wannier functions: ab-initio tight-bindingjry20/esdg2.pdf · wannier interpolation •map low...

33
Wannier Functions: ab-initio tight-binding Jonathan Yates Cavendish Laboratory, Cambridge University

Upload: others

Post on 30-Mar-2020

27 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Wannier Functions: ab-initio tight-binding

Jonathan Yates

Cavendish Laboratory, Cambridge University

Page 2: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Representing a Fermi Surface

Lead Fermi surface

Accurate description of Fermi surface properties requires a detailed sampling of the Brillouin Zone

Al Fermi surface

Page 3: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Representing a Fermi Surface

Lead Fermi surface

•Accurate description of Fermi surface properties requires a detailed sampling of the Brillouin Zone

• Full first-principles calculation expensive

Al Fermi surface

Scalar Relativistic with spin-orbit coupling Fe fermi surface

Page 4: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Outline

•Wannier Functions •One band

•Isolated Set of Bands

•Entangled Bands

•Wannier Interpolation•Accurate and Efficient approach to Fermi surface and spectral properties

•Examples•Anomalous Hall Effect

•Electron-Phonon Coupling

Page 5: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Wannier Functions

-9-8.5

-8-7.5

-7-6.5

-6-5.5

-5

L G X K G

wnR(r) =V

(2!)3

!

BZ"nk(r)e!ik.Rdk !nk(r)! e!i!(k)!nk(r)

Bloch stateQuantum # kWannier function

Quantum # R

GaAs

Page 6: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Wannier Functions

-9-8.5

-8-7.5

-7-6.5

-6-5.5

-5

L G X K G

-6-4-2 0 2 4 6

L G X K G

wnR(r) =V

(2!)3

!

BZ"nk(r)e!ik.Rdk !nk(r)! e!i!(k)!nk(r)

!nk(r)!!

n

U (k)mn!mk(r)

Multiband - Generalized WF

Bloch stateQuantum # kWannier function

Quantum # R

GaAs

Si

Page 7: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Maximally Localised Wannier Functions

wnR(r) =V

(2!)3

!

BZ

"#

m

U (k)mn"mk(r)

$e!k.Rdk

Choose Uk to minimise quadratic spread (Marzari, Vanderbilt)

|uk!

!uk|uk+b"U (k)Ab-initio code Wannier code

Wannier localisation in R gives Bloch smoothness in k !rot

nk (r) =!

m

U (k)mn!mk(r)

WF defined in basis of bloch states

-6-4-2 0 2 4 6

L G X K G

Si valence bands

Page 8: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Wannier Functions: A local picture

Si GaAs

1- Intuitive picture of local bonding

2- Wannier centres give bulk polarisation in a ferroelectric

Paraelectric Ferroelectric

BaTiO3

Page 9: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

MLWF - Entangled Bands

Disentanglement procedure(Souza, Marzari and Vanderbilt)

Obtain “partially occupied” Wannier functions

Essentially perfect agreement within given energy window

Page 10: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Copper

Page 11: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Wannier InterpolationAccurate and Efficient approach to Fermi surface and spectral properties

•Exploit localisation of Wannier functions.•Require only matrix elements between close

neighbours.

Lead Fermi surface

1st principles accuracy at tight-binding costInterpolation of any one-electron operator

Page 12: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Wannier Interpolation

1- Obtain operator in Wannier basisOmn(R) = !Om|O|Rn" =

!

k

e!ik·R UO(k)U†

Page 13: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Wannier Interpolation

1- Obtain operator in Wannier basis

2- Fourier transform to an arbitrary k-point, k’Omn(k!) =

!

R

eik.·R Omn(R)

Omn(R) = !Om|O|Rn" =!

k

e!ik·R UO(k)U†

Page 14: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Wannier Interpolation

1- Obtain operator in Wannier basis

2- Fourier transform to an arbitrary k-point, k’

3- Un-rotate matrix at k’

Omn(k!) =!

R

eik.·R Omn(R)

!!m,k! |O|!n,k!" = [U†k!O(k!)Uk! ]

What we need diagonalises H

Omn(R) = !Om|O|Rn" =!

k

e!ik·R UO(k)U†

All operations involve small matrices (NwanxNwan) => FAST!

Page 15: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

ConvergenceWannier interpolated object converges to ab-initio value, exponentially with k-grid sampling.

Lead

4x4x4

10x10x10 K-mesh size

Band interpolation error

Page 16: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Wannier Interpolation - Summary

Bloch Stateseg planewave basis

• Each k-point expensive• Calculation of MLWF

converges exponentially

Wannier basis

•Each k-point cheap•Introduce occupancies and compute properties (only polynomial convergence)

Sample on coarse grid Sample on fine grid

Page 17: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Wannier Interpolation - Fe•18 spinor Wannier functions•Keep up to 4th neighbour overlaps•Cost 1/2000 of full calculation

Page 18: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Wannier Interpolation

H !-2

-1.5

-1

-0.5

0

0.5

1

Page 19: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Wannier Interpolation pt2

1- k-derivatives can be taken analytically

eg band gradient

2- Position operator matrix elements well defined

Hk =!

R

eik·RH(R)

!Hk

!k!= i

!

R

R!eik·RH(R)

repeat for higher derivatives

Page 20: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Hall Effect!!"#$%&'#(!)'**!+,,+-.!/)'**!01234

!!5&67'*689!)'**!+,,+-.!/)'**!011:4!

!!;6!!!,%+*$!&++$+$<

!!=+##67'>&+.%97!?#+'@9!.%7+!#+A+#9'*

!

!!B#699+$!!"!'&$!!!!,%+*$9

!!!!?#+'@9!.%7+C#+A+#9'*

!!;6!7'>&+.%-!6#$+#!&++$+$

!

!!"#$%&'#(!)'**!+,,+-.!/)'**!01234

!!5&67'*689!)'**!+,,+-.!/)'**!011:4!

!!;6!!!,%+*$!&++$+$<

!!=+##67'>&+.%97!?#+'@9!.%7+!#+A+#9'*

!

!!B#699+$!!"!'&$!!!!,%+*$9

!!!!?#+'@9!.%7+C#+A+#9'*

!!;6!7'>&+.%-!6#$+#!&++$+$

!

Ordinary Hall Effect (Hall 1879)

Anomalous Hall Effect (Hall 1880)

Crossed E and B fields

B breaks time-reversal

No B field needed!

Ferromagnetism breaks time-reversal

Page 21: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Mechanisms for the AHEIntrinsic

1954 Karplus and Luttinger property of electron motion in perfect lattice “dissipationless” current (spin-orbit effect)

Extrinsic1955 Smit “skew scattering”1970 Berger “side-jump”

Intrinsic (again)1996- Rexamination of KL in terms of Berry’s phases Niu (Texas), Nagaosa (Tokyo)

Page 22: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Electron Dynamics

r =1!

!"nk

!k! k"!n(k)

!k = !eE! er"B

Textbook wavepacket dynamics

Page 23: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Electron Dynamics

r =1!

!"nk

!k! k"!n(k)

!k = !eE! er"B

Textbook wavepacket dynamics missing a term: “anomalous velocity”

“k-space magnetic field” caused by lattice potential“k-space Lorentz force” even when B=0

!xy =!e2

(2")2h

!

n

"

BZdk fn(k) !n,z(k)

Fermi function

Anomalous Hall Conductivity

Berry Curvature

Page 24: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Jonathan Yates Tyndall Institute 27th March 2007

Finite-differences difficult: phases, band-crossings

bcc iron (LAPW) Yao et al (PRL 2004)

Kubo formula

Extremely computationally expensive!final number within 20% of experiment

Berry Curvature

!n(k) = !Im"#kun,k|$ |#kun,k%

!n(k) = !!An(k)An(k) = i!unk|!k|unk"

!n,z(k) = !2Im!

m!=n

vnm,x(k) vmn,y(k)(!m(k)! !n(k))2

Berry Curvature

Berry Potential

Ab-initio Calculation

cell periodic Bloch state

Page 25: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Band-structure bcc Fe

N P! N H! N P H!

-8

-6

-4

-2

0

2

4

Spin up Spin downDFT (PBE) + spin-orbit

Page 26: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Berry curvature bcc Fe

-1e3

1e3

-1e5

1e5

1e1 -1e1

N P! N H! N P H!

-8

-6

-4

-2

0

2

4

Berr

y Cu

rvat

ure

(ato

mic

uni

ts)

Page 27: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Berry curvature bcc Fe

-1e3

1e3

-1e5

1e5

1e1 -1e1

N P! N H! N P H!

-8

-6

-4

-2

0

2

4

Berr

y Cu

rvat

ure

(ato

mic

uni

ts)

Page 28: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Berry Curvature

-1e3

1e3

-1e5

1e5

1e1 -1e1

P H!

-0.4

-0.2

0

0.2

0.4

Berr

y Cu

rvat

ure

(ato

mic

uni

ts)

!tot,z =!

n

fn(k) !n,z(k)

Total Berry Curvature

Page 29: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Our CalculationAb-initio k-grid: 8x8x8Interpolation k-grid: 320x320x320 + 7x7x7 “adaptive refinement”

(when Ω> 100 a.u.) Wannier Interpolation

planewaves + pseudopotentials

758 (Ω cm)-1

Existing Calculation*Kubo formula +

LAPW

751 (Ω cm)-1

*Yao et al PRL (2004)

Experiment ~1000 (Ω cm)-1

Differences: Scattering, Approximate DFT, Experimental uncertainty

Page 30: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Berry curvature in ky=0 plane

Total Berry curvature (atomic units)

Page 31: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Berry curvature in ky=0 plane

26% opposite spin

21% like spin

53% smooth background

Contributions

Total Berry curvature (atomic units)

Page 32: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

Wannier Interpolation

•Map low energy electronic structure onto “exact tight binding model”

•Compute quantities with ab-initio accuracy and tight-binding cost

Basis set independent (planewaves, LAPW, guassians etc)Any single particle level of theory (LDA, LDA+U, GW)

•Many applications:Accurate DOS, joint-DOS, Fermi SurfacesSpin-relaxationMagneto-crystalline anisotropyNMR in metals (Knight shift)Electron-phonon interaction

Page 33: Wannier Functions: ab-initio tight-bindingjry20/esdg2.pdf · Wannier Interpolation •Map low energy electronic structure onto “exact tight binding model” •Compute quantities

AcknowledgmentsIvo Souza : UC Berkeley

Wannier Interpolation: Phys Rev B 75 195121 (2007)

Anomalous Hall EffectXinjie Wang, David Vanderbilt : Rutgers UniversityPhys Rev B 74 195118 (2006)

Wannier90 codeArash Mostofi, Nicola Marzari MITReleased under the GPL at www.wannier.org

Electron-PhononFeliciano Guistino, Marvin Cohen, Steven Louie : UCBPhys Rev Lett 94 047005 (2007)

Funding - Lawrence Berkeley National Laboratory Corpus Christi College, Cambridge