volume and participating media

48
Volume and Participating Media Digital Image Synthesis Yung-Yu Chuang with slides by Pat Hanrahan and Torsten Moller

Upload: zuzana

Post on 06-Feb-2016

37 views

Category:

Documents


0 download

DESCRIPTION

Volume and Participating Media. Digital Image Synthesis Yung-Yu Chuang. with slides by Pat Hanrahan and Torsten Moller. Participating media. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Volume and Participating Media

Volume and Participating Media

Digital Image SynthesisYung-Yu Chuang

with slides by Pat Hanrahan and Torsten Moller

Page 2: Volume and Participating Media

Participating media

• We have by far assumed that the scene is in a vacuum. Hence, radiance is constant along the ray. However, some real-world situations such as fog and smoke attenuate and scatter light. They participate in rendering.

• Natural phenomena– Fog, smoke, fire– Atmosphere haze– Beam of light through clouds– Subsurface scattering

Page 3: Volume and Participating Media

Volume scattering processes

• Absorption (conversion from light to other forms)

• Emission (contribution from luminous particles)

• Scattering (direction change of particles)– Out-scattering– In-scattering– Single scattering v.s. multiple scattering

• Homogeneous v.s. inhomogeneous(heterogeneous)

emission in-scattering out-scattering absorption

Page 4: Volume and Participating Media

Single scattering and multiple scattering

single scattering multiple scattering

attenuation

Page 5: Volume and Participating Media

Absorption

The reduction of energy due to conversion of light to another form of energy (e.g. heat)

L dL( , )L x

ds

Absorption cross-section:

Probability of being absorbed per unit length

),( xa

dsxLxxdL a ),(),(),(

),( xa

Page 6: Volume and Participating Media

Transmittance

Optical distance or depth

Homogenous media: constant

( )a as s a

s

a sdssxxLsxL0

)('),'(),(ln),(ln

x

'sx

0

's

s

dsxLxxdL a ),(),(),(

dsxxL

xdLa ),(

),(

),(

s

a

sx

x

dssxxL

xdL

0

'),'(),'(

),'(

s

a dssxs0

'),'()(

Page 7: Volume and Participating Media

Transmittance

Opacity

Transmittance and opacity

),( xL

),( sxL

)(sT

s

a sdssxxLsxL0

)('),'(),(ln),(ln

dsxLxxdL a ),(),(),(

dsxxL

xdLa ),(

),(

),(

s

a

sx

x

dssxxL

xdL

0

'),'(),'(

),'(

),()(),(),( )( xLsTxLesxL s

)()( sesT

)(1)( sTs

Page 8: Volume and Participating Media

Absorption

Page 9: Volume and Participating Media

Emission

• Energy that is added to the environment from luminous particles due to chemical, thermal, or nuclear processes that convert energy to visible light.

• : emitted radiance added to a ray per unit distance at a point x in direction

),( xLve

dsxLxdL ve ),(),(

L dL( , )L x

ds

),( xLve

Page 10: Volume and Participating Media

Emission

Page 11: Volume and Participating Media

Scattering cross-section:

Probability of being scattered per unit length

Out-scattering

Light heading in one direction is scattered to otherdirections due to collisions with particles

L dL( , )L x

ds

s

dsxLxxdL s ),(),(),(

),( xs

Page 12: Volume and Participating Media

Extinction

L dL( , )L x

ds

t a s Total cross-section

Attenuation due to both absorption and scattering

s s

t a s

W

Albedo

dsxLxxdL t ),(),(),(

),( xt

s

t dssxs0

'),'()(

Page 13: Volume and Participating Media

Extinction

• Beam transmittance

s: distance between x and x’

• Properties of Tr:• In vaccum• Multiplicative• Beer’s law (in homogeneous medium)

x

'x

),( xL

s

t dssx

exxTr 0'),'(

)'(

1)'( xxTr

)'''()'()''( xxTrxxTrxxTr

stexxTr )'(

Page 14: Volume and Participating Media

In-scattering

Increased radiance due to scattering from other directions

L dL( , )L x

ds

( ) ( )p p Reciprocity

2

( ) 1S

p d Energy conserving

Phase function ( )p

),( xs

dsdxLxpxxdL s

')',()',(),(),(

'

Page 15: Volume and Participating Media

Source term

• S is determined by– Volume emission– Phase function which describes the angular

distribution of scattered radiation (volume analog of BSDF for surfaces)

dsxSxdL ),(),(

')',()',(),(),(),( dxLxpxxLxS sve

Page 16: Volume and Participating Media

Phase functions

Phase angle

Phase functions(from the phase of the moon)

1.Isotropic- simple

2.Rayleigh- Molecules (useful for very small particles whose

radii smaller than wavelength of light)3. Mie scattering

- small spheres (based on Maxwell’s equations; good model for scattering in the atmosphere due to water droplets and fog)

cos

1(cos )

4p

2

4

3 1 cos(cos )

4p

Page 17: Volume and Participating Media

Henyey-Greenstein phase function

2

32 2

1 1(cos )

4 1 2 cos

gp

g g

Empirical phase function

0

2 (cos )cosp d g

g: average phase angle

g = -0.3

g = 0.6

Page 18: Volume and Participating Media

Henyey-Greenstein approximation

• Any phase function can be written in terms of a series of Legendre polynomials (typically, n<4)

0

)(cos)12(4

1)(cos

nnnPbnp

...

)35(2

1)(

)13(2

1)(

)(

1)(

33

22

1

0

xxxP

xxP

xxP

xP

cos)(cos)(cos

)(cos),(cos1

1

dPp

Ppb

n

nn

Page 19: Volume and Participating Media

Schlick approximation

• Approximation to Henyey-Greenstein

• K plays a similar role like g– 0: isotropic – -1: back scattering– Could use

2

2

)cos1(

1

4

1)(cos

k

kpSchlick

255.055.1 ggk

Page 20: Volume and Participating Media

Importance sampling for HG

2

otherwise

21

11

|2|

1

0 if21

cos22

2

gg

gg

g

g

2

32 2

1 1(cos )

4 1 2 cos

gp

g g

Page 21: Volume and Participating Media

• core/volume.* volume/*class VolumeRegion {public:

bool IntersectP(Ray &ray, float *t0, float *t1); Spectrum sigma_a(Point &, Vector &);Spectrum sigma_s(Point &, Vector &);Spectrum Lve(Point &, Vector &);

// phase functions: pbrt has isotropic, Rayleigh, // Mie, HG, Schlick

virtual float p(Point &, Vector &, Vector &); // attenuation coefficient; s_a+s_s

Spectrum sigma_t(Point &, Vector &); // calculate optical thickness by Monte Carlo or // closed-form solution

Spectrum Tau(Ray &ray, float step=1., float offset=0.5);};

Pbrt implementation

t0

t1

t0 t1step

offset

Page 22: Volume and Participating Media

• Determined by (constant)– and– g in phase function– Emission– Spatial extent

Spectrum Tau(Ray &ray, float, float){

float t0, t1;

if (!IntersectP(ray,&t0,&t1))

return 0.;

return Distance(ray(t0),ray(t1)) * (sig_a + sig_s);

}

Homogenous volume

veL

s a

Page 23: Volume and Participating Media

Homogenous volume

Page 24: Volume and Participating Media

Varying-density volumes

• Density is varying in the medium and the volume scattering properties at a point is the product of the density at that point and some baseline value.

• DensityRegion– 3D grid, VolumeGrid– Exponential density, ExponentialDensity

Page 25: Volume and Participating Media

DensityRegionclass DensityRegion : public VolumeRegion {public: DensityRegion(Spectrum &sig_a, Spectrum &sig_s,

float g, Spectrum &Le, Transform &VolumeToWorld); float Density(Point &Pobj) const = 0; sigma_a(Point &p, Vector &) {

return Density(WorldToVolume(p)) * sig_a; }Spectrum sigma_s(Point &p, Vector &) { return Density(WorldToVolume(p)) * sig_s; }Spectrum sigma_t(Point &p, Vector &) { return Density(WorldToVolume(p))*(sig_a+sig_s);}Spectrum Lve(Point &p, Vector &) { return Density(WorldToVolume(p)) * le; }

...protected:

Transform WorldToVolume;Spectrum sig_a, sig_s, le;float g;

};

Page 26: Volume and Participating Media

VolumeGrid

• Standard form of given data• Tri-linear interpolation of data to give

continuous volume• Often used in volume rendering

Page 27: Volume and Participating Media

VolumeGrid

VolumeGrid(Spectrum &sa, Spectrum &ss, float gg,

Spectrum &emit, BBox &e, Transform &v2w,

int nx, int ny, int nz, const float *d);

float VolumeGrid::Density(const Point &Pobj) const {

if (!extent.Inside(Pobj)) return 0;

// Compute voxel coordinates and offsets

float voxx = (Pobj.x - extent.pMin.x) /

(extent.pMax.x - extent.pMin.x) * nx - .5f;

float voxy = (Pobj.y - extent.pMin.y) /

(extent.pMax.y - extent.pMin.y) * ny - .5f;

float voxz = (Pobj.z - extent.pMin.z) /

(extent.pMax.z - extent.pMin.z) * nz - .5f;

Page 28: Volume and Participating Media

VolumeGrid int vx = Floor2Int(voxx);

int vy = Floor2Int(voxy);

int vz = Floor2Int(voxz);

float dx = voxx - vx, dy = voxy - vy, dz = voxz - vz;

// Trilinearly interpolate density values

float d00 = Lerp(dx, D(vx, vy, vz), D(vx+1, vy, vz));

float d10 = Lerp(dx, D(vx, vy+1, vz), D(vx+1, vy+1, vz));

float d01 = Lerp(dx, D(vx, vy, vz+1), D(vx+1, vy, vz+1));

float d11 = Lerp(dx, D(vx, vy+1,vz+1),D(vx+1,vy+1,vz+1));

float d0 = Lerp(dy, d00, d10);

float d1 = Lerp(dy, d01, d11);

return Lerp(dz, d0, d1);

}

float D(int x, int y, int z) { x = Clamp(x, 0, nx-1); y = Clamp(y, 0, ny-1); z = Clamp(z, 0, nz-1); return density[z*nx*ny+y*nx+x];}

Page 29: Volume and Participating Media

Exponential density

• Given by

• Where h is the height in the direction of the up-vector

bhaehd )( ExponentialDensity

Page 30: Volume and Participating Media

ExponentialDensityclass ExponentialDensity : public DensityRegion {public:

ExponentialDensity(Spectrum &sa, Spectrum &ss, float g, Spectrum &emit, BBox &e, Transform &v2w, float aa, float bb, Vector &up) ...

float Density(const Point &Pobj) const {if (!extent.Inside(Pobj)) return 0;float height = Dot(Pobj - extent.pMin,

upDir);return a * expf(-b * height);

}private:

BBox extent;float a, b;Vector upDir;

}; extent.pMin

upDirPobj

h

Page 31: Volume and Participating Media

Light transport

• Emission + in-scattering (source term)

• Absorption + out-scattering (extinction)

• Combined

')',()',(),(),(),( dxLxpxxLxS sve

dsxLxxdL t ),(),(),(

),(),(),(),(

xSxLxds

xdLt

dsxSxdL ),(),(

Page 32: Volume and Participating Media

Infinite length, no surface

• Assume that there is no surface and we have an infinite length, we have the solution

dsxSxxTrxL ),'()'(),(0

x'x ),( xL

),'( xS

)'( xxTr

sxx '

s

t dssx

exxTr 0'),'(

)'(

Page 33: Volume and Participating Media

With surface

• The solution

dsxSxxTrxLxxTrxLd

),'()'(),()(),(0

00

x),( xL

0x

d

)( 0 xxTr ),( 0 xL

from the surface point x0

Page 34: Volume and Participating Media

With surface

• The solution

dsxSxxTrxLxxTrxLd

),'()'(),()(),(0

00

x),( xL

0x

d

)( 0 xxTr ),( 0 xL

from the surface point x0from the participating media

sxx '

'x

Page 35: Volume and Participating Media

Simple atmosphere model

Assumptions• Homogenous media• Constant source term (airlight)

• Fog• Haze

( )( )t

L sL s S

s

( ) 1 t ts sL s e S e C S C

Page 36: Volume and Participating Media

OpenGL fog model

fogin CffCC )1(

)()( zdensityezf

2)()( zdensityezf

startend

zendzf

)(

GL_EXP

GL_EXP2

GL_LINEAR

From http://wiki.delphigl.com/index.php/glFog

Page 37: Volume and Participating Media

VolumeIntegrator

class VolumeIntegrator : public Integrator {

public:

virtual Spectrum Transmittance(

const Scene *scene,

const Ray &ray,

const Sample *sample,

float *alpha) const = 0;

};

Pick up functions Preprocess(), RequestSamples() and Li() from Integrator.

Beam transmittance for a given ray from mint to maxt

Page 38: Volume and Participating Media

Emission only

• Solution for the emission-only simplification

• Monte Carlo estimator

),'(),'( xLxS ev

dsxLxxTrxLxxTrxL ev

d

),'()'(),()(),(0

00

N

iievi

N

i i

ievi xLxxTrN

tt

xp

xLxxTr

N 1

01

1

),()()(

),()(1

Page 39: Volume and Participating Media

Emission only

• Use multiplicativity of Tr

• Break up integral and compute it incrementally by ray marching

• Tr can get small in a long ray– Early ray termination– Either use Russian Roulette or deterministically

)()()( 11 xxTrxxTrxxTr iiii

Page 40: Volume and Participating Media

EmissionIntegratorclass EmissionIntegrator : public VolumeIntegrator {public:

EmissionIntegrator(float ss) { stepSize = ss; }void RequestSamples(Sample *sample, const Scene *scene);Spectrum Transmittance(const Scene *, const Ray &ray, const Sample *sample, float *alpha) const;Spectrum Li(const Scene *, const RayDifferential &ray, const Sample *sample, float *alpha) const;

private:float stepSize;int tauSampleOffset, scatterSampleOffset;

}; single 1D sample for each

Page 41: Volume and Participating Media

EmissionIntegrator::Transmittance

if (!scene->volumeRegion) return Spectrum(1);

float step = sample ? stepSize : 4.f * stepSize;float offset = sample ? sample->oneD[tauSampleOffset][0] :RandomFloat();

Spectrum tau = scene->volumeRegion->Tau(ray,step,offset);return Exp(-tau);

use larger steps for shadow andindirect rays for efficiency

)()( sesT

s

a dssxs0

'),'()(

Page 42: Volume and Participating Media

EmissionIntegrator::LiVolumeRegion *vr = scene->volumeRegion;float t0, t1;if (!vr || !vr->IntersectP(ray, &t0, &t1)) return 0;// Do emission-only volume integration in vrSpectrum Lv(0.);// Prepare for volume integration steppingint N = Ceil2Int((t1-t0) / stepSize);float step = (t1 - t0) / N;Spectrum Tr(1.f);Point p = ray(t0), pPrev;Vector w = -ray.d;if (sample) t0 += sample->oneD[scatterSampleOffset][0]*step;else t0 += RandomFloat() * step;

Page 43: Volume and Participating Media

EmissionIntegrator::Lifor (int i = 0; i < N; ++i, t0 += step) { // Advance to sample at t0 and update T pPrev = p; p = ray(t0); Spectrum stepTau = vr->Tau(Ray(pPrev,p-pPrev,0,1),

.5f * stepSize, RandomFloat()); Tr *= Exp(-stepTau);

// Possibly terminate if transmittance is small if (Tr.y() < 1e-3) { const float continueProb = .5f; if (RandomFloat() > continueProb) break; Tr /= continueProb; } // Compute emission-only source term at _p_ Lv += Tr * vr->Lve(p, w);}return Lv * step;

N

iievi xLxxTr

N

tt

1

01 ),()(

)()()( 11 xxTrxxTrxxTr iiii

Page 44: Volume and Participating Media

Emission only

exponential density

Page 45: Volume and Participating Media

• Consider incidence radiance due to direct illumination

Single scattering

dsxSxxTrxLxxTrxLd

),'()'(),()(),(0

00

')',()',(),(),(),( dxLxpxxLxS dsve

x

),( 0 xL

'x

Page 46: Volume and Participating Media

')',()',(),(),(),( dxLxpxxLxS dsve

• Consider incidence radiance due to direct illumination

Single scattering

x

),( 0 xL

dsxSxxTrxLxxTrxLd

),'()'(),()(),(0

00

Page 47: Volume and Participating Media

• Ld may be attenuated by participating media

• At each point of the integral, we could use multiple importance sampling to get

But, in practice, we can just pick up light source randomly.

Single scattering

')',()',(),( dxLxpx ds

Page 48: Volume and Participating Media

Single scattering