walterc.’pettus’ - atomic, molecular & optical physics

27
Walter C. Pettus University of Wisconsin – Madison Weak Interactions Discussion Group Yale Physics 21 Oct 2013

Upload: others

Post on 15-Feb-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: WalterC.’Pettus’ - Atomic, Molecular & Optical Physics

Walter  C.  Pettus  University  of  Wisconsin  –  Madison  

Weak  Interactions  Discussion  Group  Yale  Physics  21  Oct  2013  

Page 2: WalterC.’Pettus’ - Atomic, Molecular & Optical Physics

  Dark  Matter  and  DM-­‐ICE  

  Cosmogenic  Activation  in  DM-­‐ICE  

§  O(50  –  1000  keVee)  Calibration  

  Pulse  Shape  Discrimination  

§  O(>2500  keVee)  Calibration  

  Noise  Discrimination  

§  O(<20  keVee)  Calibration  WIDG,  21  Oct  2013   Walter  C.  Pettus,  UW  Madison   1  

Page 3: WalterC.’Pettus’ - Atomic, Molecular & Optical Physics

  26.8%  of  Universe  is  dark  matter  §  Cosmic  Microwave  Background  §  Baryon  Acoustic  Oscillations  §  Distance  Measurements  (H0)    §  Type  Ia  Supernovae  §  Gravitational  Lensing  §  Cluster  Measurements  §  Lyman  Alpha  Forest  §  Large  Scale  Structure  §  Galactic  Rotation  Curves  

WIDG,  21  Oct  2013   Walter  C.  Pettus,  UW  Madison   2  

Planck  collaboration,  arXiv:  1303.5062  (2013)  

Page 4: WalterC.’Pettus’ - Atomic, Molecular & Optical Physics

Best  Exclusion  Limits  

Nagging  Positive  Signals  

Dark Matter investigation with highly radiopure NaI(Tl) 19

2-4 keV

Time (day)

Res

idua

ls (c

pd/k

g/ke

V) DAMA/NaI ≈ 100 kg

(0.29 ton×yr)DAMA/LIBRA ≈ 250 kg

(0.87 ton×yr)

2-5 keV

Time (day)

Res

idua

ls (c

pd/k

g/ke

V) DAMA/NaI ≈ 100 kg

(0.29 ton×yr)DAMA/LIBRA ≈ 250 kg

(0.87 ton×yr)

2-6 keV

Time (day)

Res

idua

ls (c

pd/k

g/ke

V) DAMA/NaI ≈ 100 kg

(0.29 ton×yr)DAMA/LIBRA ≈ 250 kg

(0.87 ton×yr)

Fig. 1. Experimental model-independent residual rate of the single-hit scintillation events, mea-sured by DAMA/NaI over seven and by DAMA/LIBRA over six annual cycles in the (2 – 4), (2 –5), and (2 – 6) keV energy intervals as a function of the time.116, 171, 175, 176 The zero of the timescale is January 1st of the first year of data taking. The experimental points present the errorsas vertical bars and the associated time bin width as horizontal bars. The superimposed curvesare A cos ω(t − t0) with period T = 2π

ω= 1 yr, phase t0 = 152.5 day (June 2nd) and modulation

amplitude, A, equal to the central value obtained by best fit over the whole data: cumulativeexposure is 1.17 ton × yr. The dashed vertical lines correspond to the maximum expected for theDM signal (June 2nd), while the dotted vertical lines correspond to the minimum. See Refs. 175,176 and text.

detector in the k-th energy bin averaged over the cycles. The average is made onall the detectors (j index) and on all the energy bins (k index) which constitute theconsidered energy interval. The weighted mean of the residuals must obviously bezero over one cycle.

WIDG,  21  Oct  2013   Walter  C.  Pettus,  UW  Madison   3  

Agnese  et  al.  arXiv:1304.4279  (2013)  

Bernabei  et  al.  Int  J  Mod  Phys  A  (2013)  

Page 5: WalterC.’Pettus’ - Atomic, Molecular & Optical Physics

WIDG,  21  Oct  2013   Walter  C.  Pettus,  UW  Madison   4  

Search  for  annual  modulation  with  NaI(Tl)  crystals  in  the  Southern  Hemisphere  

LNGS    (DAMA)  

South  Pole    (DM-­‐Ice)  

(13) high sensitivity to the class of WIMP candidates with spin-independent (SI), spin-dependent (SD) and mixed (SI&SD)couplings (see e.g. Refs. [4,14]); (14) high sensitivity to severalother existing scenarios (see e.g. Refs. [4–11,15]) and tomany other possible candidates including those producing justelectromagnetic radiation in the interaction; (15) possibilityto effectively investigate the annual modulation signature in allthe needed aspects; (16) ‘‘ecologically clean’’ apparatus, thus nosafety problems; (17) technique cheaper than every otherconsidered in the field; (18) small underground space needed;(19) pulse shape discrimination feasible at reasonable level whenof interest.

Moreover, highly radiopure NaI(Tl) scintillators can also offerthe possibility to achieve significant results on several other rareprocesses—as already done by the DAMA/NaI apparatus—such ase.g. [16]: (i) possible violation of Pauli exclusion principle in 127Iand in 23Na; (ii) electron stability; (iii) charge non-conservingprocesses; (iv) search for solar axions; (v) search for exotic matter;

(vi) search for spontaneous transition of nuclei to a superdensestate; (vii) search for spontaneous emission of heavy clusters in127I; (viii) search for possible nucleon, di-nucleon and tri-nucleondecays into invisible channels; etc.

3. Layout of the experimental apparatus

The main parts of the experimental apparatus are: (i) theinstallation; (ii) the multicomponent passive shield; (iii) the 25highly radiopure NaI(Tl) detectors; (iv) the glove-box for calibra-tions; (v) the electronic chain and the monitoring/alarm system;(vi) the data acquisition (DAQ) system.

All the materials constituting the apparatus have been selectedfor low radioactivity by measuring samples with low backgroundGe detector deep underground in the Gran Sasso NationalLaboratory and/or by Mass Spectrometry (MS) and by AtomicAbsorption Spectroscopy (AAS).

ARTICLE IN PRESS

Fig. 1. Disinstalling DAMA/NaI and installing DAMA/LIBRA; all procedures involving detectors, photomultipliers (PMTs), etc. have been carried out in HP (High Purity)Nitrogen atmosphere. Improving the experimental site (walls, floor, etc.) after removal of the DAMA/NaI electronics (top left); dismounting the DAMA/NaI detectors in HPNitrogen atmosphere (top right); assembling a DAMA/LIBRA detector in HP Nitrogen atmosphere (bottom left); installing the DAMA/LIBRA detectors in HP Nitrogenatmosphere (center right) and a view of the inner Cu box filled by the DAMA/LIBRA detectors in HP Nitrogen atmosphere (bottom right).

R. Bernabei et al. / Nuclear Instruments and Methods in Physics Research A 592 (2008) 297–315298

DAMA/LIBRA        5x5  array        ~250  kg  

DM-­‐Ice  (concept)        7  crystal  array        ~125  kg/module        ~250  kg  total  

x2  

Page 6: WalterC.’Pettus’ - Atomic, Molecular & Optical Physics

  2  detectors    8.47  kg  each    2457  m  depth  

§  2200  m.w.e.  

  Deployed  Dec  2010    Stable  running  since  June  2011  

WIDG,  21  Oct  2013   Walter  C.  Pettus,  UW  Madison   5  

Page 7: WalterC.’Pettus’ - Atomic, Molecular & Optical Physics

WIDG,  21  Oct  2013   Walter  C.  Pettus,  UW  Madison   6  

Energy (keV)0 500 1000 1500 2000 2500

coun

ts /

day

/ keV

/ kg

0

2

4

6

8

10

12

14

16

18

212Pb + 214Pb

208Tl + 214Bi

60Co 40K 214Bi 214Bi 208Tl

214Pb

Energy (keV)0 10 20 30 40 50 60 70 80 90 100

coun

ts /

day

/ keV

/ kg

02468

10121416182022

210Pb

40K

210Pb 125I

Page 8: WalterC.’Pettus’ - Atomic, Molecular & Optical Physics

  Cosmic  ray  shower  components  can  ‘activate’  detector  components  §  Muon  capture  ▪  μ−  +  A(Z,N)  →  νμ  +A(Z−1,N+1)  

§  Hadron  capture  ▪  n  +  A(Z,N)  →  A(Z,N+1)  ▪  p  +  A(Z,N)  →  A(Z+1,N)  

§  Spallation  ▪  n  +  A(Z,N)  →  n  +  A1(Z1,N1)  +  A2(Z2,N2)  

WIDG,  21  Oct  2013   Walter  C.  Pettus,  UW  Madison   7  

Page 9: WalterC.’Pettus’ - Atomic, Molecular & Optical Physics

Altitude  Dependence:   Latitude  Dependence:  

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

WIDG,  21  Oct  2013   Walter  C.  Pettus,  UW  Madison   8  

Cosmic  ray  rates  depend  on  altitude  (atmospheric  depth)  and  geographic  coordinates  (geomagnetic  rigidity)  

Ziegler.    IBM  J  R&D  (1998)  

Beringer  et  al.  (PDG)    Phys  Rev  D  (2012)  

Page 10: WalterC.’Pettus’ - Atomic, Molecular & Optical Physics

Before  running  a  dark  matter  experiment  at  the  South  Pole  .  .  .  

 DM-­‐ICE17  Component  Sources  

Crystals:  Boulby,  UK  Steel:  Sandviken,  SWE  

DM-­‐ICE17  Construction  Madison,  WI,  USA  

Polar  Program  Waypoints  Christchurch,  NZ  McMurdo  Station  South  Pole  Station  

 

WIDG,  21  Oct  2013   Walter  C.  Pettus,  UW  Madison   9  

Madison,  WI   Boulby,  UK  

McMurdo  Station  

South  Pole  Station  

Sandiviken,  SWE  

Christchurch,  NZ  

Page 11: WalterC.’Pettus’ - Atomic, Molecular & Optical Physics

WIDG,  21  Oct  2013   Walter  C.  Pettus,  UW  Madison   10  

Commercial  flights  at  ~35,000+  ft  

Storage  at  9,301  ft  

Polar  program  flights   Low  geomagnetic  rigidity  

Location  Relative  Neutron  

Rate  (to  sea  level)  

Madison,  WI   1.26  

South  Pole   9.7  

Commercial  Flight  

130  

Madison,  WI   Boulby,  UK  

McMurdo  Station  

South  Pole  Station  

Sandiviken,  SWE  

Christchurch,  NZ  

Page 12: WalterC.’Pettus’ - Atomic, Molecular & Optical Physics

  Activity  of  cosmogenic  isotopes  simulated  by:  §  ACTIVIA  code  for  NaI  crystals  §  Literature  values  for  Steel  (and  Copper)  

WIDG,  21  Oct  2013   Walter  C.  Pettus,  UW  Madison   11  

Crystal  

Isotope   Half-­‐Life  3H   12.3  yr  

22Na   2.6  yr  109Cd   461  d  113Sn   115  d  121Te   19.2  d  121mTe   164  d  123mTe   119  d  125mTe   57.4  d  127mTe   106  d  

125I   59.4  d  126I   12.9  d  

127Xe   36.3  d  

Steel  

Isotope   Half-­‐Life  7Be   53.2  d  46Sc   83.8  d  48V   16.0  d  51Cr   27.7  d  52Mn   5.59  d  54Mn   312  d  56Co   77  d  56Ni   70.9  d  58Co   6.08  d  

Page 13: WalterC.’Pettus’ - Atomic, Molecular & Optical Physics

  Breakdown  of  crystal  activation  by  travel  stage:  

WIDG,  21  Oct  2013   Walter  C.  Pettus,  UW  Madison   12  

                       Christchurch  (25  days)    

     Wisconsin  (60  days)    Flight:  MCM  –  NPX  

 (3  hrs)    

     Flight:  CHC  –  MCM          (5  hrs)  

South  Pole  (15  days)  

Flight:  MSN  –  CHC      (16  hrs)  

Page 14: WalterC.’Pettus’ - Atomic, Molecular & Optical Physics

Long-­‐lived  cosmogenic  isotopes  from  crystal  and  pressure  vessel  are  expected  to  persist  into  data  taking  

WIDG,  21  Oct  2013   Walter  C.  Pettus,  UW  Madison   13  

1st  Data  Month:  Simulated  Spectrum  

Crystal   Steel  

3H   7Be  

22Na   46Sc  

109Cd   48V  

113Sn   51Cr  

121mTe   52Mn  

123mTe   54Mn  

125mTe   56Co  

127mTe   56Ni  

125I   58Co  

127Xe  

coun

ts/kg/ke

V/day

 

Energy  (keV)  

Page 15: WalterC.’Pettus’ - Atomic, Molecular & Optical Physics

  NaI  Crystal  §  Still  expect  clear  peaks  from  multiple  isotopes  

  Steel  Pressure  Vessel  §  54Mn  is  only  significant  isotope  

WIDG,  21  Oct  2013   Walter  C.  Pettus,  UW  Madison   14  

coun

ts/kg/ke

V/day

 

Energy  (keV)  

Pressure  Vessel  Cosmogenics:  

coun

ts/kg/ke

V/day

 

Energy  (keV)  

–    All  in  Crystal  –    113Sn  in  Crystal  –    121mTe  in  Crystal  –    123mTe  in  Crystal  –    125mTe  in  Crystal  –    127mTe  in  Crystal  –    125I  in  Crystal  

NaI  Crystal  Cosmogenics:  

20  102  600  

*  (6.5  months  after  deployment,  first  month  of  data  run)  

Page 16: WalterC.’Pettus’ - Atomic, Molecular & Optical Physics

Energy (keV)10 20 30 40 50 60 70 80 90 100

coun

ts /

day

/ keV

/ kg

0

5

10

15

20 July 2011 June 2013 Residual

0

2

4

6

8

10

  125I  (t1/2  =  59.4  days)  is  good  candidate  for  search  in  early  data  months  

Walter  C.  Pettus,  UW  Madison   15  

125I  X-­‐rays  

125I  Full  Energy  

WIDG,  21  Oct  2013  

Geant4  125I  Energy  Deposited  

Energy  (keV)  

coun

ts  (a

rb)  

Page 17: WalterC.’Pettus’ - Atomic, Molecular & Optical Physics

  λ  =  0.3500  ±  0.0157  month-­‐1  

§  t1/2  =  59.41  ±  2.66  days  §  (59.4  days)  

  Deploy  activity:  §  1151  ±  118  cpd/kg  

WIDG,  21  Oct  2013   Walter  C.  Pettus,  UW  Madison   16  

125I  Peak  Decay  

Integrated

 Pea

k  Area  (cou

nts/kg

/day

)  

Month  (since  July  2011)  

Page 18: WalterC.’Pettus’ - Atomic, Molecular & Optical Physics

Energy (keV)650 700 750 800 850 900 950 1000

coun

ts /

day

/ keV

/ kg

-1

0

1

2

3

4

5

6 July 2011 June 2013 Residual

0

0.5

1

1.5

  γ-­‐line  expected  from  54Mn  §  Eγ  =  835  keV  §  t1/2  =  312.03  days  

WIDG,  21  Oct  2013   Walter  C.  Pettus,  UW  Madison   17  

Fit   Expectation  

Energy  (keV)   836.1  ±  3.0   834.8  

Sigma  (keV)   36.9  ±  3.7   23.3  

Deploy  Rate  (decays/day)  

51,700  ±  6,500   135,800  

Page 19: WalterC.’Pettus’ - Atomic, Molecular & Optical Physics

  Both  ANAIS  and  DAMA  observe  125I  peak  

  ANAIS  also  looking  into  presence  of  other    NaI  cosmogenics  (esp.  Te  states)  

WIDG,  21  Oct  2013   Walter  C.  Pettus,  UW  Madison   18  

DAMA/LIBRA  

a)  Deployment    b)    Months  later  

Bernabei  et  al.    NIMA  (2008)  

ANAIS-­‐25   Martinez.    LNGS  Seminar  (2013)  

8-­‐week  residual  

Page 20: WalterC.’Pettus’ - Atomic, Molecular & Optical Physics

  Time  on  surface  at  South  Pole  can  be  most  damaging  stage  for  cosmogenics:  

WIDG,  21  Oct  2013   Walter  C.  Pettus,  UW  Madison   19  

South  Pole  is  topographically  flat  and  station  buildings  provide  minimal  overburden  

   Christchurch    

           Wisconsin    Flight:  MCM  –  NPX            Flight:  CHC  –  MCM  

South  Pole  

Flight:  MSN  –  CHC    

Page 21: WalterC.’Pettus’ - Atomic, Molecular & Optical Physics

  40-­‐50  ft  firn  overburden  ~ 10  m.w.e.  ~ 30%  of  surface  muon  rate  

WIDG,  21  Oct  2013   Walter  C.  Pettus,  UW  Madison   20  

Page 22: WalterC.’Pettus’ - Atomic, Molecular & Optical Physics

 Muon  spectra  comparison  of  South  Pole  sites  with  Christchurch  and  Madison  data  

25

20

15

10

5

0

Coun

t Ra

te (

/MeV

/min

)

181614121086420

Energy (MeV)

South Pole - Surface South Pole - ICL South Pole - Tunnel Christchurch, NZ Madison, WI, USA

MCA1 Compiled Average Data

WIDG,  21  Oct  2013   Walter  C.  Pettus,  UW  Madison   21  

Page 23: WalterC.’Pettus’ - Atomic, Molecular & Optical Physics

WIDG,  21  Oct  2013   Walter  C.  Pettus,  UW  Madison   22  

Location   Elevation  (ft)  

Relative  Intensity*  

South  Pole  -­‐  Surface   9190   2.60  

South  Pole  –  ICL   9190   1.89  

South  Pole  –  Tunnel     9190   0.795  

Christchurch,  NZ   120   1.00  

Madison,  WI,  USA   880   0.669  

                       Christchurch  (25  days)    

     Wisconsin  (60  days)    Flight:  MCM  –  NPX  

 (3  hrs)    

     Flight:  CHC  –  MCM          (5  hrs)  

South  Pole  Tunnels    (15  days)  

Flight:  MSN  –  CHC      (16  hrs)  

*Relative  to  Christchurch  –  approximately  sea  level  

Page 24: WalterC.’Pettus’ - Atomic, Molecular & Optical Physics

  Growing  crystals  with  Alpha  Spectra  Inc.  (Grand  Junction,  CO)  for  next  phase  §  4,600  ft  above  sea  level  

 What  cosmogenic  products  can  we  measure  in  these  crystals?  

WIDG,  21  Oct  2013   Walter  C.  Pettus,  UW  Madison   23  

Page 25: WalterC.’Pettus’ - Atomic, Molecular & Optical Physics

  330  ft  overburden  

Page 26: WalterC.’Pettus’ - Atomic, Molecular & Optical Physics

Test  Crystal  in  Castle  

Castle  (closed)  with  DAQ  

WIDG,  21  Oct  2013   Walter  C.  Pettus,  UW  Madison   25  

Page 27: WalterC.’Pettus’ - Atomic, Molecular & Optical Physics

  Cosmogenics  allow  energy  calibration  in  50  –  1000  keV  range  

  Testing  underway  to  investigate  cosmogenic  effect  on  next-­‐phase  DM-­‐ICE  

WIDG,  21  Oct  2013   Walter  C.  Pettus,  UW  Madison   26  

Energy (keV)0 500 1000 1500 2000 2500

coun

ts /

day

/ keV

/ kg

0

2

4

6

8

10

12

14

16

18

212Pb + 214Pb

208Tl + 214Bi

60Co 40K 214Bi 214Bi 208Tl

214Pb

Energy (keV)0 10 20 30 40 50 60 70 80 90 100

coun

ts /

day

/ keV

/ kg

02468

10121416182022

210Pb

40K

210Pb 125I

125I  

54Mn