorstringof17insulators.However,ashorterinsulatorstringmightperformbetterinwindy

    conditionsastheswingradiusislessforashorterstring.Thisisinvestigatedfurtherbydetermining

    U50foraselectionofdifferentswinganglesforthefourbeforementionedinsulator /airgap

    configurations.Itcanbeseenfromthetablethateachswinganglecorrespondstoaspecific

    operatingsituation,i.e.typeofelectricalstress.BasedoninformationdatafromtheKristiansand

    Arendaltransmissionline,thefollowingassumptionsforthemostseverecaseofelectricstresstothe

    towersarefoundmostappropriate:

    Stresscausedbylightningimpulseismostlikelytooccuratnowindconditions.However,

    calculationsaredoneforstaticlineanglesupto10whichisthecaseforsomeofthetowers

    inline.

    Stresscausedbylineswitchingimpulseismostlikelytooccurforswinganglesupto30.

    Stresscausedbypowerfrequencyoperatingvoltageismostlikelyforswinganglesupto40.

    Themaximumamplitudeofthepowerfrequencyvoltageisthesystemvoltage.

    Thecalculationsofminimumrequiredairclearances,statisticalwithstandstrengthvoltageU50and

    gapfactorsaredonebyanexcelsheetmadeforthisproject.Theformulasusedforcalculationofthe

    airclearancesandthestatisticalwithstandstrengthvoltageU50aretheformulasthataregiveninEN

    50341[5],whiletheformulasusedforcalculationofgapfactorsaretakenfromtheCigrreport72[2]whichtheENstandardisbasedon.Airclearances,U50andgapfactorsareinvestigatedforvarious

    swinganglesoftheinsulatorstringforthefourbeforementionedtowerconfigurations.Calculations

    aredonefortheairgapbetweenphaseandguywireandtheairgapbetweenphaseandtraverse.

    U50andgapfactorsarealsoinvestigatedovertheinsulatorstringindryandwetconditions,whilethe

    airgapsarecalculatedfordryconditions.Calculationsaredoneforlightningimpulses(LI),switching

    impulses(SI)andpowerfrequencyvoltage(PF).Theswitchingovervoltageisassumedtobe1.83PU

    andtheoperatingvoltageis420kV.Thetowerisassumed25metreshigh,hasaguywireangleof

    40*andislocatedatanaltitudeof500metresabovesealevel.

    *Theguywireangleistheanglebetweenguywireandtowerpoleasshownonfig.7.Theairclearanceinthemidphaseasafunctionoftheinsulatorswingangleisalsodependentontheangle

    oftheguywire.

    Table3showstherelationshipbetweenswinganglesandairclearanceforconfiguration14,witha

    guywireangleof40.Theminimumairclearancesisbetweenphaseandguywire,hencetheseair

    clearancesarecomparedtominimumrequiredairclearancesaccordingtoENstandard.The

    comparedclearancesaremarkedwithboldfront.

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    35/64

    23

    Table3Airclearancesforconfiguration14andminimumrequiredairclearances.

    Configuration

    Ref.table3

    Typeof

    impulse

    Min.requiredair

    clearanceaccordingtoEN

    Swing

    angle

    Distance

    Phase guy

    wire

    Distance

    Phase

    traverse

    1 LI 2.687m 0 2.55m 2.55m

    1 LI

    10 2.236m

    2.511m

    1 SI 1.907m 20 1.981m 2.396m

    1 SI 30 1.793m 2.208m

    1 PF 0.834m 40 1.678m 1.953m

    2 LI 2.687m 0 2.7m 2.55m

    2 LI 10 2.360m 2.511m

    2 SI 1.913m 20 2.106m 2.396m

    2 SI 30 1.916m 2.208m

    2 PF 0.835m 40 1.799m 1.953m

    3 LI 2.866m 0 2.72m 2.72m

    3 LI 10 2.358m 2.679m

    3 SI 1.914m 20 2.113m 2.556m

    3 SI 30 1.912m 2.356m

    3 PF 0.835m 40 1.790m 2.084m

    4 LI 2.866m 0 2.9m 2.72

    4 LI 10 2.531m 2.679m

    4 SI 1.920m 20 2.262m 2.556m

    4 SI 30 2.060m 2.356m

    4 PF 0.837m

    40 1.935

    m

    2.084m

    Table3showsthat:

    MinimumrequiredairclearanceaccordingtoENstandardforallofthethreeimpulsetypes,

    LI,SIandPF,isachievedwithconfiguration2and4wheretheairgapbetweenphaseand

    guywireisgreaterthanthelengthoftheinsulatorstring.

    Configuration1and3doesnotfulfillENstandardrequirementforminimumairclearance

    whenexposedtolightningimpulses(LI).

    Forallconfigurations,thedistancebetweenphaseandguywire,whichistheleastdurable

    airgap,isalsotheshortestoneatswinganglesexceeding10.

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    36/64

    24

    Table4Conductorcrossarmcalculatedfora250/2500spositiveswitchingimpulse,(SI)underdryandwetconditions.

    Gapfactorsaregiveninparentheses.Altitudeof500m,towerheight=25m,guywireangleof40.

    Configuration

    Ref.table3

    Typeof

    impulse

    Swing

    angle

    U50Phase

    guywire

    U50Phase

    traverse

    U50Dry

    insulator

    U50Wet

    insulator

    1 LI 0 1428(1.057) 1416(1.048) 1416(1.048) 1416(1.048)

    1 LI 10 1253(1.058)

    1407(1.057)

    1 SI 20 859(1.228) 979(1.220) 991(1.182) 989(1.180)

    1 SI 30 801(1.233) 926(1.223)

    1 PF 40 848(1.135) 961(1.130) 1082(1.030) 1082(1.030)

    2 LI 0 1448(1.057) 1416(1.048) 1416(1.048) 1416(1.048)

    2 LI 10 1322(1.057) 1407(1.057)

    2 SI 20 896(1.225) 979(1.220) 991(1.182) 989(1.180)

    2 SI 30 839(1.230) 926(1,223)

    2 PF 40 899(1.133) 961(1.130) 1082(1.030) 1082(1.030)

    3 LI 0 1523(1.056) 1510(1.048) 1510(1.048) 1510(1.048)

    3 LI 10 1336(1.057) 1500(1.056)

    3 SI 20 898(1.225) 1022(1.218) 1035(1.181) 1033(1.178)

    3 SI 30 838(1.229) 967(1.220)

    3 PF 40 895(1.132) 1011(1.129) 1136(1.030) 1136(1.030)

    4 LI 0 1546(1.056) 1510(1.048) 1510(1.048) 1510(1.048)

    4 LI 10 1418(1.057) 1500(1.056)

    4 SI 20 941(1.222) 1022(1.218) 1035(1.181) 1033(1.178)

    4 SI 30 882(1.226) 967(1.220)

    4 PF 40 953(1.130)

    1011(1.129) 1136(1.030) 1136(1.030

    Table4showsthat:

    Thesametrendisrepeatedforallofthefourinsulators /airgapconfigurations:U50is

    decreasingwithincreasingswinganglewhilethegapfactorisincreasingwithincreasing

    swingangle.

    Thevariationsofthevalueofthegapfactorsareinsignificantcomparetothevariationsof

    U50.Intheory

    this

    results

    indicate

    that

    achange

    inthe

    geometry

    ofthe

    tower

    has

    negligible

    impacttothegapfactorandthustothevalueofU50.

    ReductionofU50isratherduetoreducedclearancecausedbyincreasinginsulatorswing

    angle.Theairgapbetweenphaseandguywirehasthegreatestlossofelectricalwithstand

    strengthsincethisistheairgapthatreducedthemostasafunctionofincreasedswingangle.

    Configuration2and4performbetteratinsulatorswingingthanconfiguration1and3.

    However,thedesiredpropertyofhavingagreaterU50betweenphaseandguywirethanthe

    U50betweenphaseandtraverseisonlyachievedwhenthereisnoswingangle.

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    37/64

    25

    9 Theoryvs.laboratorytestingAsaconsequenceofvoltageupgrading,severaltowerswillendinguphavingrathertightdimensions

    andhencelowersecuritymargins.Someofthesetowersmightnothavesufficientsecuritymargin

    accordingtostandards.Asmentionedearlier,itisnotanabsoluterequirementtofollowthe

    standardsaslongasonecanprovethatthetowersmeettherequirementsforsafetysetbythe

    regulations.Asapartofthedocumentationprocesslaboratoryexperimentsshouldbeperformed.A

    laboratorytestshouldbedoneonafullscaletestobject,whichinthiscaseisa300kVtransmission

    tower,andwiththeexpectedvoltagelevelsandimpulsetypesthatatowermightbeexposedto.

    Thiskindoflaboratorytestsareexpensive,complicatedandtimeconsumingtoperformandwillnot

    beincludedinthisreport. However,afullscalelaboratorytestunderthedirectionofStatnettwillbe

    performedatalaterstage.Forthisreport,twoexistinglaboratoryreportshavebeenusedfor

    investigationoftowerinsulation:

    1. ConductedbySTRIwiththetitle:Experimentaldielectrictestsonaporcelaininsulatorstring

    with

    cap

    and

    pin

    insulators

    type

    NGK

    CA500

    [8].

    2. ConductedbyEFI(formerSINTEF)withthetitle:Luftisolasjon.Underskelseavelektrisk

    holdfasthetforlinjeisolasjon[7].

    InthischapterstatisticalwithstandvoltageU50andgapfactorsfordifferentairgapconfigurations

    areinvestigated.Theresultsfromthetwoabovementionedreportsareusedasabasisfor

    comparisontothestandards.

    9.1 Researchreport1:STRI

    In2009STRI[8],aSwedishaccreditedtestinglaboratory,didaresearchonthedielectricproperties

    ofinsulatorstringsbeingexposedtodifferentelectricalstresses.Experimentaldielectrictestswere

    performedonaporcelaininsulatorstringwithcap andpininsulatorsidenticaltotheoneslocatedin

    thetransmissionlineNeaHjrpstrmmen.TheresearchwasperformedonrequestofSvenska

    Kraftnt.Thetestobjectusedforthisresearchworkwassimulatingatowerwindowasshowninfig.

    16.

    Figure16Testobjectsimulatingthetowerwindow.

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    38/64

    26

    Thetestobjectconsistedof:

    Aporcelaininsulatorstringconsistingofy=14(1.8m),15(1.96m)and16(2.1m)capand

    pininsulatorstypeNGKCA500fromthelineNeaHjrpstrmmen.Theinsulatorstringwas

    fittedintothecrossarmwithoriginalfittingdetails.

    Theinsulatorstringwasmountedonacrossarmequippedwithtwoverticalmemberswitha

    distanceofx=7.2mfromeachother,simulatingthepolesofthetower.

    Thelinewassimulatedbya6meteraluminiumtubewithdiameter30mm,mountedonthe

    originalarchinghornanddetails,fittedonthelowerendoftheinsulatorstring.

    ThedistancefromthepowerlinetothegroundisH=6metres.

    Thetestwasperformedwiththethreeimpulsetypes

    Lightningimpulsedisruptivedischargetestwithpositivepolarityanddryconditions(LIdry).

    Switchingimpulsedisruptivedischargetestwithpositivepolarityandwetconditions(SIwet).

    Powerfrequencydisruptivedischargetestforwetconditions(PFwet).

    TestvaluesofU50fromtheSTRItestreportarecomparedwithvaluescalculatedwiththeformulas

    forU50givenintheENstandard.Thecalculationsare,asfaraspossible,carriedoutwiththesame

    conditionsasthetestconditions.Gapfactorsarecorrectedforinsulatorsandrain.Thefollowing

    tablesshowacomparisonbetweentestresultsandcalculations.

    9.1.1

    Lightningimpulse

    Thelightningtestwasperformedonaninsulatorstringof15insulatorscorrespondingtoaflashover

    lengthof1.96munderdryconditions.Theup anddownmethodwasusedtodetermineU50.

    Table5U50,50%flashoverprobabilityforlightningimpulse(LIdry).

    Test Numberof

    insulators

    U50corrected

    test

    U50calculated

    conductor

    window

    kdry=1.041

    Deviationbetween

    testandcalculation

    referredto

    calculatedvalues

    LIdry 15 1216kV 1081kV 12.4%

    Forthelightningimpulsethedeviationis12.4%.Thecalculationsinthepreviouschapterindicated

    thattheminimumairclearancesforthelightningimpulsewerethemostcriticalonesandrequired

    minimumairclearancecouldnotbeobtainedforconfiguration1and3.

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    39/64

    27

    Inthestandardsforinsulationcoordination,therequiredwithstandvoltage,Urwforlightning and

    switchingimpulsesaresettobethevoltagethatgivesa10%probabilityforflashovertooccurinthe

    airgapi.e.Urw=U10.Thisvalueisobtainedbymoving1.3standarddeviationstotheleftonthe

    probabilitycurve.Forlightningimpulseonestandarddeviationis3%ofU50.Onewillthenendupat

    10%probabilityforflashoverontheprobabilitycurve.

    Urwisdeterminedbytheformula

    10 50 1.3rwU U U Z kV (9.1)

    whereZisthestandarddeviation

    Figure17showstheprobabilityforaflashovertooccurasafunctionofthemagnitudeofthe

    lightningimpulseforaninsulatorstringof1.96m,correspondingto15insulators.

    Figure17

    Cumulative

    normal

    distribution

    probability

    curves

    for

    flashover

    for

    lightning

    impulse

    (LI

    dry)

    and

    15

    insulators

    (1.96m).

    ThedifferencebetweenU50andUrwis1.3standarddeviations,whilethedifferencebetweenthetest

    resultandcalculationcorrespondstoapproximatelyfourstandarddeviations.IfthevalueofU50

    givenbythebluecurvethatrepresentthestandardisinsertedintotheformulaforUrw,weobtain

    therequiredwithstandvoltage:

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1

    950 1050 1150 1250 1350

    Prob

    ability

    Voltage[kV]

    Test

    ENstandard

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    40/64

    28

    10 50 1.3 1081 1.3 0.06 1081 1039rwU U U Z kV (9.2)

    wherethestandarddeviation,Z=0.03U50.

    U10of1039

    kV

    on

    the

    blue

    curve

    gives

    aprobability

    of10

    %for

    flash

    over,

    while

    itgives

    aprobability

    of3.17*105forflashoverontheredcurvethatrepresentsthelaboratorytestresult.

    Conclusion:TheUrwvaluedeterminedfromthestandards,whichissupposedtohaveaprobabilityof

    10%foraflashovertooccur,hasamuchlowerprobabilityforoccurrenceaccordingtothelightning

    impulsedisruptivedischargetestwith15insulators.

    9.1.2 Switchingimpulse

    Theswitchingtestwasperformedunderwetconditionsonaninsulatorstringof14,15and16

    insulatorscorrespondingtoaflashoverlengthof1.8,1.96and2.1mrespectively.Theup anddownmethodwasusedtodetermineU50.

    Table6U50,50%flashoverprobabilityforswitchingimpulse(SIwet).

    Test Numberof

    insulators

    U50corrected

    test

    U50calculated

    conductor

    window

    kwet=1.155

    Deviationbetween

    testandcalculation

    referredto

    calculatedvalues

    SIwet 14 786kV 753kV 4.4%

    SIwet 15 851kV 802kV 6.1%

    SIwet 16 919kV 843kV 9.0%

    TheresultsfromtheswitchingimpulsedisruptivedischargetestandthecalculatedvaluesofU50have

    adeviationthatvariesbetween4.49%,wherethedeviationincreasingwiththelengthoftheairgap.

    Figure18showstheprobabilityforaflashovertooccurasafunctionofthemagnitudeofthe

    switchingimpulseforinsulatorstringof1.96m,correspondingto15insulators.

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    41/64

    29

    Figure18Cumulativenormaldistributionprobabilitycurvesforflashoverforswitchingimpulse(SIwet)and15insulators

    (1.96m).

    ThedifferencebetweenU50andUrwis1.3standarddeviations,asforlightningimpulses,butfor

    switchingimpulses,onestandarddeviationcorrespondsto6%ofU50.Thedifferencebetweenthe

    valueofU50basedonthestandardandU50testedisapproximatelyequaltoonestandarddeviation

    whenconsideringaflashoverlengthof15insulatorsor1.96m.IfthevalueofU50givenbytheblue

    curvethatrepresentthestandardisinsertedintotheformulaforUrw,weobtaintherequired

    withstandvoltage:

    10 50 1.3 802 1.3 0.06 802 739rwU U U Z kV (9.3)

    wherethestandarddeviation,Z=0.06U50.

    U10of739kVonthebluecurvegivesaprobabilityof10%forflashover,whileitgivesaprobability

    of0.014forflashoverontheredcurvethatrepresentsthelaboratorytestresult.

    Table7belowshowstheresultsoftheU10switchingimpulsedisruptivedischargetestoninsulator

    stringsof14and15insulatorscorrespondingtoaflashoverlengthof1.8and1.96mrespectively.

    0

    0,1

    0,2

    0,3

    0,4

    0,50,6

    0,7

    0,8

    0,9

    1

    650 750 850 950

    Probabilit

    y

    Voltage[kV]

    Test

    ENstandard

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    42/64

    30

    Table7U10,10%flashoverprobabilityforswitchingimpulse(SIwet).

    Test No.of

    insulators

    No.of

    impulses

    U10correctedtest

    No.offlash

    over

    U10calculatedconductor

    window

    kwet=1.155

    Deviation

    betweentest

    andcalculation

    referredto

    calculatedvalues

    SIwet 14 15 732kV 1 695 5.3%

    SIwet 15 15 804kV 3 739 8.8%

    Again,whenaninsulatorstringof15insulatorsisconsidered,thetestresultshowsthatthevalueof

    U10=804kVwhichis8.8%higherthanU10calculatedaccordingtostandards.

    IfthetestresultsoftheU50 testareinsertedintotheformulaforUrw,ideallyweshouldendupwith

    aresultsimilartotheU10 testofequallynumberofinsulators.WheninsertingthetestresultofU50

    at15insulatorsobtain:

    10 50 1.3 851 1.3 0.06 851 785rwU U U Z kV (9.4)

    whichissomewhatbetweentheactualtestresultof804kVandthevalueobtainedfromthe

    standardof739kV.Thisindicatesthattheremaybesafetymarginsaddedinboththeformulafor

    requiredwithstandvoltage,UrwandthevalueofthestatisticalwithstandvoltageU50.Thismayin

    sumgiveanunnecessarilyhighsafetymargin.

    Conclusion:TheUrwvaluedeterminedfromthestandards,whichissupposedtohaveaprobabilityof

    10%foraflashovertooccur,hasa1.4%probabilityforoccurrenceaccordingtotheswitching

    impulsedisruptivedischargetestwith15insulators.

    9.2

    Researh

    report

    2:

    EFI

    TheresearchworktitledLuftisolasjon.Underskelseavelektriskholdfasthetforlinjeisolasjon[7]

    conductedbyformerSINTEF,EFIin1971discussesdimensioningofinsulationintowersand

    probabilityforflashover,i.e.probabilisticinsulationdimensioning.Thetestobject,aninsulator

    stringof9to18cap andpininsulators,wasexposedtolightningimpulses,switchingimpulsesand

    50Hzoperatingvoltage.Theresearchtakesaimtoestablisharelationshipbetweenflashover

    voltageforarodplanegapandrelevantinsulationconfigurationsofequalstrikedistancei.e.thegap

    factor,Kg.

    Otherissuesthatwereinvestigatedweretheimpactsoftheinsulatorswingangleandraintothe

    electricalwithstandvoltage.ThereportpresentsthevalueofU50forthethreedifferenttypesof

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    43/64

    31

    electricalstressatfivedifferentinsulatorconfigurationsformid andouterphaseandatfour

    differentswinganglesoftheinsulatorstringoftheouterphase.

    Thetest

    object

    used

    toperform

    the

    tests

    was

    simulating

    outer

    phase

    and

    tower

    window

    asshown

    in

    fig.19a),b)andc).

    Figure19Testobjectusedtosimulatethetowerarrangement.Figurea)andb)representstheouterphase.Swingangle

    issimulatedaccordingtofigureb).Figurec)representsthemidphase[7].

    Thetestobjectconsistedof:

    Istringinsulatorsof9,15and18cap andpininsulatorsandVstringinsulatorsof9and15

    cap andpininsulatorstypeNTP33019,21ton.

    Towerarrangementaccordingtofig19.

    Thetestprocedurewasasfollows:

    Towercrossarmwassimulatedaccordingtofig19a)andb)forIstringinsulatorsandtower

    windowweresimulatedaccordingtofig19c)forbothVstringandIstringinsulators.

    Insulatorswingingwassimulatedfortheouterphaseaccordingtofig19b)for10,20and

    30.

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    44/64

    32

    Theexperimentswereperformedusingdifferentvoltageimpulseshapessimulatinglighting

    impulsesandswitchingimpulses.Tosimulatelightingstrikeanimpulseshapewithtimeto

    peakT1=1.2sandtimetohalfvalueT2=50swasusedaccordingtofig20.The1.2/50s

    impulseisdefinedasthestandardlightningimpulse.

    TheswitchingimpulsewassimulatedbyapplyingavoltageshapewithtimetopeakT1=200

    sandtimetohalfvalueT2=3000stothetestobjectaccordingtofig20.

    Figure20Voltageimpulse.Xaxis:T1=timetothepeakvalueoftheimpulseisobtained,T2=timetohalfofthepeak

    valueoftheimpulseremains.Td=timewheretheimpulsehasavoltagelevelbetween0.9and1.0PU.Yaxis:Valueof

    thevoltageoftheimpulseinPU.

    9.2.1 Gapfactors

    Theresearchestablishedarelationshipbetweenflashovervoltageforarodplanegapandrelevant

    insulationconfigurationsofequalstrikedistanceaccordingtofig.19a),b)andc).Therelation

    betweentheflashovervoltageforacertaininsulationconfigurationandarodplanegapisdescribed

    bythegapfactor.Severaldisruptivedischargetestsareperformedforseveralvariantsofthe

    geometry(s,z,y,andx)forlightning /switchingimpulsesand50Hzpowerfrequencyandforwet

    anddryconditions.Thetestresultsarecomparedtodisruptivedischargetestsofarodplanegapof

    equallengthasareferencegap.

    Thegapfactoristherelation:

    50

    50

    _ _

    _ _ . _ .g

    U test objectK

    U rod plane pos pol

    (9.5)

    ThegapfactorsobtainedfromtheEFItestarecomparedtogapfactorsobtainedaccordingtothe

    formulas3.3,3.4,3.5and3.6inchapter4Gapfactors.

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    45/64

    33

    ParisandCortinasuggestedseveralgapfactorsdependingonthegapconfiguration,from1forarod

    planegapto1.9foraconductorrodgap.EN50341reproducestypicalvaluesforgapfactorsthatare

    basedontypicaldimensionsfordifferentinsulatingconfigurations.Thesearefixedvaluesgivenfor

    onespecificconfigurationwhichdimensionsarewithinanareaofapplication.Ifamoreaccurate

    valueofthegapfactorisdesired,itcanbecalculatedaccordingtotheformulas3.5and3.6fromthe

    Cigr72technicalbulletin[2]whichdescribeshowtocalculatethegapfactorsforthedifferent

    geometricconfigurations.Bydoingthisoneobtainagapfactorthatshoulddescribetheelectric

    propertiesoftheairgapmoreaccurately,sincethestrikedistanceisalsotakenintoaccount.

    Whenputtingindifferentstrikedistancesfrom210metresintheformula3.6fortowerwindow,

    andplottingtheresults,oneobtainsthefollowingcurvewiththegapfactorasafunctionofthe

    strikedistancethatis,thestrikedistanceinthexaxisandthegapfactorintheyaxis.

    Figure21Gapfactorforpositivepolarityswitchingimpulsetowerwindow(midphase)asafunctionofthestrike

    distance.

    Fromthecurveitiseasytovisualizethattheinfluenceofthestrikedistancetothegapfactorissmall

    andthattheoutcomefromcalculatingthegapfactorforaspecificstrikedistancedoesnotdiffer

    significantlyfromthefixedvaluesgiveninthestandard,whichinthiscase,thetowerwindow,would

    be1.25.ThisobservationsupportsthestatementfromtheCigr72technicalbulletinwhichstate:

    Somethingthatshouldbenoticedisthatthegapfactorispracticallyunaffectedbythelengthofthe

    airgap[2].

    TheresearchworkconductedbyEFIin1971[7]concludesthatforswitchingimpulsethegapfactoris

    dependentonthestrikedistanceandthatthegapfactorsvaryapproximatelylinearlywhenthestrike

    distanceisintherangeof13metres.Thisconclusionseemsreasonablecomparedtothecurveinfig.

    21intherangeof13metres.

    1,21

    1,22

    1,23

    1,24

    1,25

    1,26

    1,27

    1,28

    2 3 4 5 6 7 8 9 10

    Gap

    factor

    Strikedistance(m)

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    46/64

    34

    However,asfig.21showsadecreaseofthegapfactorbetween13metres,theEFIreportclaims

    thatthegapfactorincreaseswithincreasedstrikelengthinthesamearea.

    TheEFIresearchsuggeststhatforairgapsof1m

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    47/64

    35

    9.2.1.1 Lightningimpulse

    Outerphase

    Table8Gapfactorsforouterphaseatlightningimpulse.

    Testobject Dry/

    wet

    Geometrym Kg

    EFItest

    Kg

    Standards z y x

    Istringinsulator9segments Dry 0.18 1.35 1.53 2.40 1.13 1.099

    " " 0.60 1.35 1.95 2.40 1.15 1.041

    " " 0.60 1.35 1.95 3.06 1.16 1.041

    " " 1.12 1.35 2.47 4.00 1.15 1.080

    " Wet 0.18 1.35 1.53 2.40 1.10 1.099

    " " 0.60 1.35 1.95 2.40 1.10 1.041

    " " 0.60 1.35 1.95 3.06 1.13 1.041

    " " 1.12 1.35 2.47 4.00 1.14 1.080

    Istringinsulator15segments Dry 0.18 2.38 2.56 4.00 1.09 1.079

    "

    Wet

    0.18

    2.38

    2.56

    4.00

    1.09

    1.079

    " " 0.60 2.38 2.98 4.00 1.12 1.075

    Istringinsulator18segments Dry 1.20 2.80 4.00 4.50 1.11 1.072

    Midphase

    Table9Gapfactorsformidphaseatlightningimpulse.

    Testobject Dry/

    wet

    Geometrym Kg

    EFItest

    Kg

    Standards z y x

    Vstringinsulator9segments Dry 0.18 1.34 1.26 2.40 1.07 1.058

    " " 0.60 1.34 1.54 3.06 1.08 1.054

    " " 1.12 1.34 1.90 4.00 1.13 1.051

    " Wet 0.18 1.34 1.26 2.40 1.08 1.058

    " " 0.60 1.34 1.54 3.06 1.09 1.054

    " " 1.12 1.34 1.90 4.00 1.07 1.051

    Vstringinsulator15segments Dry 0.18 2.37 2.31 4.50 1.07 1.049

    " " 0.60 2.37 2.63 4.50 1.06 1.048

    " Wet 0.18 2.37 2.31 4.50 1.05 1.049

    " " 0.60 2.37 2.63 4.50 1.06 1.048

    Istringinsulator9segments Dry 0.60 1.35 1.95 3.06 1.12 1.051

    " Wet 0.60 1.35 1.95 3.06 1.11 1.051

    Istringinsulator15segments Dry 0.18 2.38 2.56 4.50 1.07 1.048

    " Wet 0.18 2.38 2.56 4.50 1.07 1.048

    ForlightningimpulsesthegapfactorsfromtheEFItestareverysimilartothegapfactorsobtained

    fromthestandardforbothdryandwetconditions.Rainseemtohavenoinfluenceonthewithstand

    strengthofIstringsorVstringsexposedtolightningimpulses.

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    48/64

    36

    9.2.1.2 Switchingimpulse

    Outerphase

    Table10Gapfactorsforouterphaseatswitchingimpulse.

    Testobject Dry/

    wet

    Geometrym Kg

    EFItest

    Kg

    Standards z y x

    Istringinsulator9segments Dry 0.18 1.35 1.53 2.40 1.19 1.374

    " " 0.60 1.35 1.95 3.06 1.22 1.332

    " " 1.12 1.35 2.47 4.00 1.26 1.302

    " Wet 0.18 1.35 1.53 2.40 0.84 1.323

    " " 0.60 1.35 1.95 3.06 0.79 1.297

    " " 1.12 1.35 2.47 4.00 0.78 1.276

    Istringinsulator15segments Dry 0.18 2.38 2.56 4.00 1.31 1.298

    " Wet 0.18 2.38 2.56 4.00 1.05 1.274

    Midphase

    Table11Gapfactorsformidphaseatswitchingimpulse.

    Testobject Dry/

    wet

    Geometrym Kg

    EFItest

    Kg

    Standards z y x

    Vstringinsulator9segments Dry 0.18 1.34 1.26 2.40 1.04 1.220

    " " 0.60 1.34 1.54 3.06 1.09 1.206

    " " 1.12 1.34 1.90 4.00 1.14 1.194

    " Wet 0.18 1.34 1.26 2.40 1.00 1.213

    " " 0.60 1.34 1.54 3.06 0.98 1.201

    " " 1.12 1.34 1.90 4.00 0.86 1.190

    Vstringinsulator15segments Dry 0.60 2.37 2.63 4.50 1.15 1.182

    " Wet 0.60 2.37 2.63 4.50 1.08 1.179

    Istringinsulator9segments Dry 0.60 1.34 1.90 3.06 1.20 1.194" Wet 0.60 1.34 1.90 3.06 0.94 1.190

    Istringinsulator15segments Dry 0.18 2.38 2.56 4.50 1.22 1.182

    " Wet 0.18 2.38 2.56 4.50 1.08 1.180

    Forswitchingimpulses,theEFItestshowsahigherdecreaseofthegapfactorasaconsequenceof

    rainthanthoseobtainedfromthestandard.TheEFItestshowsadecreaseofkgandthusthe

    withstandstrengthintheorderof613%forVstringinsulatorsand2034%forIstringinsulators.

    Theinfluenceofraintothegapfactorisdecreasingwithincreasedinsulatorlength.Thegapfactors

    obtainedfromthestandardshowadecreaseofkgintherangeof04%.However,theEFItestresults

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    49/64

    37

    andtheENstandardseemtofolloweachotherrelativelyindryconditions.ThegapfactorsoftheEN

    standardaresomewhathigherthantheEFItestresults.

    9.2.1.3 50Hzpowerfrequency

    Outerphase

    Table12Gapfactorsforouterphaseatpowerfrequencyvoltage.

    Testobject Dry/

    wet

    Geometrym Kg

    EFItest

    Kg

    Standards z y x

    Istringinsulator9segments Dry 0.18 1.35 1.53 2.40 1.15 1.061

    " " 0.60 1.35 1.95 2.40 1.17 1.054

    " " 0.60 1.35 1.95 3.06 1.17 1.026

    " " 1.12 1.35 2.47 4.00 1.20 1.050

    " Wet 0.18 1.35 1.53 2.40 0.75 1.061

    " " 0.60 1.35 1.95 2.40 0.69 1.054

    " " 0.60 1.35 1.95 3.06 0.69 1.026

    " " 1.12 1.35 2.47 4.00 0.69 1.050

    Rodplane Dry 1.35 1.03

    Midphase

    Table13Gapfactorsformidphaseatpowerfrequencyvoltage.

    Testobject Dry/

    wet

    Geometrym Kg

    EFItest

    Kg

    Standards z y x

    Vstringinsulator9segments Dry 0.18 1.34 1.26 2.40 0.98 1.037

    " " 0.60 1.34 1.54 3.06 1.00 1.034

    " " 1.12 1.34 1.90 4.00 1.00 1.032

    " Wet 0.18 1.34 1.26 2.40 0.71 1.037

    " " 0.60 1.34 1.54 3.06 0.79 1.034" " 1.12 1.34 1.90 4.00 0.74 1.032

    Istringinsulator9segments Dry 0.60 1.35 1.95 3.06 1.19 1.032

    " Wet 0.60 1.35 1.95 3.06 0.80 1.032

    Asfortheswitchingimpulses,the50Hzpowerfrequencytestshowsthatthedifferenceinkgindry

    andwetconditionsseemstobelargerfortheEFItestthanproposedbythestandard.TheEFItest

    showsadecreaseofthegapfactorasaconsequenceofrainintheorderof25%forVstring

    insulatorsand3340%forIstringinsulators.Thereisnodifferencefordryandwetconditionsforthe

    gapfactorsobtainedfromthestandard.However,thetestresultsandthecalculationsseemto

  • 8/10/2019 Voltage Upgrading of Overhead Lines.pdf

    50/64

    38

    followeachotherrelativelyindryconditions.Oppositetoswitchingimpulses,thegapfactors

    obtainedbytheENstandardaresomewhatlowerthanthosefromtheEFItestresults.

    ThetestsperformedwithswitchingimpulseandpowerfrequencyvoltageshowthattheIstring

    suffersagreaterlossofelectricwithstandstrengththantheVstringasaconsequenceofrain.This

    canbeexplainedbythenaturallydraineffectcausedbythe45angleoftheVstringinsulators.ThesefindingsareconsistentwithwhatwasfoundinCigrreport72[2](seechapter4.4).Asfor

    lightningimpulsesitdidnotseemtobeanydifferencesondryandwetconditions.Thismayindicate

    thatrainhasalesserimpactonshortdurationimpulsewaves.

    9.2.2 U50disruptivedischargetest

    9.2.2.1 ElectricalstressfromLightning

    OuterphaseEFItest:

    Table14Conductorcrossarmexposedtoa1.2/50spositivelightningimpulse,(LI)underdryconditions.

    Testobject Geometry

    D1/dxO.Pref.fig.7

    Swingangle

    U50EFI

    Kg=1.31at0

    %reductionat

    swingangle

    Istringinsulator 2.56/4m 0 1380 0

    " " 10 1354 1.9

    " " 20 1289 6.6

    " " 30 1204 12.8

    Midphasecalculated: