vrieswijk, t & srinivasan,a · pdf file · 2012-10-23theory current...

25
Theory Current Transformers Theory Current Transformers Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current Transformers 25 januari 2012

Upload: vuongthuan

Post on 09-Mar-2018

217 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Vrieswijk, T & Srinivasan,A · PDF file · 2012-10-23Theory Current TransformersTheory Current Transformers Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current

Theory Current TransformersTheory Current Transformers

Vrieswijk, T & Srinivasan,AAmerongen,NL, 25 januari 2012

Theory Current Transformers 25 januari 2012

Page 2: Vrieswijk, T & Srinivasan,A · PDF file · 2012-10-23Theory Current TransformersTheory Current Transformers Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current

Topics

- Theory of current transformers (CTs)Equivalent Circuit for CTs- Equivalent Circuit for CTs

- Magnetic saturation- Time constant- CT features- Specifications for a CT- Types of CT cores- Types of CT cores- Calculation example

Theory Current Transformers 25 januari 2012 2

Page 3: Vrieswijk, T & Srinivasan,A · PDF file · 2012-10-23Theory Current TransformersTheory Current Transformers Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current

Transformer Loading (1)Transformer Loading (1)I0 Φ0

n1U1 E1

n2E2 n2

AC voltage source sets up a flux in the coil core..

The load current (I0) is very small as long as E1 and U1 almost cancel each h

The exchange flux (F0) induces voltages (E1 andE2) in both coils. E1 and E2 are related as the number of windings n1 and n2.

Theory Current Transformers 25 januari 2012 3

other.

Page 4: Vrieswijk, T & Srinivasan,A · PDF file · 2012-10-23Theory Current TransformersTheory Current Transformers Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current

Transformer Loading (2)Transformer Loading (2)

Φ0 +Φ1

+ I1 n1U1

I0E1

I2R U E2R U2 n2E2

Φ

Resistance R causes coil current I2 through coil 2 and current

Φ2

I1 and I2 are inversely proportional to number of turns n1 and n2

Resistance R causes coil current I2 through coil 2 and current I1flow through coil 1. Since I1 x n1 = I2 x n2 , induced flux 1 & 2 cancel each other.

Theory Current Transformers 25 januari 2012 4

I1 and I2 are inversely proportional to number of turns n1 and n2..

Page 5: Vrieswijk, T & Srinivasan,A · PDF file · 2012-10-23Theory Current TransformersTheory Current Transformers Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current

Equivalent circuit of a CT

Theory Current Transformers 25 januari 2012 5

Page 6: Vrieswijk, T & Srinivasan,A · PDF file · 2012-10-23Theory Current TransformersTheory Current Transformers Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current

Theory Current Transformers 25 januari 2012 6

Page 7: Vrieswijk, T & Srinivasan,A · PDF file · 2012-10-23Theory Current TransformersTheory Current Transformers Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current

Magnetic Field strength and Inductiong g

Magnetic field strength H (A/m) in the coil is given by:ag e c e d s e g ( / ) e co s g e by

I = Current through the coil in Amperes (A)

n = Number of turns in the coilI x n

H =L = Total circumference of the peripheral coil

L

Induced Magnetic flux density B ( in Wb/m2 orTesla) is given by:Tesla) is given by:

µ = Magnetic permeability in (Wb/A.m) in themedium (air or iron core) in the coil B = µ x H

H = Magnetic field strength

Theory Current Transformers 25 januari 2012 7

Page 8: Vrieswijk, T & Srinivasan,A · PDF file · 2012-10-23Theory Current TransformersTheory Current Transformers Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current

SaturationThe plot shows the relationship between changing magnetic field strengthThe plot shows the relationship between changing magnetic field strength (H) and associated changing flux density / magnetic induction (B)

Theory Current Transformers 25 januari 2012 8

Page 9: Vrieswijk, T & Srinivasan,A · PDF file · 2012-10-23Theory Current TransformersTheory Current Transformers Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current

Induced Voltagesg

The effective induced voltage in the coils

i i bE = 4,44 x f x Φ x n

Magnetic flux Φ (in Wb) in the core of the coil is the

is given by:,

Magnetic flux Φ (in Wb) in the core of the coil is the flux density (B) multiplied by the cross sectional area A (in m2) of the core.

Φ = B x A

Bmax ≈ 0,6 – 0,8 T for Mu metal. Bmax ≈2 T Cold rolled Steel

Example: Suppose Bmax = 1.8 T and core area of 10 x 10 cm = 0.01 m2Maximum effective stress induced in one convolution (n = 1) of coil:4.44 x 50 x 1.8 x 0.01 = 4 V

Theory Current Transformers 25 januari 2012 9

Page 10: Vrieswijk, T & Srinivasan,A · PDF file · 2012-10-23Theory Current TransformersTheory Current Transformers Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current

High Voltages on CTsg g

Theory Current Transformers 25 januari 2012 10

Page 11: Vrieswijk, T & Srinivasan,A · PDF file · 2012-10-23Theory Current TransformersTheory Current Transformers Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current

When a CT saturation occurs true power factor is dependent on several factors:

1 The overflow factor of the CT1. The overflow factor of the CT2. The capability of CT (Rated burden)3. The internal resistance of the CT4. The connected load, in terms of wiring and power protection relays., g p p y5. The time constant of the network. This gives a DC component which speeds the

saturation .

Theory Current Transformers 25 januari 2012 11

Page 12: Vrieswijk, T & Srinivasan,A · PDF file · 2012-10-23Theory Current TransformersTheory Current Transformers Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current

Time constant

If ti il ith i t i i d d thi il i h t d thIf a magnetic coil with a resistance is energized and this coil is shorted, the energy stored in the coil discharges in the form of a current through the coil (and subsequent resistance).

The speed and thus the time in which this occurs depends on the ratio of the coil inductance and resistance. This is a time constant.

The time constants in a network may be determined from the short-circuit power factor.

Theory Current Transformers 25 januari 2012 12

Page 13: Vrieswijk, T & Srinivasan,A · PDF file · 2012-10-23Theory Current TransformersTheory Current Transformers Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current

Theory Current Transformers 25 januari 2012 13

Page 14: Vrieswijk, T & Srinivasan,A · PDF file · 2012-10-23Theory Current TransformersTheory Current Transformers Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current

For a 220 kV line the Iksym is reached after: 22.6 * 5 = 113 msec.

Theory Current Transformers 25 januari 2012 14

Page 15: Vrieswijk, T & Srinivasan,A · PDF file · 2012-10-23Theory Current TransformersTheory Current Transformers Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current

Features of current transformersFeatures of current transformersA primary winding (usually a cable or other conductors by toroidal).

Set high primary currents to default value, usually 1 A or 5 A.

Number of secondary windings in a CT with 1 A sec. current is equal to InP. For CT’s with 5A secondary the number of turns is 1 / 5 x InPMaximum voltage for each winding is dependent on core material and diameter.

S d i l t h t d d t d f f t i / t tiSecondary is almost shorted and operated far from max tension / saturation.

For Ru’ < Ru the Accuracy limiting factor (N’) is higher than the nominal(N).I t l i di i t (Ri) i th i t t N’ N (Ri + R ) / (Ri + R ’)Internal winding resistance (Ri) is then important: N’ = N x (Ri + Ru) / (Ri + Ru’)

Calculates the continuous 120% Ins. In short circuit conditions InP max lasts for upto 1 or 3 sAn open winding leads to a very hot and dangerous voltage (2500 / 1A, 5P650, 5 VA supplies ï »10 kV) and causes magnetic saturation. Winding

lasts for upto 1 or 3 s.

Theory Current Transformers 25 januari 2012 15

insulation is only rated for a 2 kV peak voltage!

Page 16: Vrieswijk, T & Srinivasan,A · PDF file · 2012-10-23Theory Current TransformersTheory Current Transformers Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current

Specifying the nominal CT burdenSpecifying the nominal CT burdenTypically used classes: 1 – 1,5 – 2 – 2,5 – 5 – 10 – 15 – 30 – 60 VA.

The reted CT Burden should account for all the power consumption in the circuit(including the losses in the leads and the connected loads).For 1 A circuits 2 VA CT Burden is usually sufficientFor 1 A circuits 2 VA CT Burden is usually sufficient.

Resistance of the lines calculated with formula : (0 0175 x l ) / AResistance of the lines calculated with formula : (0,0175 x l ) / A0,0175 is the resistivity of copper (Ω . mm2 / m) at 20° C.l = total length of all lines between CT terminals and consumers. (length of bl f t i it t k 2 )cables for return circuit take 2x) A = surface cross section of conductor in mm2.

For 1 A circuits the line losses (I2 x R ) in VA are equal to the resistance.For 5 A circuits the line losses (I2 x R ) in VA is equal to 25 times resistance.

Theory Current Transformers 25 januari 2012 16

Page 17: Vrieswijk, T & Srinivasan,A · PDF file · 2012-10-23Theory Current TransformersTheory Current Transformers Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current

Accuracy Limit Factor NAccuracy Limit Factor N

Typically used classes: P5 - P10 – P15 – P20 - P30

Factor (after the P) gives the current overload as a factor of nominal loading under rated current and 5% (5P) of 10% (10P) gives the accuracy limiting factor applicable at that overload of the CT.factor applicable at that overload of the CT.

Limit Factor (N) calculated by multiplying the following factors:

The Symmetric factor Kscc = Ikmax / Ipn

Asymmetry factor Ktd depends on the net timeconstant

The Symmetric factor Kscc = Ikmax / Ipn.Thus a higher primairy nominal current (Ipn) limits the Kscc.

Asymmetry factor Ktd depends on the net timeconstant. However, rapid protection, core type and smart digital relays limit KTD.

Theory Current Transformers 25 januari 2012 17

Page 18: Vrieswijk, T & Srinivasan,A · PDF file · 2012-10-23Theory Current TransformersTheory Current Transformers Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current

Theory Current Transformers 25 januari 2012 18

Page 19: Vrieswijk, T & Srinivasan,A · PDF file · 2012-10-23Theory Current TransformersTheory Current Transformers Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current

CT Classes used in protection applicationsCT Classes used in protection applicationsType P,PX,TPX,TPS Closed core types, also known as high remenence

Type TPY,PR Anti rememenance core, also known as lowType TPY,PR Anti rememenance core, also known as low remenence

Type TPZ Linear cores, also known as non remenence types

Theory Current Transformers 25 januari 2012 19

Page 20: Vrieswijk, T & Srinivasan,A · PDF file · 2012-10-23Theory Current TransformersTheory Current Transformers Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current

CT Behaviour during reclosingCT Behaviour during reclosing

Theory Current Transformers 25 januari 2012 20

Page 21: Vrieswijk, T & Srinivasan,A · PDF file · 2012-10-23Theory Current TransformersTheory Current Transformers Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current

CT dimensioning for Example differential protection (1)

Theory Current Transformers 25 januari 2012 21

Page 22: Vrieswijk, T & Srinivasan,A · PDF file · 2012-10-23Theory Current TransformersTheory Current Transformers Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current

CT dimensioning for Example differential protection (2)

Theory Current Transformers 25 januari 2012 22

Page 23: Vrieswijk, T & Srinivasan,A · PDF file · 2012-10-23Theory Current TransformersTheory Current Transformers Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current

CT dimensioning for Example differential protection (3)

Theory Current Transformers 25 januari 2012 23

Page 24: Vrieswijk, T & Srinivasan,A · PDF file · 2012-10-23Theory Current TransformersTheory Current Transformers Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current

CT dimensioning for Example differential protection (4)

Theory Current Transformers 25 januari 2012 24

Page 25: Vrieswijk, T & Srinivasan,A · PDF file · 2012-10-23Theory Current TransformersTheory Current Transformers Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current

Questions ???Questions ???

Theory Current Transformers 25 januari 2012 25