waste oil: technology, economics, and environmental ...infohouse.p2ric.org/ref/16/15368.pdf ·...

210
DOEIEVII 0450-H2 Waste Oil: Technology, Economics, and Environmental, Health, and Safety Considerations January 1987 Prepared for: U.S. Department of Energy Assistant Secretary for Environment, Safety, and Health Office of Environmental Analysis Contract No. DE-ACO1-84PE72013

Upload: lenhi

Post on 13-Mar-2018

221 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

DOEIEVII 0450-H2

Waste Oil: Technology, Economics, and

Environmental, Health, and Safety Considerations

January 1987

Prepared for: U.S. Department of Energy

Assistant Secretary for Environment, Safety, and Health Office of Environmental Analysis

Contract No. DE-ACO1-84PE72013

Page 2: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and
Page 3: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

I I

DISCLAIMER

Th is r e p o r t was prepared as an account o f work sponsored by an agency o f t h e Un i ted Sta tes Government. N e i t h e r the Un i ted S ta tes Government, n o r any agency the reo f , no r any o f t h e i r employees, makes any warranty, express o r imp l i ed , or assumes any l e g a l l i a b i l i t y o r r e s p o n s i b i l i t y f o r t h e accuracy, completeness , o r u s e f u l ness o f any i n fo rma t ion , apparatus , produc t , o r process d isc losed, o r represents t h a t i t s use would n o t i n f r i n g e p r i v a t e l y owned r i g h t s . Reference h e r e i n t o any s p e c i f i c commercial product, process, o r s e r v i c e by t r a d e name, trademark, manufacturer, o r o therw ise , does n o t neces- s a r i l y c o n s t i t u t e o r imp ly i t s endorsement, recommendation, o r f a v o r i n g by t h e Un i ted S ta tes Government o r any agency the reo f . The views and op in ions of authors expressed h e r e i n do n o t necessa r i l y s t a t e o r r e f l e c t those o f t h e Un i ted S ta tes Government o r any agency the reo f .

Page 4: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and
Page 5: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96

Waste Oil: Technology, Economics, and

Environmental, Health, and Safety Considerations

RECEIVED January 1987

Prepared by: Mueller Associates, Inc.

Baltimore, Maryland 21 227

Dlr- of t(l\;ionrnental ~6 Raleigh, N. c.

Prepared for: U.S. Department of Energy

Assistant Secretary for Environment, Safety, and Health Office of Environmental Analysis

Washington, DC 20585

Contract No. DE-ACO1-84PE72013

Page 6: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and
Page 7: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

PREFACE

Recent r e g u l a t o r y steps taken i n the Un i ted S ta tes t o r e g u l a t e used o i l may c r e a t e severe c o n s t r a i n t s on those who generate, c o l l e c t , and handle used o i l , such t h a t many o f them may l eave t h e market. Th i s may l e a d t o decreased a v a i l a b i l i t y o f sound d isposa l op t i ons r e s u l t i n g i n increased improper d isposa l o f used o i l .

Th i s r e p o r t s draws toge the r i n f o r m a t i o n on the techn ica l , economic , and environmental, hea l th , and s a f e t y aspects o f the waste o i l i n d u s t r y . We hope i t w i l l prove useful to planners, po l icymakers, l e g i s l a t o r s , researchers, and env i ronmenta l i s ts . Pub1 ished re fe rences a r e g i ven f o r the statements, da ta , and conc lus ions so t h a t the i n t e r e s t e d reader can o b t a i n more d e t a i l e d i n f o r m a t i o n where necessary.

We recogn ize t h a t new research f i n d i n g s and marke t c o n d i t i o n s may mod i fy the i n f o r m a t i o n presented here. We, t he re fo re , welcome y o u r comnents, co r rec - t i o n s , o r suggestions f o r improving f u t u r e e d i t i o n s , and encourage you t o send them t o M r . David 0. Moses, D i r e c t o r o f o u r Environmental Assessments D i v i - sion, under whose superv i s ion t h i s compendium has been prepared.

Edward R. W i l l iams D i r e c t o r O f f i c e o f Env i ronmen t a l Anal y s i s

iii

Page 8: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

ACKNOWLEDGMENTS

The au thors wish t o acknowledge t h e e f f o r t s o f M r . David 0. Moses, D i r e c t o r , Environmental Assessments D i v i s i o n , O f f i c e o f Environmental Ana lys is , who prov ided the impetus f o r and guidance i n the p r e p a r a t i o n o f t h i s repo r t . Thanks are a l s o due the many Mue l l e r Associates ' s t a f f who c o n t r i b u t e d bo th t o the techn ica l e f f o r t and the p repara t i on o f t he manuscr ipt .

i v

Page 9: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

ABSTRACT

The c u r r e n t s t a t u s o f environmental i n f o r m a t i o n on t h e waste o i l i n d u s t r y i s reviewed. The sources, p r o p e r t i e s , and a v a i l a b i l i t y o f waste o i l a re summarized. The t o p i c s o f waste o i l c o l l e c t i o n , u t i l i z a t i o n , and d isposa l , energy and economic cons ide ra t i ons , and r e g u l a t o r y c o n s t r a i n t s a r e discussed, based upon t h e most recen t da ta a v a i l a b l e a t t h i s time. i m p l i c a t i o n s o f t he resource through end-use waste o i l systern a re a l s o presented .

The h e a l t h and s a f e t y

V

Page 10: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

CONTENTS

Page . ..

Preface ........................................................... i l l Acknowledgments ................................................... i v Abstract .......................................................... v Tables ............................................................ i x Figures ........................................................... x l l

..

1 INTRODUCTION .................................................. 1

Purpose and Objective ......................................... 1 Report Organization ........................................... 1

2 BACKGROUND .................................................... 2

Definition .................................................... 2 Used Oil Industry Characterist ics ............................. 3

Used Oil Generation ......................................... 5

Used Oil Reuse .............................................. 13 Used Oil Properties ......................................... 18

Unused Waste Oil Character is t ics .............................. 38 Unused Waste Oil Sources .................................... 38 Unused Waste O i l Generation ................................. 40 Unused Waste Oil Composition ................................ 40

Used Oil Collection ......................................... 12 Used Oil Reclamation ........................................ 12

3 USED O I L RECLAIMING TECHNOLOGY ................................ 41

Reprocessing Technologies ..................................... 41

Centrifugal System .......................................... 42 Two-Tank System ............................................. 45

Phi l l ips Re-Refined Oil Process ............................. 53

Propane Extraction Process .................................. 60 Bar t lesv i l le Energy Technology Center Solvent Extraction

Settling/Centrifugal System ................................. 42

Re-Refining Technologies ...................................... 45 Acid-Clay Process ........................................... 47

Kinetics Technology International. B.V. Process ............. 58

Process ................................................... 62 Resource Technology, Inc . Process ........................... 66 Disti l lat ion-Clay F i l t r a t ion Process ........................ 68 Recyclon Process ............................................ 71 Krupp Research Ins t i t u t e Supercri t i ca l Process .............. 75 Miscellaneous Processes ..................................... 75

Effects of Reclaiming Operations on Used Oil Composition ...... 77 Current S t a t u s o f Used Oil Reclaiming Indus t ry ................ 84

vi

Page 11: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

CONTENTS (CONT . ) Page

4 ENVIRONMENTAL CHARACTERIZATION OF WASTE OIL UTILIZATION AND DISPOSAL .................................................. 85

Combustion i n Large B o i l e r s ................................... 85 Ino rgan ic and Trace Element Emissions ....................... 85 Gaseous Emissions ........................................... 92 Organic Emissions ........................................... 95 Impact o f Emissions on Ambient A i r Q u a l i t y .................. 99

Combustion i n Small B o i l e r s ................................... 100 Ino rgan ic and Trace Element Emissions ....................... 103 Gaseous Emissions ........................................... 105 Organic Emissions ........................................... 109

Re-Ref in ing ................................................... 114 A i r Emissions ............................................... 114 L i q u i d E f f l u e n t s ............................................ 116 S o l i d Wastes ................................................ 120

Road O i l i n g ................................................... 131 Runoff ...................................................... 132 Evapora t ion ................................................. 136

Used O i l Disposal ............................................. 136 Sewer Disposal .............................................. 139 L a n d f i l l Disposal ........................................... 141

Hea l th and Safe ty In fo rmat ion ................................. 141 Used O i l .................................................... 141 Unused Waste O i l ............................................ 148

5 REGULATORY BACKGROUND ......................................... 152

Hazardous Waste C l a s s i f i c a t i o n ................................ 152

Burn ing Used O i l Fo r Energy Recovery .......................... 157

Federal Exc ise Tax ............................................ 1.1

Recyc l i ng Used O i l ............................................ 156

Storage and T ranspor ta t i on Cons idera t ions ..................... 159 L a n d f i l l i n g Cons idera t ions .................................... 160

6 ENERGY AND ECONOMIC CONSIDERATIONS ............................ 162

Energy Conservat ion and Petroleum Displacement ................ 162 Reprocessed Fuel ............................................ 164 Re-Refined Lube O i l ......................................... 164

Re-Refining ............................................... 166 Petroleum Displacement ...................................... 167

Used O i l Management System Economics .......................... 168 Cur ren t Economics of Reprocessed Fuel ....................... 168 Cur ren t Economics o f Re-Refined Lube O i l .................... 170 In f l uence o f Crude O i l P r i c e on Used O i l Economics .......... 170

Summary of Energy and Economic Cons idera t ions ................. 174

Energy Conservat ion Comparison o f Reprocessing Versus

v i i

Page 12: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

CONTENTS (CONT .

Page . 7 SUMMARY AND DISCUSSION ........................................ 174

Environmental Impacts ......................................... 181 Regu la to ry Impacts ............................................ 184

Waste O i l C h a r a c t e r i s t i c s ..................................... 176 Recyc l ing and Disposal ........................................ 180

Energy and Economic Cons idera t ions ............................ 186

8 REFERENCES .................................................... 188

APPENDIX ...................................................... 192

v i i i

Page 13: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLES

Page

Used Oil Generation by Oil Type. 1983 ......................... 6

Used Oil Reuse. 1983 .......................................... 14

Dust Suppressant ............................................ 16 Used Oil Disposal. 1983 ....................................... 18 Properties of Various Oils and Fuels .......................... 19

Oil. 1983 ................................................... 21 Projected Concentration of Lead i n Used Oil ...................

Potential Number of Used Oil Generators ....................... 7 Number of Used Oil Generators and Quant i t ies Generated Annually 9

F a c i l i t i e s Burning Used Oil. 1983 ............................. 15 Sumnary of S t a t e Regulation on the Use of Used Oil as a

Concentration of Potent ia l ly Hazardous Constituents i n Used

22 Polynuclear Aromatic Levels i n Used Oil and Virg in Fuel Oil ... 24 Summary of Some Frequently Detected Pr ior i ty Pol 1 u t an t s i n

Used Oil .................................................... 24 Comparison of Used Oil Chemical Composition by Two References.

PPM ......................................................... 26 Potent ia l ly Hazardous Constitutents Found i n Waste Oil ........ 27 Physical Properties of Used Oil ............................... 28 Flashpoint of Used Oil by Oil Source and End-Use .............. 29 Energy Content of Used Oil. Btu/lb ............................ 29 Used Oil Composition by Oil Source. PPM ....................... 31 Properties of Used Industrial Oils ............................ 32 Qual i ta t ive Characteristics of Used Industrial Oils by Usage .. 33 Used Oil Properties by Oil Type ............................... 34 Potential Impacts and Impact Reduction Alternatives of Using

Untreated Used Oil as a Fuel ................................ 35 Oils ....... 36

Benzo(a)Pyrene Concentration i n Used and Virg in Oils .......... 37 Average Composition of Refined Petroleum Products. % .......... 40 Character is t ics of Re-Refining Processes ...................... 48 Analyses of Clay and Sludge Streams from the Acid-Clay

Analyses of Water Streams from the Acid-Clay Process .......... 52 Analyses of Process Streams from an Aci d-C1 ay Re-Ref i nery ..... 54 Analyses of Process Streams from a Prop Re-Refinery ........... 57 Analyses of Process Streams from the Bar t lesv i l le Energy

Technology Center Re-Refining Process ....................... 65 Elemental Analyses of Process Streams from a Dis t i l l a t ion-

Organic Analyses of Process Streams from a Disti l lat ion-Clay F i l t r a t ion Re-Refinery. PPM.'.. . . . .......................... 73

Properties of Used Automotive Oils and Virgin Fuel

Re-refining Process ......................................... 51

Clay F i l t r a t ion Re-Refinery. PPM ............................ 72

7 8 9

10 11 12

13

14 15 16 17 18 19 20 21 22

23 24 25 26 27

28 29 30 31

32

33

i x

Page 14: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLES (CONT.

34

35 36

37

38 39 40 41

42

43

44

45

46

47

48

49

50

51

52

53 54

55

56

57 58

59 60

Page E f f e c t o f Reprocessing on Phys ica l P r o p e r t i e s o f Used O i l ,

Analyses o f Process Streams f rom a Dehydra t ion and L i g h t End

Comparison of Contaminant Concent ra t ions i n Unprocessed and

Summary o f EH&S Impacts o f Used O i l U t i l i z a t i o n and Disposal.. 85

Elemental Emissions Dur ing Used O i l Combustion i n Large

Measured Emissions and Cal c u l a t e d S e v e r i t y Fac to rs f o r

Concent ra t ions o f Meta ls i n F lue Gas o f Large Commercial

Elemental Composit ion f rom Used O i 1 Combusti on i n Large

P a r t i c u l a t e Emissions Dur ing Used O i l Combustion i n Large

S u l f u r Emissions Dur ing Used O i l Combustion i n Large

N i t rogen Emissions Dur ing Used O i l Combustion i n Large

D e s t r u c t i o n and Removal E f f i c i e n c i e s o f Organic Compounds

A i r Q u a l i t y Impact of Var ious P o l l u t a n t s Emi t ted f rom Large

Uncon t ro l l ed Emission Fac to rs f o r Used O i l Combustion i n

Lead Emissions f rom Used O i l Combustion i n Small B o i l e r s

Trace Element Emissiogs f rom Used O i l Combustion i n

Gaseous and P a r t i c u l a t e Emissions f rom Small Waste

Organic Analyses o f Gaseous Emissiogs from Used O i l

Measured Emissions and Ca lcu la ted S e v e r i t y Fac to rs f o r

Comparison o f P r e d i c t e d w i t h Ac tua l Emission Rates a t Booth

Composit ion o f Wastewater Generated Dur ing Waste O i l Storage

Volume, %......... .......................................... 77 Elemental Removal by C e n t r i f u g a t i o n ........................... 78

Removal Opera t ion ........................................... 80

Reprocessed Used Oi.1, PPM....... ............................ 81 Comparison of V i r g i n and Re-Refined Lube O i l P r o p e r t i e s ....... 83 Summary o f Used O i l Combustion Tests i n Large B o i l e r s ......... 86

Commercial B o i l e r s .......................................... 89

S p e c i f i c P o l l u t a n t s from Commercial Boilers......... ........ 90 Boilers.................................................... 92

Boilers................. .................................... 93

B o i l e r s ..................................................... 94

B o i l e r s ..................................................... 96

B o i l e r s ..................................................... 97

i n Commercial B o i l e r s , %.................................... 98 Steam B o i l e r s ...............................................lOO

Large B o i l e r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l O l

and Space Heaters ........................................... 102

P a r t i c u l a t e Loadings i n Used O i l Space Heaters, MG/M ......... 107 Space Heaters, ug/m .............................. 3.........104

O i l Heaters .................................................108

Combustion i n Space Heaters, ug/m .......................... 110

S p e c i f i c P o l l u t a n t s f rom Small B o i l e r Systems ............... 111 Trace Element Content o f V i r g i n and Used O i l Blends, ppm ...... 113

O i l Company, Inc . ' s Re-Refinery, MG/L.. .................... .115 Emission Sources a t Booth O i l Company, I n c . ' s Re-Refinery ..... 116

and Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $

X

Page 15: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLES (CONT . )

61

62 63 64

65

66 67

68 69

70

71

72

73 74 75

76 77 78

79 80

82 83

a4 85

Page Comparative Ana lys i s o f t h e Performance o f Booth O i l

P o s s i b l e Opt ions f o r Re-Refi nery Sol i d Byproducts ............. 123 Sol i d Waste Generat i on Rates f o r Typ ica l Re-Ref i n e r i es ........ 124 Composit ion o f S e t t l e d Sludges Generated Dur ing Waste O i l

Storage and Processing ...................................... 125 Elemental Composit ion o f D i s t i l l a t i o n Bottoms from

Re-Ref in ing F a c i l i t i e s ...................................... 127 Analyses o f A c i d Sludge ....................................... 128 Composit ion o f Spent Clay Generated Dur ing Used O i l

Re-Ref in ing ................................................. 130 Elemental T rans fe r f rom O i l e d Roadbed t o R a i n f a l l Runoff ...... 133 Organic Compound T rans fe r f rom O i l e d Roadbed t o R a i n f a l l

Runoff ...................................................... 134 S e n s i t i v i t y Analyses o f a Stream Adjacent t o an O i l e d Sand

Road ........................................................ 135 Evapora t ive Emissions o f Se lec ted Used O i l Contaminants

From Road O i l i n g ............................................ 137 Ambient A i r Concent ra t ion €jue t o Contaminated Dust f rom

Heav i l y Used Roads. pg/m ................................... 138 Composit ion o f Aqueous Phase o f Oi l -Water M ix tu res ............ 140 Toxic C o n s t i t u t e n t s Found i n Used O i l ......................... 142 Phys ica l C h a r a c t e r i s t i c s o f S p e c i f i c Contaminants Found i n

Used Oils ................................................... 149 Water So lub le Components o f Crude and Ref ined O i l s ............ 150 (Summary o f T o x i c o l o g i c a l E f f e c t s o f Ref ined O i l Products ...... 151 Chronol ogy o f Leg i sl a t i o n s and Regu la t ions C1 a s s i f y i ng Used

O i l as Hazardous Waste ...................................... 153 Used O i l Fuel S p e c i f i c a t i o n s .................................. 158 Pr imary Energy Demands o f Lube O i l R e f i n i n g Versus

Re-Refining. Btu/Gal ........................................ 165 Cur ren t Market Economics f o r Reprocessing Fuel From Used O i l .

J u l y 1986 ................................................... 169 Cur ren t Market Economics f o r Re-Ref in ing Used O i l . J u l y 1986 .. 171 I n f l u e n c e o f Crude O i l Market P r i c e on Used O i l Reprocessing

Economics ................................................... 172 Sumnary o f Used O i l P r o p e r t i e s ................................ 178 Summary o f Federal Regu la t ions A p p l i c a b l e t o Used O i l

I n d u s t r y .................................................... 185

Company. I nc . ' s Wastewater Treatment System ................. 120

x i

Page 16: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

FIGURES

Page

Simplified Used Oil Management System ........................ 4 Used 011 Flow I n t o the Management System. Million Gal ........ 10 Generators of Used Automotive Oils. Million Gal .............. 11 Generators of Used Industrial Oils. Million Gal .............. 12 Simplified Settling/Centrifuge System ........................ 43

Simpl i f i ed P h i 11 ips Re-Ref i ned O i 1 Process ................... 56 Simplified Kinetics Technology International Process ......... 59 Simplified Propane Ext rac t ion Process ........................ 61

Simplified Distillation-Clay F i l t r a t ion Process .............. 69 Simplified Recyclon Process .................................. 74

Simplified Centrifuge System ................................. 44 Simplified Two-Tank System ................................... 46 Simplified Acid-Clay Process ................................. 49

Simplified Bar t lesv i l le Energy Technology Center ( B E T C ) Process .................................................... 63

Simplified Resource Technology. Inc . Process ................. 67

Simplified Bar t lesv i l le Energy Technology Center ( B E T C ) Process-Hydrofinishing Option ........................... 76

Lead Emissions From Used Oil Combustion ...................... 88 Comparison of Total Mass of Elements i n the Fuel and Po t

Comparison of Elemental Emissions fo r the Air Atomizing

Compari son of Elemental Emissions for the Vapor; zi ng Pot

Schematic of Booth Oil Company. Inc . ' s Wastewater Treatment

Residue Generation and Management in an Acid-Clay

Residue Generation and Management in a Vacuum Disti 11 a t i o n

Simplified Resource-Through-End Use Schematic of Used Oil . Simplified Resource-Through-End Use Schematic of Used Oil .

Residue of a Vaporizing P o t Heater ......................... 105

Heater Burni ng Automotive and Truck Crankcase O i 1 s ......... 106

Heater Burning Truck or Automotive Crankcase Oils .......... 106

Re-Refinery ................................................ 121

Re-Refinery ................................................ 122

System ..................................................... 119

1983 -- Million Gal ........................................ 163

1983 -- Million Gal ........................................ 175

1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16

17 18

19

20

21

22

23

24

25

x i i

Page 17: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

SECTION 1 INTRODUCTION

PURPOSE AND OBJECTIVE

The purpose of t h i s study i s t o describe and assess the current status of the technological and environmental information associated with the waste o i l industry. The assessment encompasses a l l aspects of the industry including the o i l ' s generation, col lect ion, d i sposa l , and u t i l i za t ion . I t examines the sources, properties, and ava i l ab i l i t y of waste o i l as well as evaluates the current collection and u t i l i za t ion inf ras t ruc ture i n terms of energy and environmental considerations, economic v i ab i l i t y , and regulatory constraints . The problems associated w i t h waste oi l h a n d l i n g are a lso assessed along w i t h processing and end-user practices w i t h i n the industry. Finally, the topic of health and safety imp1 icat ions is a1 so reviewed.

T h i s assessment i s a broad overview of the many s tudies conducted on the subject over the past several years. I t addresses petroleum-derived o i l s only. Oils produced from animal or vegetable fa ts are n o t considered because they are generally n o t toxic t o humans or aquatic l i f e .

REPORT ORGANIZATION

The f i r s t few sections of t h i s report deal w i t h general background information on waste o i l . Section 2, fo r example, defines the terminology used w i t h i n this report as well as describes the sources of generation and properties of waste o i l . current uses of waste o i l . Section 3 discusses the technology of waste o i l u t i l i za t ion and disposal. The impacts of recovery and reprocessing techniques on waste o i l properties are a lso presented i n Section 3. describes the environmental, health, and safety impacts of the var ious waste oi 1 u t i 1 i za t i on and disposal options w h i 1 e regulatory aspects are summari zed i n Section 5. Section 6 w i t h the study conclusions discussed i n Section 7.

I t a lso contains information on the ava i l ab i l i t y and

Section 4

Finally, energy and economic considerations are presented i n

1

Page 18: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

SECTION 2

BACKGROUND

Th is s e c t i o n prov ides an overv iew o f e x i s t i n g waste o i l p r a c t i c e s i n the

Un i ted States. It con ta ins i n f o r m a t i o n on the te rmino logy and d e f i n i t i o n s used i n t h i s study. It a l s o d iscusses t h e va r ious sources o f waste o i l

genera t ion as w e l l as c u r r e n t hand1 ing , processing, and end-user p r a c t i c e s

w i t h i n the i ndus t r y . are descr ibed.

F i n a l l y , t h e composi t ions o f used and unused waste o i l s

DEF I N I T I O N

The f o l l o w i n g d e f i n i t i o n s a r e used throughout t h i s r e p o r t .

0 Unused ( v i r g i n ) o i l - - a r e f i n e d petroleum produc t c o n t a i n i n g s i g n i f i c a n t q u a n t i t i e s o f a1 k y l , naphthenic, and aromat ic hydrocarbons. The o i l may a l s o con ta in a d d i t i v e s t o improve i t s 1 u b r i c a t i o n , wear, o x i d a t i o n , and c o r r o s i o n c h a r a c t e r i s t i c s .

0 Unused waste o i l - -unused v i r g i n o i l t h a t becomes contaminated when i t i s s p i l l e d , o r i s mixed w i t h o t h e r wastes, o r when i t f a i l s t o meet s p e c i f i c a t i o n s .

0 Used (waste) o i l - - a petroleum- o r s y n t h e t i c a l l y - d e r i v e d o i l whose phys ica l and chemical p r o p e r t i e s have changed such t h a t i t cannot be used f o r i t s o r i g i n a l purpose. The contaminat ion can r e s u l t e i t h e r through use o r subsequent mismanagement and depending upon the i m p u r i t i e s , t he o i l may o r may n o t be econom- i c a l l y recyc lab le .

0 Waste o i l - - o i l which becomes contaminated du r ing storage, handl ing, and use. It i s made up o f bo th used and unused waste o i l s.

0 O i l rec lamat ion-- the a p p l i c a t i o n o f m i l d and/or severe c lean ing methods t o waste o i l t o remove contaminants. Some o f t h e c o m o n methods used i n c l u d e s e t t l i n g , heat ing , f i l t r a t i o n , dehydrat ion, d i s t i l l a t i o n , and c e n t r i f u g i n g . The produc t i s c a l l e d rec la imed o r recovered o i l .

It should be noted t h a t the term rec lamat ion, as used i n t h i s study, covers a l l forms and types o f process ing o r t reatment a c t i v i t i e s ( i n c l u d i n g r e - r e f i n i n g ) whereby usable m a t e r i a l s such as f u e l s are recovered from waste o i l .

0 O i l reprocess ing-- the process o f producing a f u e l o r f u e l supplement frm used o i l by the a p p l i c a t i o n o f m i l d c lean ing methods such as s e t t l ing , f i 1 t r a t i o n , c e n t r i fuga1 separat ion, and sometimes , hea ti ng.

2

Page 19: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

0 Oil re-refining--the process of cleaning and upgrading waste lubricating oi l t o produce a h i g h quali ty base o i l ; the base o i l i s then blended w i t h additives. The product of t h i s process i s called re-refined lubricat ing o i l .

USED O I L INDUSTRY CHARACTERISTICS

Figure 1 shows the management system fo r handling used o i l . T h i s system encompasses the flows of used o i l , ranging from generation, through col lect ion and processing, t o end use. generated by automotive and i n d u s t r i a l generators i s e i t h e r dumped o r used onsi te , or gathered by co l lec tors (independent or a f f i l i a t e d ) , who then ac t a s suppliers to reclaiming f a c i l i t i e s or fuel o i l dealers. Reclaimers include o i l reprocessors or re-refiners who upgrade and clean the used o i l fo r l a t e r use by end users. These users may e i t h e r burn the o i l o r use i t as a d u s t suppressant. They may also use re-refined oi l as a lubricant . These elements of the used o i l management system as well as other generators/users of used o i l are b r i e f ly discussed below.

obtained from a recently completed study (1). This study characterized the used oil industry on the basis of extensive l i t e r a t u r e and d a t a searches, telephone conversations, and s i t e v i sits. Because of the unstructured nature of the industry and the lack of any governmental regulation requiring dissemination of used o i l collection and reuse pract ices , most of the data on used oi l col lect ion, reprocessing, and reuse i s n o t documented. Consequently, the Frank1 i n Associates' study re1 ied extensively on "best estimates" provided by telephone conversations and s i t e visits.

used oil management system was based on the flow of new o i l t h r o u g h the system. I t began with 1983 sa les and followed these o i l s through the system u n t i l they were ultimately reused, consumed, or disposed of i n some manner, including uncontrolled dumping. transformer o i l s containing polychlorinated biphenyls, or those comprising p a r t of a d i f fe ren t system, such as refinery t a n k bottoms and industr ia l process residues, were omitted from the analysis. used to summarize waste oi l composition was based upon the development of a s e r i e s of f a i r l y simple s t a t i s t i c a l parameters t h a t characterized over one

In general, the figure shows t h a t used oi l

Much of the information on used oil generation and composition was

F r a n k l i n Associates' approach to quantifying the flow of o i l through the

Oils t h a t are no longer sold, such as

In comparison, the approach

3

Page 20: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

3

Figure 1. Simplified U;ed Oil Management System

REPROCESSORS E N 0 USERS AND RE-REFINERS OR DISPOSAL

Page 21: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

thousand used o i l samples w i t h respec t t o the presence and c o n c e n t r a t i o n o f 19 p o t e n t i a1 l y hazardous c o n s t i t u e n t s .

A1 though t h i s r e p o r t re1 i e s p r i n c i p a l l y on i n f o r m a t i o n prov ided by t h e

above study, i t a1 so presents da ta on used o i l compos i t ion from a number o f

d i f f e r e n t re fe rences and sources. The o b j e c t i v e here i s t o show t h e wide

var iances and c o n f l i c t s i n t h e l i t e r a t u r e . These c o n f l i c t s and t h e reasons

f o r the d isc repanc ies a r e e labo ra ted t o the e x t e n t poss ib le .

USED O I L GENERATION

I n general , t h e a v a i l a b i l i t y o f used o i l r e l a t e s d i r e c t l y t o the demand and sa les o f v i r g i n o i l . The h ighe r t h e demand, t h e l a r g e r w i l l be t h e

q u a n t i t y o f used o i l generated, and v i c e versa.

was generated i n the Un i ted S ta tes i n 1983. O f t h i s amount, 699.0 m i l l i o n ga l [ o r 58.0 percent ( % ) I c o n s i s t s o f automot ive o i l s generated by b o t h t h e

automot ive and i n d u s t r i a l sec to rs w h i l e the remainder i s made up o f i n d u s t r i a l

o i l s generated by t h e i n d u s t r i a l ' s e c t o r alone. The t a b l e a l so shows t h a t t h e

genera t i on r a t e f o r used automot ive o i l s i s about 55.9% compared t o 47.8% f o r

i n d u s t r i a l o i l s . Th i s l ow r a t e f o r i n d u s t r i a l o i l s i s p r i m a r i l y due t o t h e

r e l a t i v e l y small (used o i l 1 genera t i on r a t e s f o r some l a r g e i n d u s t r i a l opera-

t i o n s such as metal p r o t e c t i n g , i n d u s t r i a l engine o i l s , and process o i l s .

C o l l e c t i v e l y , these l a t t e r t h r e e markets rep resen t m a j o r (about 42.8%) end-use

customers o f i n d u s t r i a l o i l s .

As shown i n Table 1, approx imate ly 1.2 b i l l i o n g a l l o n s ( g a l ) o f used o i l

Table 1 a1 so shows used o i l genera t i on r a t e s b y genera to r o r type o f

appl i c a t i o n . I n general , these da ta i n d i c a t e t h a t t h e do- i t - you rse l f o i l

changer (DIYer) i s t he l a r g e s t source o f used o i l genera t ion , account ing f o r

almost 19.8% o f t h e t o t a l used o i l generated. I n d u s t r i a l h y d r a u l i c o i l s come

n e x t w i t h 16.6% fo l l owed by commercial v e h i c l e s w i t h about 15.5% o f t h e t o t a l

generated i n 1983.

51.9% o f t h e used o i l generated i n the Un i ted Sta tes .

Together, these t h r e e genera tors account f o r approx imate ly

With respec t t o t h e types and number o f es tab l i shments genera t i ng used o i l , Table 2 shows t h a t t h e r e a re approx imate ly 450,000 automot ive and indus-

t r i a l f a c i l i t i e s genera t i ng used o i l s i n t h e U n i t e d States.

genera tors i n c l ude s e r v i c e s t a t i o n s ; r e p a i r shops; automot ive s e r v i c e c e n t e r s

assoc ia ted w i t h cha in stores; c a r deal e r s h i ps; s t a t e o r 1 oca1 government

Automot ive

5

Page 22: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 1. USED O I L GENERATION BY OIL TYPE, 1983

O i l Type

used Oil used O i l New Oil Sales Generatign Generation

Mil 1 Ion Gal Factor Mil 1 ion Gal

Automoti ve O i 1 s On-Road Engine Oils

Personal vehi cl es DI Yers Non-OIYers

Comnercial vehicles Cars 6 l i g h t trucks Trucks 6 buses

Sub to tal --on- road Off-Road Engine Oils

Farm Construction Mining Government Aviation Subtotal--off- road

On- road vehicles Off-road vehicles Subto tal -- hydraul ic s Greasedother Non-generated o i l s

Hydraulic Fluids

356.9 84.7

158.9 139.7 m 74.1 68.8 45.5 11.7 12.7 m 79.0

111.4 m 108.8 -

Total--automotive o i l s

Industrial Oils General Industrial 01 1 s

Hydraulic Gear Other specified

Turbine circ . Ref rigera tion Way Compressor Rock d r i l l a i r tools

Other Subtotal--general industrial

Rai 1 mad diesel Marine Natural gas Sub to ta l -- i ndu str i a1 engines

Metal working Oi 1 s Metal removing Metal forming Metal treating Metal protecting Subtotal --metal working

Process Oils Electrical White Rubber Other Subtotal --process

Industrial Engine Oils

Industrial grease

Total -- i n d us t ri a1 1 ub ri c an ts

Grand Total

1,251.0

264 33

78 6 5 4 3

28 '421-

57 49 38 m 85 47 19 12

T63

76 56 64

102 7%

35

1,061

2,312

0.67 0.67

0.66 0.59

0.59 0.59 0.59 0.63 0.47

0.10 0.75

0.00

0.559

0.76 0.59

0.59 0.32 0.60 0.60 0.60 0.73

0.20 0.50 0.20

1.00 0.60 0.60 0.10

0.27 0.10 0.10 0.10

0.00

0.478

--

239.2 56.7

104.7 82.4 m 43.7 40.6 26.8 7.4 6.0 m 7.9

83.6 x - 5

0.0

699.0

200.0 19.6

45.9 1.9 3.0 2.4 1.8

20.5 75-r

11.4 24.5 7.6 v3;5

85.0 28.1 11.4

1.2 m 20.5

5.6 6.4

10.2 T2.7

0.0

507.1

1,206.1

'Generation factor equals the fraction available for collectton in the used oil management system; i t does n o t include o i l which ends up i n wastewater treatment sludges generated onsi te a t industrial establishments.

Source: Franklin Associates Ltd. (1)

6

Page 23: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 2. POTENTIAL NUMBER OF USED OIL GENERATORS

Genera t o r

Number of Establishments

or S i t e s

Automotive Recycl i ng centers Service s ta t ions Repair shops Automobile dealers Automotive centers Fleet shops Airports

Subtotal --automotive

I nd ust r i a1 SIC 24--wood products SIC 25--furniture & f ix tures SIC 26--pulp & paper S IC 27-- news pa pers SIC 28--chemical s SIC 30--rubbw & p las t i c SIC 31--leather S I t 32--g1 ass SIC 33--primary metal s SIC 34--fabricated metals SIC 35--machinery SIC 36--el ect ronics SIC 37--motor vehicles SIC 38--instruments SIC 39--miscell aneous manufacturers SIC 49--el ec t r i c uti1 i t ies

Sub to t a l --maj o r i nd us t ri a1 categories

Marine Terminals M i 1 i t a ry Commerci a1

Rail road Yards

Subtotal-i ndustrial

Grand Total

8 , 690 93 , 400 53 , 100 26 , 000

2,100 44,300

5 , 000

232,590

34 , 483 9,608

620 10,220 4,059

11,800 3 76 465

7 , 653 33,776 54,018 17,114 9,086 7 , 133

15 , 766 1,068

21 7,245

153 500 43 0

~~~

218,328

450,918

Source: Frank1 i n Associates Ltd. (1)

7

Page 24: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

collection centers; and truck stops, garages, and f l e e t repair shops t h a t service diesel fuel vehicles. With the exception o f the DIYers, used automotive o i l s a re usually generated central ly whi 1 e industrial oil s' sources are more dispersed. The l a t e r i s generated from industr ia l machinery, and processes in industries tha t range from automobile manufacturers t o chemical producers (1).

of used o i l generated i s shown i n Table 3. This table i l l u s t r a t e s t h a t most of the used o i l (514 million gal/year or 54.5% of the total generated) i s generated by large [greater than 1,000 kilograms (kg)/month or about 300 gal / m o n t h ] generators of used o i l . only 7.4% (48,000 o u t of 653,000 establishments) of the total number of establishments generating used o i l . The table also shows t h a t the majority of the generators are small businesses who do not generate large amounts of used o i l (46.7 million gal lyear) . differences between the used o i l generators estimates of Tables 2 and'3.

shows t h a t only 669.1 (317.4 + 351.7) million gal or about 55.5% of the 1 . 2 b i l l ion gal of used o i l generated i n 1983 was gathered by co l lec tors and reclaimers. This represents only 28.9% of the 1983 new oi l sales (669.1 mill ion o u t of 2.3 b i l l ion gal 1. The rest i s e i the r disposed of o r used by the generators themselves. For example, DIYers consumed and/or discarded approximately 166.8 mill ion gal of generated oil whereas other automotive and industrial generators eliminated an additional 370.2 (208.1 + 162.1) mill ion gal. As will be discussed l a t e r , generators typ ica l ly use the waste o i l as a fuel supplement or as a d u s t suppressant.

I t should be noted tha t not a l l the used oil generated i s accumulated fo r collection. For example', small generators of used o i l , such as DIYers and agricultural machinery operators, often dump or dispose of t h e i r used o i l s rather than accumulate them. These o i l s are, therefore, n o t available for reuse. and Figure 2. I t i s also the primary reason for the relat ively low collection rate (317.4 out of 699.0 million gal o r 45.4%) o f automotive o i l s compared to industrial o i l ' s 69.4% (351.7 o u t of 507.1 million ga l ) . In other words, more used oil i s collected from industrial generators t h a n automotive generators. These two types of generators are br ie f ly discussed below.

Another estimate of the number of used oil generators and the quant i t ies

However, these large generators represent

No explanations a re available t o elucidate the

Figure 2 shows the flow of o i l within the used o i l management system. I t

This explains the difference between the DIYers estimates of Table 1

8

Page 25: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 3. NUMBER OF USED OIL GENERATORS AND QUANTITIES GENERATED ANNUALLY

Genera t o r S i ze Category kg/mon t h

To ta l <loo 100-1,000 >1,000

Generators, number o f es tab l i shments

I n d us t r i a1 358,000 258,000 76,000 24,000 Non- i n d u s t r i a1 295,000 121,000 150,000 24,000

To ta l 653,000 379,000 226,000 48,000

Quan t i t i g s generated, m i l 1 i o n ga l / yea r b

I n d u s t r i a l 456 22.5 84 3 50 164

To ta l 944 46.7 3 84 51 4 - 3 00 - 488 24.2 Non- indus t r i a l c y d -

aDoes n o t i n c l u d e the 167 m i l l i o n ga l o f used o i l t h a t a re disposed o f

b Inc ludes meta lwork ing shops, s t e e l m i l l s , and va r ious o t h e r i n d u s t r i a l

' Inc l udes automot ive s e r v i c e es tab l ishments. d A d d i t i o n a l l y , an es t imated 2.4 m i l l i o n farms generate some 44 m i l l i o n

each year by DIYers, i.e., homeowners.

f a c i l i t i e s .

ga l o f n o n - i n d u s t r i a l (automot ive) o i l each year. These es tab l i shments would f a l l i n t h e "<loo" category.

Source: U.S. Environmental P r o t e c t i o n Agency (2)

Used Automotive O i l Generators

F i g u r e 3 shows the f l o w system o f used automot ive o i l s by p o i n t and non-

p o i n t genera tor sources.

ope ra to rs i n the farming, c o n s t r u c t i o n , min ing , and f o r e s t r y i n d u s t r i e s . As

F igu re 3 i n d i c a t e s , o n l y a small amount o f t he used o i l c o l l e c t e d from non-

p o i n t sources i s recovered; t he r e s t i s e i t h e r dumped o r disposed o f by m ix ing w i t h o t h e r wastes.

The non-point sources are p r i m a r i l y DIYers and

9

Page 26: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

I

9 .- 0 n

v) L a, ).

0 H

-0 a, L a, >

sc, 0 0 -7 E - 0 - Q .r 3 E r d

Page 27: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

Non-poi n t Sources

INDUSTRY AU TO Y 0 TlVE FLEET OILS c P o i n t

Sources

DUYPING 1 1 8.0

106.8

F U E L U S E 55.2

ROAD OILING 25.1

OUYPINO 123 .2

DISPOSAL 4.6

> > > >

DIYer I 193.9 I 3 1 7.:4

, 6.7 71 AUTOUOTIVE -, GENERATORS

532.2

F i g u r e 3. Source: Frank1 i n Associates Ltd. (1 )

Generators o f Used Automot ive O i l s, M i l 1 i o n Gal

Among the p o i n t sources, (e.g., s e r v i c e s t a t i o n s and r e p a i r shops),

approx imate ly 214.8 m i l l i o n ga l i s i n v o l v e d w i t h o n s i t e use w h i l e t h e

remainder (317.4 m i l l i o n g a l ) i s c o l l e c t e d by t h e used o i l management system.

The p r i n c i p a l o n s i t e uses o f used o i l are: d i r e c t bu rn ing i n space heaters,

m a d o i l i n g f o r dust c o n t r o l , and as a f u e l supplement f o r onsi t e b o i l e r s (1) .

Used I n d u s t r i a l O i l Generators

The m a j o r i t y o f t h e used i n d u s t r i a l o i l s a r e c o l l e c t e d as p a r t o f t h e

used o i l management system (1). o f 513.8 m i l l i o n g a l ) o f t h e o i l generated i s c o l l e c t e d , 8.6% i s rec la imed f o r i n t e r n a l reuse, 7.2% i s used as a f u e l supplement, 2.4% i s i nc ine ra ted , 0.7% i s used to suppress o i l dust , w h i l e the r e s t (12.6%) i s d i s c a r d e d

these o i l s may r e q u i r e p re t rea tment to improve q u a l i t y p r i o r t o o n s i t e reuse.

As shown i n F i g u r e 4, about 68.5%. (351.7 o u t

Some of

11

Page 28: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

INDUSTRY A U T O M O T I V E FLEET O I L S

6.7

‘I

> INDUSTRIAL

GENERATORS

5 13.8

3 351.7 -

F i gu re 4. Generators o f Used I n d u s t r i a l O i l s , M i l l i o n Gal

Source: Frank1 i n Associates Ltd. (1)

USED OIL COLLECTION

As the t i t l e imp l i es , used o i l c o l l e c t o r s a r e independent i n d i v i d u a l s / o rgan iza t i ons t h a t c o l l e c t used o i l and s e l l i t d i r e c t l y t o end users o r t o

rec la imers . They may s t o r e the o i l but , i n genera l , t h e y do n o t process i t

(1). and another 19.1% sent t o r e - r e f i n e r s . The r e s t (38.2%) i s s o l d d i r e c t l y t o

end users (see F igu re 2).

Approximately 42.7% o f t h e i r c o l l e c t e d o i l i s d e l i v e r e d t o reprocessors

USED OIL RECLAMATION

As discussed p rev ious l y , t h e r e are b a s i c a l l y two types o f rec la im ing f a c i l i t i e s : reprocessors and r e - r e f i n e r s . Reprocessors use m i l d process ing

techniques t o produce p a r t i a l l y c leaned f u e l o i l . The t rea tment ranges from

water and bottom sediment removal by s e t t l i n g t o the use o f chemicals.

Sometimes, hea t ing i s i n v o l v e d t o decrease v i s c o s i t y and t o improve g r a v i t y

12

Page 29: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

se t t l i ng . Dis t i l l a t ion may also be employed to evaporate l i gh t fuel frac- t ions . In general, however, the type of treatment employed by reprocessors does n o t remove a l l the contaminants found i n used o i l .

In comparison, the principal product of a re-ref iner i s clean o i l which i s used primarily a s a lubricating oi l base. Several processes are available t o produce clean fuel. These include:

0

0 Acid clay; 0 Vacuum d i s t i l l a t i on /c l ay polishing; and 0 Chemical cl ean i ng/demetal 1 i zation/cl ay pol i shi ng .

Sol vent treatmen t / d i s t i 1 1 a t i on/ hydro treatment ;

All of the above processes produce essent ia l ly the same product (base lubri- cating o i l ) b u t they do generate differ ing byproducts and residues. other aspects of the used oi l reprocessing and re-refining technologies a re described l a t e r i n Sections 3 and 4.

These and

USED OIL REUSE

As shown i n Table 4, approximately 669.1 mill i o n gal of used o i l , or about 55.5% of the to ta l generated, i s sold by co l lec tors , reclaimers, and fuel oil dealers. Most of this o i l , about 489.8 million gal o r 73.2%, i s sold for fuel use. Approximately 9.4% o f the system o i l i s re-refined in to lubr icants , 5.9% i s sold f o r mad o i l i n g , and 5.2% goes t o non-fuel industr ia l uses. Very l i t t l e used o i l , 42.8 million gal o r 6.3%, flowing through the management system i s discarded; usually the disposal of used oi l occurs before the o i l i s collected.

Of the total used oi l generated i n the United S ta tes , approximately 33.7% (405.9 out of 1,206.1 million ga l ) i s l o s t through disposal including widespread dumping. O f the amount dumped, about 50% i s by DIYers o r f l e e t operators who change their own o i l and the other half i s by large off-road vehicles i n farming, min ing , and construction operations (1).

The major end-use markets of used o i l are br ie f ly discussed below.

Burning

B u r n i n g i s the single la rges t end-use category of used oi l u t i l i za t ion . I t accounted for almost 590.1 mill ion ga l , o r about 48.9% o f the t o t a l used

13

Page 30: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 4. USED O I L REUSE, 1983a

Used Oil Used Oil F1 owing Th rough Not Entering Total

Man ag em en t Man ag em egt Generated System System Used Oil

End-use/Di spo sal Million Gal % Million Gal % Million Gal %

Re-refined lube o i l 62.7 9.4 -- -- 62.7 5.2

On si t e recycl i ng 44. Od 8.2 44.0 3.6

Non-fuel industrial ' 34.9 5.2 0.0 0.0 34.9 2.9

B u r n i n g 489.8 73.2 100. 3e 18.7 590.1 48.9

Road oi l i n g 39.6 5.9 28.9 5.4 68.5 5.7

405.9 33.7 D i sposal /Dump4 ng

Grand Total 669.1 100.0 537.0 100.0 1,206.1 100.0 -- 42.1 6.3 363.8 67.7 --

aAll volumes represent o i l with consumed additives.

bIncludes used oi l which i s managed en t i re ly by the generator e i the r t h r o u g h

'Includes f lo ta t ion o i l s in phosphate industry and asphalt extenders. dReuse of 1 ubricants by industry may use sophisticated re-refining

eOf this amount, 8 million gal were burned by DIYers in var ious ways, b u t

Solid and l iquid contaminants (including water) are not incl uded i n q u a n t i t i e s .

reuse o r disposal.

technol ogies o r simpler processor technol ogies.

primarily bl ended with home heating oi 1 .

Source: Frank1 in Associates Ltd . (1)

o i l generated in 1983. management system while the remainder was burned a t the generation s i t e .

As shown i n Table 5, used o i l i s burned i n a var ie ty of applications including cement ki lns , diesel engines, and space heaters as well as i n large commercial boi lers . Any boi le r designed t o burn No. 6 fuel oil and most No. 4 and No. 5 fuel-oi l - f i red boi lers can be used to burn s t r a i g h t or neat used o i l (1) . Some modifications, however, may be necessary t o b u r n used oil i n

Of th i s amount, 83% passed through the used oil

14

Page 31: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 5. FACILITIES BURNING USED OIL, 1983

Faci 1 i ty

~ ~~~ ~ ~~

Volume of Used Oil Burned

a, Million Gal Q

Industrial /Non-industrial boi 1 ers 462.0 78.3

Cement k i 1 ns

Diesel engines

5.0

15.0

0.8

2.6

Space heaters 34.2 5.8

Processor onsite boilers

Total

73.9 12.5

590.1 100.0

Source: Franklin Associates L t d . (1)

systems designed for l i gh te r fuels . Alternatively, the used o i l could be blended w i t h v i r g i n fuel o i l s prior t o b u r n i n g .

Space heaters are small heaters used primarily by automobile service stations. dealerships, f l e e t operators, automotive repair shops, and farm operators.

Other users of space heaters include automobile and truck

Road Oiling

As shown previously i n Table 4, road o i l ing accounted for 68.5 million gal or about 5.7% of the total used o i l generated in the United States in 1983. Another source, w h i c h conducted a s ta te- to-s ta te survey t o determine the extent of road o i l ing i n this country, estimated tha t between 30 and 50 million gal of used oi l /year i s used i n commercial road o i l ing a c t i v i t i e s ; and, i f road o i l i n g by self-generators such as farmers and mining and construction companies i s included, the total used o i l f ract ion for road o i l i n g would be 50 t o 80 million gal (3 ) .

Road o i l i n g i s most common i n the northern Rocky Mountain s t a t e s , the Southeast and extreme Southwest, the Western s ta tes , and i n O h i o , Iowa,

15

Page 32: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

Kentucky, and West Vi rg in i a . nor thern New England ( 1 , 4 ) . r u r a l a r e a s and on privately-owned roads a t o r near the source of used o i l gene ra t i on ( 5) .

Some s t a t e s have begun t o recognize t h a t c e r t a i n risks a r e inherent i n using used o i l f o r road o i l i n g and have taken r egu la to ry a c t i o n s t o l imit i t s use. As shown i n Table 6, 21 s t a t e s now formal ly r e g u l a t e the use of used o i l on roads. Of these, 8 s t a t e s a r e known t o t o t a l l y p r o h i b i t the use of used o i l a s a d u s t suppressant . In a d d i t i o n , the use of used o i l contaminated w i t h hazardous waste a s a d u s t suppressant is a l r eady p r o h i b i t e d by the Resource Conservation Recovery Act ( R C R A ) . However, even though road o i 1 i ng i s 1 @gal l y p roh ib i t ed i n some s t a t e s , p r i v a t e gene ra to r o i l i n g i s known t o t ake p l ace ( 4 ) . Recently, EPA has proposed t o t o t a l l y p r o h i b i t road o i l i n g , w i t h no except ions provided t o small q u a n t i t y gene ra to r s (2 ) .

Moderate amounts of road o i l i n g a l s o occurs i n In gene ra l , road o i l i n g is more p r e v a l e n t i n

TABLE 6. SUMMARY OF STATE REGULATION ON THE !SE OF USED OIL AS A DUST SUPPRESSANT

S t a t e s P r o h i b i t i n g Use S t a t e s Limi t ing Use

Del aware Kansas Massachusetts Minnesota Missouri New J e r s e y New York Rhode I s l and

A1 aska Cal i f o r n i a I1 1 i no i s Indiana Maine Michigan Montana North Carol ina North Dakota Oklahoma Pennsylvania Utah Vermont

aAs of February 1984.

Source: Temple, Barker ti Sloane, Inc. ( 4 )

16

Page 33: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

Re-Refined Lube Oil

In 1983, approximately 62.7 million gal of re-refined o i l was produced i n the United States. In the p a s t , acid-clay was the most widely used process t o re-ref ine used o i l ; however, the h i g h cost of m i t i g a t i n g the environmental concerns associated w i t h this process has forced the used o i l re-refining industry t o adopt a1 te rna t i ve, re1 a t i vely clean techno1 ogies such as vacuum d i s t i l l a t i o n and solvent treatment. These and other aspects of the re-refin- i n g industry including product quali ty standards and environmental character- i s t i c s are the subject of Sections 3 and 4.

Mi scel 1 aneous End-Use Markets

The non-fuel i n d u s t r i a l market for used o i l i s re la t ive ly small. I n 1983, i t accounted for only 2.9% of the t o t a l used o i l generated i n the United States . The principal markets among t h i s category include the phosphate, asphalt , and concrete industr ies . For example, the phosphate industry uses used o i l as a f lo ta t ion o i l i n t h e i r process. T h i s i s a f a i r l y s ign i f icant market i n some Southern s t a t e s , especially Florida. Asphalt p l a n t s sometimes blend used o i l into the i r product as an extender, as well as burn used o i l as a major fuel source. A t h i r d market fo r used o i l i s , as forms o i l , i n concrete construction. T h i s i s a re la t ive ly small market primarily due to the inconvenience of obtaining and spraying forms w i t h used o i l , the small quant i t ies used a t a construction s i t e , and the ava i l ab i l i t y of other o i l s , such as diesel fuel , on the s i t e (1).

practices have been ident i f ied. lubricants , pesticide ca r r i e r s , weed k i l l e r s , c a t t l e o i l e r s ; and even as an a1 1 -purpose cleaner i n general.

In a d d i t i o n t o these major markets, other non-commercial recycling These include us ing used o i l as machinery

These markets are re1 a t i vely very small.

Disposal

I t i s estimated t h a t approx used oi l generated i n the United

mately 33.7% (405.9 States was disposed

mill ion gal 1 of the t o t a of i n 1983. Of this

amount, 40.6% or 164.7 m i l l i o n gal was e i the r landfi the r e s t was dumped (see Table 7 ) .

led or incinerated, wh l e

17

Page 34: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 7. USED OIL DISPOSAL, 1983

T o t a l Used O i l F lowing Used O i l Not Flowing Generated

Through Management Through Management System System

D i sposal M i l l i o n Gal Y i l l i o n Gal M i l l i o n Gal %

Land f i 11 / I n c i n e r a t i o n 42.1

0.0 - Dumping

T o t a l 42.1

122.6 164.7 40.6

241.2 241.2 59.4

363.8 405.9 100.0

Source: Frank1 i n Associates Ltd. (1)

I n genera l , c o l l e c t o r s , r e c l aimers, and r e - r e f i n e r s do n o t dump any o i l

due t o va r ious fede ra l and s t a t e regu la t i ons . However, t hey do dispose o f t h e used o i l p resent i n such res idues as tank bottoms, spent c l a y , and o t h e r

so l i d s / s l udges. C o l l e c t i v e l y , these m a t e r i a l s accounted f o r about 42.1 m i l l i o n gal o r 6.3% o f t he used o i l f l o w i n g th rough t h e management system i n

1983. The m a j o r i t y o f these wastes are l a n d f i l l e d , w i t h a small amount

i n c i n e r a t e d ( 1 1.

USED OIL PROPERTIES

As shown i n Table 8, t h e compos i t ion o f used o i l v a r i e s cons ide rab ly f rom

t h a t o f v i r g i n l u b e o i l and o t h e r v i r g i n fue l s .

observed w i t h respec t t o ash, bottom sediment and water, and carbon conten ts ,

v i s c o s i t y l e v e l s , as w e l l as l ead and o t h e r meta l concent ra t ions . These

d i f f e r e n c e s r e l a t e p r i m a r i l y t o the source o f t h e used o i l . Fo r example, used

o i l generated from automot ive opera t i ons w i l l c o n t a i n s i g n i f i c a n t l y h i g h e r

concen t ra t i ons o f l e a d than used i n d u s t r i a l o i l s. These and o t h e r d i f f e r e n c e s and comparisons are descr ibed l a t e r i n t h i s subsect ion.

In general , p e t r o l eum- o r s y n t h e t i c a l l y - d e r i v e d o i l s become contaminated du r ing s e r v i c e o r use as w e l l as th rough mismanagement. The p r i n c i p a l source

S i g n i f i c a n t d i f f e r e n c e s are

18

Page 35: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 8. PROPERTIES OF VARIOUS OILS A N D FUELS

Fuel

P ro pe r tya Used Virgin No. 2 No. 6 Bituminous

O i 1 Lube Fuel Fuel Coal ~~~~ ~~~ ~~~ ~

Physical P rope r t i e s Spec i f i c g r a v i t y 0.910 0.882 0.836 0.979 -- -- -- Viscos i ty , SUS 8 100°F 324 -- 36

Carbon r e s idue , w t . % 3.0 0.82 Bot. sed. & water,vol % 12.3 0 0 1.0 --

-- -- -- Ash , w t . % Flash po in t , O F Pour po in t , OF

Chemical P ro p e r t i e s Saponi f i ca t i on No. Total acid No. Total base No. Nitrogen, w t . % S u l f u r , w t . % Lead, ppm Calcium, ppm Zo'nc, ppm Phosphorus, ppm Magne si u m , ppm Barium, ppm Iron, PPm Sodium, ppm Potassium, ppm Copper, PPm S i l i c o n , ppm Chromium, ppm T i n , ppm Manganese, ppm Mol y bden um , ppm Ti t a n i um, ppm Vanadi um, ppm

1.3 0.94 348 -- -3 5 -3 5

12.7 3.94 4.4 2.2 1.7 4.7 0.08 0.05 0.42 0.32

7,535 0 1,468 1,210 1,097 1,664

931 1,397 309 6 75 297 37 205 3 118 4

31 <1 29 0 24 4 15 0 13 0 4 0 -- --

-- -- -- --

0.002 0.25 10.5 165 210 -- -20 40 --

-- -- -- 0.30 2.15 3.00 0 2.9 71

-- 48 15,536 -- -- 123 -- 32

-- 14 2,723 -- 258 120 14,466

-- 241 469

-- -- --

-- 64

24,160 24

276 101

16 1,889

30

aAverage p rope r t i e s .

Source: Emmerson, H. R. ( 6 )

19

Page 36: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

of contamination during o i l usage i s the chemical breakdown of additives and the subsequent interaction among the resul tant components t o produce corrosive acids and other undesired substances (1). Other sources of contamination d u r i n g service include d i r t , d u s t , and rust.

The mismanagement of used o i l i s a lso a major source of contamination. This s i tuat ion occurs not only d u r i n g used o i l generation b u t a lso d u r i n g i t s col lect ion, transportation, and processing. contamination include the mix ing or dumping of materials, such as rags, t rash, solvents, and water, i n t o used o i l and the use of improperly cleaned trucks t o transport used o i l .

contaminants and other hazardous properties are described i n detail below.

Examples of this source of

The chemical and physical properties of used o i l as they re la te t o

Chemical ProDerties

Table 9 summarizes the composition of hazardous materials i n used o i l us ing the following breakdown: percentile concentrations, and range. distorted by few very h i g h concentrations. a be t te r indicator of typical concentrations (1). The 90th percentile concentration i s also provided i n Table 9 i n order t o show where the majority of the concentrations l i e .

mean, median (50th percent i le ) , 75th and 90th The data show tha t the mean can be

In such cases, the median would be

Concentration of Metals

Among the six metal s shown i n Table 9 , lead i s present concentration ranges than other metals. I t ranges between 0 per mi l l i on (ppm) w i t h an average concentration of 664.5 ppm percenti 1 e concentration of 1,200 ppm. This extremely h i gh

n much wider and 21,700 par ts and a 90th ead content i s

a t t r ibuted chiefly t o p i s t o n blowby i n engines u s i n g leaded gasoline. amount of lead may also be due t o antiwear or extreme pressure additives.

t ively lower because of EPA' s gasoline lead phase-down standards promulgated on March 7 , 1985 ( 7 ) . These standards require tha t lead be reduced from the previous l imit of 1.1 grams (g)/gal t o 0.5 g/gal by July 1985, and t o 0.1 g/gal by January 1986.

Small

In the future , the level of lead i n used o i l i s projected t o be rela-

This reduction of lead i n gasoline shou ld result i n a

20

Page 37: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

Samples Wi th Concent ra t ion

Contaminants Concent ra t ion Concentrat ion PPm Detected Range

To ta l Mean Median a t 75th a t 90th Samples Concent ra t iona Concent ra t ion Percent i l e b ’ Percent i 1 eb,c

Analyzed Number % PPm PPm PPm PPm Low High Contaminant

Metals Arsenic Barium Cadmium Chromium Lead Z inc

D ich lo rod i f luoromethane Trichlorotrifluoroethane l , l , l -T r i ch lo roe thane T r i ch lo roe thy lene Tet rach lo roe thy lene To ta l Ch lo r ine

N --I

Ch lo r ina ted So lvents

53 7 7 52 744 756 83 5 810

135 675 27 1 592 760 799

25 89 36 78 9 1 98

17.26 131.92

3.11 27.97

664.50 580.28

5 48

3 6.5

240 480

5 120

8 12

740 872

18 251

10 35

1,200 1 , 130

<0.01 100 0 3 , 906 0 57 0 690 0 21 , 700

<0.5 8,610

87 28

616 608 599 5 90

51 17

388 259 352 568

58 60 62 42 58 96

373.27 62,935.88

2,800.41 1,387.63 1,420.89 4,995.03

20 160 200 100 106

1,600

160 1 , 300 1,300

200 600

4 , 000

640 100,000

3 , 500 80 0

1 , 600 9 , 500

<1 2,200

<1 110 , 000 <20 550,000

(1 40 , 000 <1 32,000 40 86,700

Other Organics Benzene To1 uene Xylenes Benz(a )anthracene Benzo(a Ipyrene Naphthalene PCB e-

300 4 , 500 3,200

40 16

800 50

(1 55,000 <1 55,000 <1 139 , 000 <5 660 (1 405

110 1,400 0 3,800

236 242 235

27 65 25

753

118 198 194 20 38 25

142

50 81 82 74 58

100 18

961.20 2,200.48 3,385.54

71.30 24.55

475.20 108.51

20 3 80 550

12 10

3 30 5

110 1,400 1 , 400

30 12

560 15

:Results determined from the analyses o f 1,071 used o i l samples.

‘For the purposes of determin ing mean and p e r c e n t i l e concentrat ions, undetected l e v e l s were assumed t o be equal t o the de tec t i on l i m i t .

Source: F r a n k l i n Associates Ltd. (1 )

Ca lcu la ted f o r de tec ted concent ra t ions only.

Page 38: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

concomitant reduction i n the lead level of used o i l . Table 10 shows the projected changes i n the lead concentration of used o i l as lead is reduced i n gasoline. These estimates do not take into account the e f f ec t of lead banking on present and future concentrations.

These data indicate tha t reductions exceeding 80% are expected.

TABLE 10. PROJECTED CONCENTRATION OF LEAD IN USED OIL

Percentile, %

Concentration, ppm

Percent 1983 May 1986 Reduction

50

75

95

4 90 67

856 95

1,417 248

86.3

88.9

82.5

Source: U.S. Environmental Protection Agency (8)

After lead comes zinc followed by barium. These two metals enter used o i l primarily through the various additive packages included i n automotive o i l s . The concentration of zinc i n used o i l i s re la t ive ly high, generally ranging between 100 t o 1,130 ppm. Barium concentration, i n comparison, ranges from 50 t o 500 ppm, although estimates up t o 3,906 ppm have been reported (1).

arsenic, cadmium, and chromium) are usually very small. Cadmium, for example, does n o t occur above 10 ppm while the typical concentration of chromium i s between 3 and 35 ppm; these two metals a re primarily the r e su l t of engine wear.

The concentrations of the other three metals i n used o i l (namely,

Concentration of Chlorinated Sol vents

As shown i n Table 9, f i ve chlorinated solvents, ranging i n concentrations from less than one t o several thousand ppm, have been ident i f ied i n used o i l . These include dichlorodifluoromethane, t r ichlorotr i f luoroethane, l , l , l- t r ich l oroethane, trichloroethylene, and tetrachloroethylene. These chl ori - nated sol vents are derived from primarily two sources: additive package

22

Page 39: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

breakdown and a d d i t i o n o f c h l o r i n e and bromine, as l e a d scavengers, t o leaded

gasol ine. They may a1 so be i nd i r e c t l y i n t roduced through care1 ess o r i g n o r a n t

management p r a c t i c e s o f generators and/or c o l l e c t o r s ( 1 ) . One example o f t h i s mismanagement p r a c t i c e i s t he dumping o f degreasing so l ven ts i n t o tanks used

f o r s t o r i n g used automot ive o i 1 s .

and 86,700 ppm, w i t h mean and median concen t ra t i ons o f 4,995 and 1,600 ppm,

r e s p e c t i v e l y . Such h i g h l e v e l o f c h l o r i n e concen t ra t i on i n d i c a t e s m i x i n g o f

the used o i l w i t h c h l o r i n a t e d so l ven ts o r t he presence o f meta lwork ing o i l s i n

s i g n i f i c a n t q u a n t i t i e s .

extreme pressure a d d i t i v e s compr is ing o f c h l o r i n a t e d p a r a f f i n i c compounds,

which can r e s u l t i n o rgan ic c h l o r i n e l e v e l s o f severa l percent i n unused

v i r g i n o i l ( 8 ) . However, these o i l s account f o r on l y a smal l segment o f the

i n d u s t r i a l o i l market. Consequently, l i t t l e used o i l s a re expected t o c o n t a i n t o t a l c h l o r i n e l e v e l s exceeding 1,000 ppm. I n a d d i t i o n , as l ead i s phased o u t

o f gasol ine, c h l o r i n e and bromine a d d i t i v e s w i l l a l s o be lower, thus, f u r t h e r

reduc ing ha1 ogen 1 eve1 s (8).

Also shown i n Table 9 i s a t o t a l c h l o r i n e con ten t t h a t ranges between 40

The meta lwork ing o i l s c o n t a i n l a r g e amounts o f

Concentrat ion o f Organic M a t e r i a l s

I

b f t h e th ree aromat ic so l ven ts normal ly p resent i n used o i l s , benzene i s

p resent i n the sma l les t q u a n t i t i e s .

110 t o 300 ppm compared t o to luene and xylenes concent ra t ions o f 500 t o 5,000

ppm (1) . These aromat ic so l ven ts a re genera l l y added t o improve the per form- ance c h a r a c t e r i s t i c s o f p e t r o l eum-deri ved o i 1 s .

With respec t t o po l ynuc lea r aromat ic (PNA) compounds, i t has been r e p o r t -

ed t h a t t he concen t ra t i on o f benz(a1anthracene i n used o i l i s much h ighe r than

t h a t o f benzo(a)pyrene. v i r g i n o i l (see Table 11). Th is t a b l e a l s o shows t h a t t he l e v e l s o f benz(a) -

anthracene and benzo(a)pyrene, t he PNAs t y p i c a l l y o f concern due t o t h e i r c a r c i n o g e n i c i t y , i n used o i l and v i r g i n o i l a re comparable.

concent ra t ions rang ing from 0 t o 3,800 ppm, w i t h the m a j o r i t y o f t h e samples

showing l e v e l s below 50 ppm.

showed s igns o f PCBs i n used o i 1.

I t s concen t ra t i on t y p i c a l l y ranges f rom

Th is i s c o n s i s t e n t w i t h t h e i r concen t ra t i ons i n

F i n a l l y , p o l y c h l o r i n a t e d b ipheny ls (PCBs) have been de tec ted i n

It should be noted t h a t on l y 18% o f t he samples

23

Page 40: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 11. POLYNUCLEAR AROMATIC LEVELS IN USED OIL AND VIRGIN FUEL OIL

90th Percentile Concentration, ppma

Com po u nd Used Oil Virgin Oil

Bend a) anthracene

Benzo( a ) pyrene

40

16

18-97

29 -44

Concentration of Pr ior i ty Poll utants

Many types of pr ior i ty , hazardous pollutants have been detected i n used o i l . quant i t ies , there are some tha t a re detected very often. of the frequently detected pr ior i ty pollutants found i n used o i l . Their presence i s usually related t o the properties of the base virgin o i l .

While the majority of these materials occur infrequently and i n t race Table 12 shows a few

TABLE 12. SUMMARY OF SOME FREQUENTLY DETECTED PRIORITY POLLUTANTS IN USED OIL

Pol 1 utant

Range , PPm b Number Detection Mean

Detec teda Rate ,% ppm Low High

Naphthalene 33 67

Phenanthrene 35 71

Pyrene 10 20

F1 uorene 19 39

2-Methyl naphtha1 ene 33 67

644 N D C 2,480

252 N D 2,080

141 N D 4 70

167 N D 53 0

93 7 ND 2,700

a O u t of 49 samples; does n o t include t race levels . bCalculated fo r detected levels only. 'ND - n o t detected a t 50 ppm detection level .

Source: Frank1 in Associates L t d . (1) 24

Page 41: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

Comparison of Used O i 1 Chemical Properties

Table 13 presents a comparison of used o i l chemical properties a s measured recently by GCA Corporat ion and Frank1 i n Associates Ltd. the d a t a indicate t h a t the measured levels of most contaminants are lower, sometimes s igni f icant ly , i n the GCA Corporat ion report . Metals (except lead) and t o t a l chlorine are also lower by f a i r l y large amounts, as are the estimates f o r chlorinated solvents and other organics. The reason for the differences can only by hypothesized and may be due t o the sampling methods which could have been more random i n the GCA study and l e s s l i ke ly t o have been selected due t o a bel ief t h a t the o i l was contaminated. I t may also be due t o the d i f fe ren t time periods when the studies were conducted. In general, used o i l collected i n the l a s t few years tends t o be more contaminated due t o the hazardous waste disposal regul a t i ons and the resul t i ng r a p i d r i s e i n disposal costs. The small sample s ize may a l s o be a factor i n t h a t the GCA Corporation study analyzed only 24 samples of used o i l compared t o F r a n k l i n Associates L t d . ' s 1,079 samples. samples a s well as the process of h a n d l i n g and storage may also influence the properties (1). other tables such a s Table 8 and Table 14.

Table 14 i l l u s t r a t e s the potent ia l ly hazardous const i tuents of used o i l as measured by another reference. A comparison of these data w i t h those shown i n Table 13 indicates t h a t the concentration of const i tuents i n used o i l will vary from sample to sample. The data a l s o show t h a t used oi l contains a number of potent ia l ly hazardous materials i n large q u a n t i t i e s which often must be removed prior to any reuse.

In general,

Final ly , the source o f the

Some of these reasons may a l s o be applicable to data shown in

Physical Properties

Table 15 shows the physical properties of used o i l . d a t a show wide var ia t ions which could be the r e su l t of many factors including the charac te r i s t ics of the v i r g i n o i l and i t s use, as well as the col lect ion/ h a n d l i n g process associated w i t h the used o i l .

As shown i n Tables 15 and 16, the f l a sh point of used o i l ranges between 60' and 525OF compared t o v i r g i n o i l ' s 100' to 4OO0F (1). The lower estimate i s probably due t o the presence of highly-ignitable chlorinated material s and

In general , these

25

Page 42: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 13. COMPARISON OF USED O i L CHEMICAL COMPOSITION BY TWO REFERENCES, PPM

GCA Corporation Franklin Associates Ltd.

Contaminant Average Range Average Range

Metal s/El ements A1 umi num Arsenic Barium Cadmium Chlorine Chromium Iron Lead Magnesium Vanadium Zinc

Chlor ina ted Solvents Trichlorotrifluoroethane l , l , l - t r i c h l oroethane T r i c h 1 o ro e t hy 1 en e Tetrachloroethylene

Other Organics Benzene To1 uene Xylenes Phenol 2,1,6-tri chl orophenol N-ni t rosodi phenylami ne Benz(a )anthracene Benzo ( a Ipyrene

PCBs 4,4 I -DDE

45 12 66

2,260 l a 6

240 1,100 260 3

800

41 0 700a 600 400a

-- 3,100

25 <5 <5 20 <5 <5 <5

--

-- 1 - 640 <1 - 100 17.26 10 - 160 131.92 <1 - 2.8 3.11

<1 - 37 27.97 60 - 980 -- 350 - 2,060 664.50 5 - 590 -- (1 - 13 -- 90 - 1,550 580.28

50 - 27,000 4,995

(20 - 1,900 62,935.88 <20 - 14,800 2,800.41 <20 - 4,900 1,387.63 <20 - 13,000 1,420.89

-- 380 - 12,000 <5 - 70 <5 - <lo <5 - <10 <5 - 40 <5 - 30 <5 - <10

<0.1 - 65

-- 961.2

2,200.48 3,385.54 --

-- -- 71.30 24.55

108.51 --

-- <0.01 - 0 - 0 - 40 - 0 -

0 - -- ..- --

<0.5 -

<20 - <20 - <1 - <1 -

<1 - <1 - <1 - -- -- -- <5 - <1 - 0 -

--

100 3 , 906

57 86,700

690

21,700

8,600

550,000 110,000 40,000 32,000

55 , 000 55,000 139 , 000

660 405

3,800

'Average value does not include maximum value shown i n range.

Sources: Franklin Associates L td . (1) and GCA Corporation (9)

25

Page 43: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 14. POTENTIALLY HAZARDOUS CONSTITUENTS FOUND IN WASTE OIL

Concentration Samples Range, ppv

--- Detec t i ng Concentration Contaminant a t 90th Percentilea

Contaminant % PPm Low High

Metal s Arsenic Barium Cadmium Chromium Lead Zinc

Chlorinated Solvents Dichl orodifl uoromethane Trichlorotri fluoroethane 1,1,l-Trichloroethane Trichlomethyl ene Tetrachloroethylene Total chlorine

Other Organic s. Benzene T Q ~ uene Xylenes’ Benz( a ) anthracene Benzo( a) pyrene PCBs Naphtha1 ene

100 79 46 81 93.8 98

68 57 55 76 89

100

70 83 79 82 58 33

100

16 485

28 28

1,000 1,500

86 0 130

1,300 1 , 049 1,200 6,150

160 1,300

570 35 33 50

580

0.4 0 0 0.1 0 0.7

0 0 0 0 1

40

0 0 0 5 3.2 0.4

110

45 3,906

36 53 7

3,500 5,000

2,200 550,000 110,000 330,000

3,900 459,000

280 5,100

139,000 6 60 405

3,150 790

aNjnety percent of the analyzed waste o i l samples had contaminant concentrations below the given Val ue.

Source: Metzler, S. C. and C. J a r v i s (3)

organic solvents such a s benzene, toluene, and xylenes from engine blowby. Even small levels of contamination w i t h these low f lash p o i n t compounds can reduce the flash point of used o i l , normally greater than 2OO0F, t o l eve l s lower than 100°F. Although not shown i n Table 15, nearly 7% of the 650 used o i l samples analyzed had a flash point below 100°F (1) . In addition, almost 28% (80 out of 289) of the samples showed a flash point below 14OoF, w h i c h would c lass i fy these mater ia ls a s hazardous waste according t o Subpart C of Part 261 of RCRA (1).

27

Page 44: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 15. PHYSICAL PROPERTIES OF USED OIL

Property

Range

Number of Samples Mean Median Low High

Flash point, OF 289 210 -- 60 525

viscosi ty , c s t a t IOOOF 70 7 1 47 1 513

API gravity, OAPI 48 28 27 13 80

Energy content, B t u / l b 23 1 16,495 17,200 4,142 23,045

Bottom sediment and water, % 320 19 9 0 99

Water only, % 36 11 5 0 67

Source: Frank1 i n Associates L td . (1 )

The h i g h solvent content i s a lso responsible for the low viscosity readings, whereas the presence of inorganic sol ids and water a f f ec t the o i l I s

energy content. As shown i n Table 17, the energy content of used o i l ranges between 4,142 and 23,045 B t u / l b compared to virgin lube o i l ' s 20,000 B t u / l b and h i gher.

Water concentration ranging from 0 t o 67% has also been reported. occurs primarily due t o contamination, a1 though small contributions from condensation and seepage i n t o storage tanks have also been reported. tory analysis of the water i n contaminated oi l samples show large amounts of sodium, zinc, barium, calcium, i r o n , phosphorus, magnesium, boron, t i n , and lead, implying t h a t the metals may be present i n ionic or sa l t - l i ke forms (10) . Consequently, simple separation of o i l and water may be necessary t o remove some o f these metals.

T h i s

Labora-

Used Oil Composition by Source of Generation -~ I ---

I n general, the used industr ia l o i l s category i s much more diverse than used automotive o i l s because industr ia l o i l s perform a wider and broader

23

Page 45: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

T?.SLE 16.. FLASHPOINT OF USED OIL BY OIL SOURCE AND EFID-USE

F lashpo in t Number o f Range, F

To ta l Samples Wi th Mean Samples F lashpg in t F lasbpoi n t a Analyzed 4 4 0 F F Low High

O i l Source Crankcase o i 1 77 I n d u s t r i a l o i l 106 Unknown generator 31 1 A l l samples 289

Road o i l i n g 18 Burn ing 51 Re-ref i nelr 34 Unknown 113

End-Use A p p l i c a t i o n

7 7

66 80

276 273 146 2 10

11 121 28 146 10 27 1 31 230

< 70 440 80 52 5 60 450 60 525

72 165 60 284 <80 480 62 525

'Calculated f o r detected f l a s h p o i n t s on ly .

Source: F r a n k l i n Associates Ltd. ( 1 )

TABLE 17. EIJERGY CONTENT OF USED OIL, BTU/LB

Range To ta l Energy Content Energy Content

Samples a t 75th a t 90th Analyzed Mean Median Percent f l e P e r c e n t i l e Low High

~~

A u t o m t i ve 38 17,737 18,072 18,813 18,893 15,156 20,087

I n d u s t r i a1 30 16,164 18,000 20,323 20,719 6,690 20,863

Unknown 163 16,267 16,888 18,334 19,156 4,142 23,045

A l l Samples 231 16,495 17,200 18,587 19,350 4,142 23,045

Source: F r a n k l i n Associates Ltd. ( 1 )

29

Page 46: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

v a r i e t y o f f u n c t i o n s than automot ive o i l s . The contaminants i n used

i n d u s t r i a l o i l s , t he re fo re , w i l l va ry by f u n c t i o n and use, as w e l l as by t h e

type o f a d d i t i v e package used. packages are l e s s p r e d i c t a b l e than those i n automot ive o i l s because users o f

i n d u s t r i a l o i l s f r e q u e n t l y have t h e i r a d d i t i v e packages custom-blended f o r t h e i r p a r t i c u l a r needs. Thus, u n l i k e used automot ive o i l s , i t i s imposs ib le

t o i d e n t i f y a s e t o f contaminants t h a t can be expected t o be present i n used

i n d u s t r i a l o i l s pe r se (1 ) . Table 18 shows the composi t ion o f used o i l by i t s two p r i n c i p a l sources

o f genera t ion : automot ive and i n d u s t r i a l .

w i t h t h e except ion o f cadmium, the concen t ra t i on o f me ta l s a r e h ighe r i n used automot ive o i l s than i n used i n d u s t r i a l o i l s . No s i g n i f i c a n t d i f f e r e n c e s were

observed w i t h c h l o r i n a t e d and o the r aromat ic so l ven ts except f o r PCBs.

I n d u s t r i a l o i l s c o n t a i n h ighe r amounts o f PCBs than used automot ive o i l s .

T h i s i s p r i m a r i l y because o f o l d h y d r a u l i c and e l e c t r i c a l o i l s which used t o

c o n t a i n 50 t o 500 ppm PCBs. While the use o f PCBs-containing o i l s has been

d i scon t inued r e c e n t l y (as a consequence o f s t r i c t Tox ic Substance Cont ro l Ac t

(TSCA) and RCRA p r o v i s i o n s ) , t he re are s t i 1 many t rans formers and o t h e r

e l e c t r i c a l equipment systems equipped w i t h PCBs-containing o i l s . When these

systems are cleaned, t h e PCBs accumulate i n the used i n d u s t r i a l o i l s . As more o f these e x i s t i n g systems a r e c leaned ou t and r e f i l l e d , t h e i r inc idence w i l l decrease b u t t h e r e w i l l always be some PCBs i n used i n d u s t r i a l o i l s s ince they cannot be comple te ly c leaned out . It should be noted t h a t a l l samples o f used

i n d u s t r i a l o i l s w i l l n o t c o n t a i n PCBs. For example, a recent s tudy repo r ted

t h a t o n l y 4% o f the used automot ive samples and 6% o f t he i n d u s t r i a l samples were analyzed t o c o n t a i n any PCBs (1) .

used automot ive o i l s i s t ransmiss ion f l u id , which, i n the past, con ta ined smal l amounts o f PCBs t o enhance c o n t r o l 1 ed swel l i n g o f rubber seal s ( 1 1.

Table 19 shows the phys ica l and chemical p r o p e r t i e s o f used i n d u s t r i a l

o i l s as repor ted by EPA. I n genera l , these es t imates a r e lower than those

p r e d i c t e d by Table 18. As ment ioned p rev ious l y , one rea’s’on f o r t h i s d isc rep- ancy cou ld be the sample s ize . The use o f custom-blended a d d i t i v e s may a l s o

i n f l u e n c e used o i l p rope r t i es . As a r e s u l t , i t i s imposs ib le t o i d e n t i f y and

q u a n t i f y a s e t o f contaminants i n used i n d u s t r i a l o i l s . Table 20 p rov ides a

q u a l i t a t i v e summary of used o i l c h a r a c t e r i s t i c s by t y p e o f i n d u s t r i a l o i l s usage.

Furthermore, t h e components o f t h e a d d i t i v e

--

I n genera l , t h e data show t h a t ,

I n comparison t o used i n d u s t r i a l o i l s , t he p r i n c i p a l source o f PCBs i n

30

Page 47: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 18. USED OIL COMPOSITION BY OIL SOURCE, PPM

Automotive O i 1 s Industrial Oils

Concentration Concentration

Contaminant Concentrationa Concentration Percentile Concentrationa Concentration Percentile Mean Median a t 90th Mean Median a t 90th

Metals Arsenic 14.3 Barium 184 Cadmium 2.0 C hromi um 11.5 Lead 1,603 Zinc a70

0 -I

Chlorinated Sol vents Dichl orodi f 1 uoromethane <20 Trichl o ro t r i f l uoroethane 530 l,l ,l-Trichloroethane 3,313 Trichloroethylene 1,436 Tetrachloroethylene 2,991 Total chl ori ne 3,600

Other Organics Benzene 430 To1 uene 2,076 Xylenes 1,664 Benz(a )anthracene 19.3 Ben z o ( a py re n e 9.7 Naphtha1 ene 337 PCB s 20.7b

<5 82

1.4 7

900 9 18

<20 <20 82

< 16 <20

1,100

73 710 710 10 10

280 5

14.0

6.5 428

22 2,300 1,251

<20 < 20

3,000 220 900

8,500

330 5,100 3,200

20 14

5 60 10

7.9

6.1 36.8

108

218 3 73

-- 3,416 1,726 1 , 454 6,100

3,606 2; 226 1,046

957c

<5 32 3 5

24 86

-- 100 100 100

2,000

15 16 26 -- -- l o

<5 240

10 45

330 650

-- 2,600

430 1,500

12 , 000

100 1,800 1 , 200

-- 50

aCalcul ated for detected concentrations only. bOnly 3 out of 74 samples contained measurable PCBs; i t i s l ike ly t h a t these o i l s were n o t s t r i c t l y

‘Only 6 o u t of 94 samples contained measurable PCBs w i t h one very h i g h concentration (3,800 ppm). Source: Franklin Associates Ltd. (1)

automotive oi 1.

Page 48: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 19. PROPERTIES OF USED INDUSTRIAL OILS

Range

Proper ty Mean Maximum Low High

F lash Po in t , OF

Water, %

Chl o r i ne, ppm

S u l f u r , ppm

Lead, ppm

Barium, ppm

Chromium, ppm

Cadmium, ppm

125

59.7

7.9

2.7

2,000

45

21

315 355

25.7 26.2

1,000 8,300

5,400 10,030

-- --

Source: U. S. Environmental P r o t e c t i o n Agency (11)

Table 21 shows another s e t o f used o i l composi t ion est imates as compi led

They a l s o i n d i c a t e t h a t used o i l con ta ins severa l and repo r ted by Kirk-Othmer (12) .

shown i n Tables 13 and 14.

contaminants which o f t e n should be removed p r i o r t o any reuse.

f u e l . As i l l u s t r a t e d by t h e tab le , t h e combustion o f un t rea ted used o i l can l e a d t o added maintenance, f o u l i n g , and c o r r o s i o n o f b o i l e r heat exchange

sur faces, as w e l l as environmental contaminat ion. The pr imary f u n c t i o n o f t he

m i l d p re t rea tment o r reprocess ing opera t ions i s t o remove v o l a t i l e m a t e r i a l s

and coarse s o l i d s i n o rder t o min imize the abras ive wear o f nozz les and va lves as w e l l as t o produce a f u e l w i t h a c o n s i s t e n t h e a t i n g valve. T y p i c a l l y , t he

use o f m i l d reprocess ing w i l l keep o p e r a t i n g and maintenance cos ts assoc ia ted

w i t h feed and burner systems comparable t o those i n c u r r e d w i t h convent ional

f u e l s . However, a s imple reprocess ing opera t i on does l i t t l e t o remove the meta l1 i c c o n s t i t u e n t s i n used o i l and, subsequently, does n o t s i g n i f i c a n t l y

I n general , these data a re s i m i l a r t o those

Table 22 shows the p o t e n t i a l impacts o f us ing u n t r e a t e d used o i l as a

32

Page 49: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TAi3LE 20. Q U A L I T A T I V E CHARACTERISTICS OF USED I :4 DUST R I A L O I L S BY USAGE

Virgin Oil used Oil used Oil Oil Category Subcategory Uses Constituents Olsposal/Col lection

Lube oil Metalworking o i l s Cutting. grinding, 0 High chlorine, chromium 0 Only 20% collected d r i l l i ng , and and lead contents. for reuse; the res t machining metals primarily as a resu l t i s disposed of by

o f additive package dumping, uncon- breakdown. trolled burning. o r

l and application.

0 Small nitrosamines con- tent. which has been attr ibuted to additive package, corrosion and rust inhibitors. anti-oxidants, and f r ic t ion modi f l e rs breakdown.

0 Very high metals concen- tration resulting from wear.

Railroad and Rail and marine 0 Properties similar to 0 Approximately 952 marine o i l s uses used automotive o i l s of railroad o i l is

except for very high coll ec ted , re- barium levels and no refined, and reused lead content. by railroads.

0 About 402 of used marine o i l i s re- used as fuel; the remaining is dumped a t sea or on land.

Won-lube o i l Hydraulic oil Olecasting. steel 0 High PCBs (60 to 500,000 0 About 402 of hy- foundry operations, ppm) and chlorine levels. draulic o i l s i s automobile pro- disposed of annual- duction. and mining 0 Nitrosamine precursors ly; the rest i s

present through the use of burned as a fuel anti-oxidant. anti-rust , supplement, or used and anti-wear additives. as a dust control

agent.

metalworking o i l s . 0 Lower metals content than

Transformer o i l Electrical 0 High PCB concentration. -- transformers

0 Small trichlorobenrene content.

0 Low viscosity.

Turbine o i l Steam, natural 0 Nitrosamines precursors 0 Majority of o i l i s gas. o r dual present as a resu l t of collected and cycle turbines additive package. reused.

Quenching o i l Cooling medium 0 Contains barium, zinc. for hot metals and antimony.

0 Lower metals content than metal work 1 ng oil s.

Sources: Franklin Associates Ltd. (1) and U.S. Environmental Protection Agency (11)

33

Page 50: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 21. USED OIL PROPERTIES BY OIL TYPE

Automotive O i l s I n d u s t r i a l O i l sa

Proper ty Low High Low High

Phys ica l P r o p e r t i e s V iscos i t y , SUS (atolOOOF) 87 83 7 143 33 0 A P I g r a v i t y ( a t 60 F ) 19.1 31.3 25.7 26.2 SDec i f i c s r a v i t v 0.9396 0.8692 0.9002 0.8972 Water, v o i % " 0.2 Bottom sedim n t and water, vo l % 0.1 F1 ashpoint , 'F 174 Carbon res idue, w t % 1.82 Ash, su l fa ted , w t % 0.03 Benzene i n s o l ubl es, w t %I 0.56 Gasol ine d i l u t i o n , v o l % 2.0 Heat ing value, B t u / l b 13,580

C hem i c a1 P ro p e r t i e s F a t t y o i l s , w t % Ch lor ine , w t % S u l f u r , w t % Zinc, ppm Calcium, ppm Barium, ppm Phosphorus , ppm Lead, ppm Aluminum, ppm I ron , PPm

-- 0.17 0.17

2 60 21 1 9

31 9 85 <O. 5 97

33.8 0.1 4.6 42 -- -- 43 0 315 --

-- b 4.43 -- 6.43 3.2 5.9 3.33 -- -- 9.7 -- ..-

19,316 17,268 18,008

-- 0.47 1.09

1,787 2,291 3,906 1,550 21,676

75 8 2,401

aL im i ted data a v a i l a b l e f o r used i n d u s t r i a l o i l s. bValues f o r i n d u s t r i a l o i l s are f o r r e g u l a r no t s u l f a t e d ash.

Source: Kirk-Othmer (12)

reduce the f o u l i n g and co r ros ion o f b o i l e r heat exchange sur faces o r emission o f m e t a l l i c contaminants t h a t would r e s u l t from waste o i l combustion. I n

o r d e r t o o b t a i n a s i g n i f i c a n t m e t a l l i c contaminant remov i i , h ighe r l e v e l

advanced reprocess ing techniques must be u t i l i z e d (14).

v i r g i n d i s t i l l a t e and res idua l f u e l s i s shown i n Table 23. Th is tab le , i n

con junc t i on w i t h Table 8, prov ides an o v e r a l l p i c t u r e o f used o i l composi t ion

F i n a l l y , a comparison o f t he p r o p e r t i e s o f used automot ive o i l s w i t h

34

Page 51: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 22. P O T E N T I A L IMPACTS AND IMPACT REDUCTION A L T E R N A T I V E S OF U S I N G UNTREATED USED O I L AS A FUEL

P o t e n t i a l Impacts Impact Reduction A1 te r r ia t i ves

S p e c i f i c Formation o f concent ra t ion grad ien ts when a Storage i n tanks t h a t accomplish m i x i n g g r a v i t y combined i n storage tanks w i t h d i s t i l l a t e v i a convec t iona l heat ing c o i l s .

o i l s . a Separate storage w i t h b l e n d i n g j u s t

p r i o r t o coinbus t i on.

Water Fuel l i n e f r e e z i n g a Use w i t h heated f u e l l i n e s .

a Removal o f water p r i o r t o use ( m i l d p re t rea tment ] .

flame. Burner flameout a Use w i t h a u x i l i a r y t o r c h to s u s t a i n burner

___---__I_ __ I n c o n s i s t e n t heat ing Val ue a Use f o r temperature i n s e n s i t i v e app l i ca-

t ion .

a Removal o f water p r i o r t o use ( m i l d p re t rea tment ) .

Coarse Sludge bu i ldup i n storage tank so l i d s

a Storage i n tanks w i t h bottom sludge r e - moval d ra ins .

a Use w i t h d ispersant e m u l s i f i e r s t o keep sludge i n suspension.

a Removal o f sludge p r i o r to use ( m i l d p re t rea tment ) . -____ ___

Line s t r a i n e r f o u l i n g a Removal o f sludge p r i o r t o use ( low- l e v e l oretreatment) .

Abrasion o f p o s i t i v e displacement pump a Separate waste o i l storage p l u s t rans- sea ls p o r t p r i o r t o b lend ing w i t h hardened

i m p e l l e r c e n t r i f u g a l pumps.

a Removal o f sludge p r i o r t o use ( m i l d p re t rea tment ] .

Abrasion o f burner nozzles a Use w i t h wide o r i f i c e hardened nozzles.

a Removal o f sludge p r i o r t o use ( m i l d p re t rea tmTnt ) .

Ash forming Health hazard t o b o i l e r - c l e a n i n g a Use o f r e s p i r a t o r s d u r i n g c leaning. mate r i a1 s personnel

a Removal o f ash-forming m a t e r i a l s p r i o r t o use (severe pre t rea tment ) .

Sca l ing and c o r r o s i o n of heat t r a n s f e r a Use i n d i r e c t - f i r e d furnaces. s u r f aces

t o us: (severe pre t rea tment ) . a Removal o f ash-forming m a t e r i a l s p r i o r

Hazardous emissions a Use w i t h e f f i c i e n t p a r t i c u l a t e emission c o n t r o l equipment.

a Removal o f ash-forming m a t e r i a l s p r i o r t o use (severe pre t rea tment ] .

Ash d isposa l problems a Removal o f ash-forming m a t e r i a l s p r i o r t o use (severe pre t rea tment ] .

Source: GCA Corporat ion (14)

35

Page 52: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 23. PROPERTIES OF USED AUTOMOTIVE OILS AND VIRGIN FUEL OILS

Used Automoti ve Virgin D i sgi 11 a t e V i rg i n Resbdual Oils Range Range Range

P roper t y Low High Low High Low High

Physical Properties Bot. sed. & water % 0 Water, % 0.2 Fuel d i lu t ion % 0.4 Flash p o i n t , *F 175 Carbon residue, % 1.82 Ash, % 0.03

Chemical Properties Chl ori ne, ppm Bromine, ppm Nitrogen, ppm Sulfur, ppm Barium, ppm Calcium, ppm Magnesium, ppm Sodium, ppm Phosphorus, ppm Zinc, ppm A1 u m i num, ppm Chromium, ppm

Iron, ppm Potassium, ppm Manganese, ppm Nickel, ppm Lead, ppm Si l icon, ppm T i n , ppm Cadmium, ppm

Copper, PPm

1,700

530

10 7 00 10 16 500 300 10 8 5 50 5 5 3

800 10 5

1,000

2,100

--

22 33.8 9.7

4.43 3.78

415

4,700 3,000 1,770 6,500 2,000 3,000 1,108 300

2,000 3,000 800 50 348

2,000 79 10 30

11,200 87 5 112 4

1.5 0 3 0 0

-- -- -- --

204 150 270 -- -- -- 002 0.005 0 0.5

-- -- -- -- -- --

3,000 4;OOO

0.7 95 0.4 27.9 1 480

0 0

0.5 219 13 14

0.5 10.5 230

0 0

3 118 1.7 4.1 8.2 64

0 0

--

-- --

aRefers t o middle d i s t i l l a t e o i l s (e.g., No. 1 and No. 2 fuel o i l s ) . bRefers t o heavier fuel oi ls (e.g., No. 4 and No. 5 fuel o i l s ) .

Source: U.S. Environmental Protection Agency (11)

36

Page 53: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

and highlights the general differences between them and v i r g i n o i l s . i l l u s t r a t e the following general characteristics of used o i l :

They

0 Water and sediment contents are much higher i n used o i l t h a n v i r g i n o i l .

0 Polynuclear aromatics are present i n very large quantities i n used automoti ve oi 1 s , apparently resul t i ng from the ori g i nal v i rgin fuel and i t s combustion products (see Table 24) .

0 Metals are present i n re la t ive ly large amounts i n used o i l ; their presence is associated primarily w i t h wear and external contamination.

Other charac te r i s t ics of used oi l are discussed i n d e t a i l i n Section 3.

TABLE 24. BENZO(a)PYRENE CONCENTRATION IN USED AND VIRGIN OILS

Concentration Range, ppm

O i 1

Virgin Oil No. 2 fuel o i l ( d i s t i l l a t e ) No. 4 fuel oi l No. 5 fuel o i l No. 6 fuel o i l (residual Virgin motor o i l basestocks

Used O i l Used motor and waste o i l Used diesel motor oi l Used synthetic motor oi 1 Used industrial oi l Reprocessed used o i 1 Used o i l (fuel o i l blend)

0.03

2.8 2.9 0.03

--

3 .2 --

-- 16

0.6 2.1 3.3

0.28 44

28 <O. 15 16 5.9 10.5 3.0

Sources: U.S. Environmental Protection Agency (11) and Recon Systems and ETA Engi neeri ng, Inc. (26

37

Page 54: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

UNUSED WASTE OIL CHARACTERISTICS

UNUSED WASTE

As ment

0 S p i l

0 Oily

categor ies.

OIL SOURCES

oned p rev ious l y , most unused waste o i l f a l l s i n t o t h r e e general These i n c l u d e (11):

ed o i l ;

waste f rom sh ip o r vessel opera t ions ; and

0 O i l u n f i t f o r i t s in tended use as a r e s u l t o f poor hand1 i n g o r f o rmu la t i on .

These th ree sources o f unused waste o i l a re b r i e f l y discussed below.

S p i l l s

O i l s p i l l s take p lace e i t h e r on water o r on land. Water-based s p i l l s

genera l l y occur whenever o i l en te rs sur face water by s p i l l a g e , runo f f s , o r

f a i l u r e / r u p t u r e o f sh ips t r a n s p o r t i n g the o i l .

a f f e c t s on aqua t i c l i f e , they r e q u i r e prompt and approp r ia te cleanup

operat ions, as mandated by the Na t iona l O i l and Hazardous Substances P o l l u t i o n

Contingency P1 an ( 11). The removal o f s p i l l e d o i l f rom sur face waters c rea tes an o i l y res idue

which must be disposed o f . However, u n l i k e c leanup operat ions, t he re are no

fede ra l r e g u l a t i o n s c o n t r o l 1 i n g the t reatment , storage, o r d isposa l of t h e o i l y res idues r e s u l t i n g f rom o i l c leanup operat ions. As a r e s u l t , most o f t he

o i l y res idues are dumped i n t o inadequate l a n d f i l l s .

d isposal s i t e s and proper d isposa l techniques as w e l l as the i n tense emot ional

atmosphere (and pressure f rom l o c a l r e s i d e n t s ) assoc ia ted w i t h o i l s p i l l cleanup opera t ions combined w i th the res iden ts unw i l l i ngness t o a l l o w t h e

s p i l l ' s d isposal i n s a n i t a r y l a n d f i l l s r e s u l t s i n dumping i n t o inadequate

s i tes.

Because o f t h e i r adverse

The absence o f s u i t a b l e

Land-based sp i 11 s are general l y caused by tank f a i 1 ures , pipe1 i ne

rup tu res o r leaks, s p i l l a g e d u r i n g t r a n s f e r f rom one con ta ine r i n t o another, and i n d i s c r i m i n a t e dumping. U n l i k e o i l s p i l l e d i n t o sur face water, o i l

s p i l l e d t o l a n d i s n o t sub jec t t o fede ra l r e g u l a t i o n s (un less i t u l t i m a t e l y reaches sur face water ) and, t he re fo re , i t s cleanup i s n o t superv ised by an a c t

38

Page 55: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

comparable t o the Nat iona l O i l and Hazardous Substances Pol 1 u t i o n Contingency

Plan. I n f a c t , t he re i s no federa l l a w wh ich even requ i res o i l s p i l l e d t o

l a n d t o be removed from the ground (11). oversee cleanup opera t i ons o f l a r g e o i l s p i l l s t o land. But, i n most cases, the t reatment , s torage, and d isposal o f o i l y d e b r i s r e s u l t i n g f rom t h i s type

o f s p i l l i s no t s u b j e c t t o c o n t r o l .

Some s t a t e s send o f f i c i a l s t o

O i 1.y Wastewater

Ships and vessel s generate two types o f wastewaters c o n t a i n i n g unused

waste o i l . These inc lude : tank-c lean ing water and b a l l a s t water. As t h e

name imp l i es , tank-c lean ing wastewaters a re produced by the c leanup o f t he

ship' s cargo tanks whereas b a l l a s t water i s generated by t h e m ix ing o f o i l and

water (as a r e s u l t o f s h i p mot ion) i n the sh ip ' s t ank o r b a l l a s t . g e n e r a l l y pumped i n t o a s h i p ' s b a l l a s t t o ma in ta in s t a b i l i t y .

The d ischarge o f b a l l a s t and tank-c lean ing wastewater i n t o sur face waters

i s s u b j e c t t o r e g u l a t i o n s a d n i n i s t e r e d by t h e U.S. Coast Guard. I f o i l y water

i s brought ashore (as i s o f t e n done du r ing d e b a l l a s t i n g opera t i ons ) , i t i s u s u a l l y f i r s t pumped t o onshore storage tanks, and u l t i m a t e l y re leased t o

r e f i n e r y wastewater t rea tment p lan ts . O i l recovered onboard from tank-

c lean ing opera t i ons i s g e n e r a l l y u$ed as a feedstock a t o i l r e f i n e r i e s a f t e r

i t i s brought onshore (11).

Water i s

.

Inadeauate Hand1 i n q o r Formulat ion

Unused o i l may become u n s u i t a b l e f o r i t s in tended use and, thereby, a waste o i l when i t i s improper ly handled. An example o f t h i s s i t u a t i o n i s o i l

t h a t has been s to red beyond i t s recommended s h e l f l i f e . Another example i s

t he i n t e n t i o n a l a d d i t i o n o f i m p u r i t i e s i n t o t h e o i l . Other sources o f

improper hand l ing are contaminat ion du r ing shipment o r s to rage and f u e l

d e t e r i o r a t i o n due t o chemical reac t ions .

Unused o i l may a l s o become waste o i l i f i t i s fo rmula ted i n a way t h a t

does n o t meet s p e c i f i c a t i o n s f o r i t s in tended use.

government, f o r example, must meet c e r t a i n s p e c i f i c a t i o n s . These s p e c i f i c a - t i o n s d i f f e r depending on how t h e o i l i s t o be used (e.g., t h e requi rements

f o r fuel o i l d i f f e r from those f o r l u b r i c a t i n g o i l ) . If o i l i s " o f f - s p e c i f i -

O i l purchased by the

39

Page 56: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

7 .

c a t i o n " , i t i s g e n e r a l l y returned t o the seller. re-formulated, so ld f o r another use, o r disposed o f .

The o i l can then ei ther be

UNUSED WASTE OIL GENERATION

In g e n e r a l , l i t t l e , i f any, da t a a r e a v a i l a b l e on the q u a n t i t i e s o f unused waste o i l genera ted by the s p i l l a g e , c l ean ing , inadequate hand1 ing , and formula t ion of v i r g i n o i l o r unused o i l . s i t u a t i o n s described above, l i t t l e information i s a v a i l a b l e regarding the reuse o r d i sposa l of these o i l - b e a r i n g waste streams.

In a d d i t i o n , except f o r the

UNUSED WASTE OIL COMPOSITION

Because unused waste o i l s have no t been used previous ly , t h e y conta in mostly r e f ined o i l mixed w i t h water , d i r t , and o t h e r contaminants. Very l i t t l e information i s a v a i l a b l e regarding the composition o f unused waste o i l . The average composition o f some r e f ined petroleum products a r e shown i n Table 25.

TABLE 25. AVERAGE COMPOSITION OF REFINED PETROLEUM PRODUCTS, %

Product P a r a f f i n s Na p h t henes Aroma t ics

Motor gasol ine 40-50 30-40 10-3 5

Je t fuel 35 50 15

Ke ro sen e 40 45 15

D i s t i l l a t e fuel o i l s 30 45 25 -40

Residual fuel o i l s a 15 45 25

Naphtha and petroleum so lven t s 20 -3 5 30-45 20-50

Lubr ica t ing o i l s and g reases 20-40 30-55 15-45

' Includes 15% non-hydrocarbon compounds con ta in ing oxygen, n i t rogen , o r

Source: U.S. Environmental P ro tec t ion Agency (11 1

sul f u r .

40

Page 57: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

SECTION 3 USED O I L RECLAIMING TECHNOLOGY

As discussed i n Section 2, approximately two-thirds of the used automotive and i n d u s t r i a l o i l s generated i n the United States are collected and reused. The remaining one-third are e i the r discarded o r disposed of without any e f f o r t expended t o use them. o r recycling of used o i l can be categorized into essent ia l ly two groups: reprocessors, who use mi ld pretreatment and cleaning methods to produce a fuel o r fuel supple-ment, and re-ref iners , who use advanced and specialized equipment such a s a d i s t i l l a t i o n column coupled w i t h clay treatment to produce a base lubricating o i l .

Processing techniques fo r the reuse

These two techniques a re discussed i n detai l below.

REPROCESSING TECHNOLOGIES

I n general, used o i l i s an excellent source of energy. I t s properties compare well w i t h No. 4 fuel o i l and w i t h No. 6 fuel o i l w i t h the exception of bottom sediment and water (BS&W) , sediment, and ash contents. the used oi l t o the American Society f o r Testing and Materials (ASTM) specif i - cations fo r No. 6 fuel o i l indicates t h a t the former would require a reduction of about 85% i n the BS&W content, a 90% reduction i n sediment concentration, and a similar reduction i n the ash content (13 ) . Such reductions can be achieved by e i t h e r blending the used o i l w i t h v i r g i n o i l o r by t rea t ing the o i l w i t h some separation techniques. The objective, therefore , of repro- cessing technologies i s to remove most, i f not a l l , of the contaminants which can cause environmental or operational concerns from used oi l (14) . Examples of some treatment options include se t t l i ng , centr i fugat ion, f i l t r a t i o n , o r heating, o r a combination of these operations, to remove coarse so l ids , water, and other substances.

Compliance of

Se t t l ing generally involves the pumping of used oi l into a large holding

Small suspended pa r t i c l e s usually tank where, i n su f f i c i en t time, large sol id par t ic les separate out and accumulate a t the bottom of the tank (15) . do not accumulate or s e t t l e out i n a s e t t l i ng tank. However, they can be separated i n a f i l t r a t i o n system. By drawing heated used oi l through a f i l t e r cartridge suspended i n a vacuum vessel , most of the water, v o l a t i l e

hydrocarbons, and other contaminants can be removed from waste o i l . The

41

Page 58: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

disadvantages o f the f i l t r a t i o n system a re the p e r i o d i c s e r v i c i n g r e q u i r e d t o

rep1 ace clogged f i l t e r s and the need t o dispose o f t he f i l t e r cake, which has been c l a s s i f i e d as hazardous (12, 15) .

C e n t r i f u g a l separa t ion i n v o l v e s the separa t ion o f two d i f f e r e n t s p e c i f i c

g r a v i t y m a t e r i a l s by c e n t r i f u g a l fo rce . Th is form o f contaminant removal i s u s u a l l y much f a s t e r than g r a v i t y s e t t l i n g . I n a d d i t i o n , very l i t t l e o p e r a t i n g

and maintenance a t t e n t i o n i s necessary (15) . Many types o f c e n t r i f u g e s are

a v a i l a b l e t o accomplish the removal o f i m p u r i t i e s f rom used o i l .

i nc l ude d i sk-type c e n t r i fuges , decanter c e n t r i fuges, and the se l f - c l eani ng-

type c e n t r i f u g e s . I n the d i sk - t ype system, f o r example, used o i l en te rs t h e

c e n t r i f u g e a t the top o f t he sp inn ing bowl.

c e n t r a l sha f t , t he heav ie r so l i d s accumulate a t t he bowl ' s per iphe ry w h i l e t h e

remain ing o i l passes through holes i n t o con ica l d i sks f o r eventual separa t ion

o f the water f rom the o i l (15). As mentioned above, many combinat ions o f p re t rea tment techniques have

been used. Some o f these methods, as i d e n t i f i e d r e c e n t l y by Berk, a re b r i e f l y descr ibed bel ow ( 15) .

These

As t h i s o i l passes through a

SETTLING/CENTRIFUGAL SYSTEM

F igu re 5 d e p i c t s the s e t t l i n g / c e n t r i f u g e system f o r separa t ing water and

s o l i d s f rom used o i l . Unt rea ted waste o i l i s i n i t i a l l y p laced i n a s e t t l i n g

tank f o r the p a r t i a l removal o f s o l i d s and water. The o i l then f l ows through

f i l t e r s , a f t e r which, i t i s n e u t r a l i z e d and demuls i f ied . It i s nex t heated ( t o 30OoF) and sent t o another s e t t l i n g tank. The bottom l a y e r f rom t h i s tank

i s then sent t o a c e n t r i f u g e w h i l e the upper l a y e r i s c o l l e c t e d and s t o r e d f o r

eventual use. Care should be exe rc i sed d u r i n g the removal o f s o l i d s f rom the

s e t t l i n g tanks s ince any form o f a g i t a t i o n would cause some s o l i d s t o remain

i n the o i l .

CENTRIFUGAL SYSTEM

F o l l o w i n g i n i t i a l s e t t l i n g , f i l t r a t i o n , and chemical t reatment , the used o i l i s heated and then sub jec ted t o c e n t r i f u g a l ac t ion . Approx imate ly 90% o f the c lean o i l i s s t o r e d as f i n i s h e d produc t w h i l e the r e s t i s recyc led back

i n t o the system. F igu re 6 shows a schematic of t h i s reprocess ing scheme.

42

Page 59: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

U N T R E A T E D

W A S T E 0 S E T T L l N G

T A N K -

W A S T E 0 CAU STlC S E T T L i N G S E T T L l N G > F l L T R A T l O N . > TREATMENT .- > H E A T I N G

T A N K & OEMULSIFY T A N K

P R 0 D U CT

0 IL

CAU STlC

TREATMENT

& OEMULSIFY

1 S E T T L i N G

T A N K

I T > P R O D U C T

C E N T R ~ F U C E <

Figure 5. Simplified Settling/Centrifuge System

S L U D G E .

T A N K <

V

Source: Berk, David S. (15)

Page 60: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

a

m L a, C 3

-7 € 2 2

.. CD

Page 61: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TWO-TANK SYSTEM

I n t h i s reprocess ing technique, i l l u s t r a t e d i n F i g u r e 7, used o i l i s

i n i t i a l l y heated i n Tank No. 1 t o about 18OoF. Sodium hydrox ide and t r i s o d i u m

phosphate are added t o the tank, a f t e r which the m i x t u r e i s a g i t a t e d w i t h a i r .

Sometimes, s u r f a c t a n t s and d e m u l s i f i e r s are added t o break t h e emulsion. The

o i l i s then sent t o Tank No. 2 where i t i s again heated t o 20OoF.

f i n a l l y f i l t e r e d and cen t r i f uged .

p o s s i b l e and p r e s e n t l y i n use throughout the i n d u s t r y .

t i v e combinat ions were presented above. The environmental impacts o f u s i n g reprocessed o i l are descr ibed i n Sec t i on 4.

I t i s

As mentioned p r e v i o u s l y , many combinat ions o f reprocess ing techniques are

Only a few representa-

RE-REFINING TECHNOLOGIES --

The r e - r e f i n i n g i n d u s t r y i s n o t new. I t has been i n ex i s tence s ince the

e a r l y 1900s i n Europe, where the pr imary impetus f o r recovery and rec lamat ion

was the low supply o f l o c a l crude o i l and the h i g h c o s t o f imported crude o i l .

I n t h e Un i ted States, the r e - r e f i n i n g o f used o i l dates back t o World War I , when r e - r e f i n e d o i l was s u c c e s s f u l l y used i n m i l i t a r y a i r c r a f t . Wi th renewed

i n t e r e s t d u r i n g World War 11, the i n d u s t r y prospered and grew r a p i d l y d u r i n g

the 1940s and 1950s. By 1960, t h e i n d u s t r y conta ined approx imate ly 150 r e -

r e f i n e r s producing about 300 m i l l i o n gal o f r e - r e f i n e d o i l o r a lmost 18% o f

the U.S. l u b r i c a t i n g needs (16,171. Cur ren t l y , t he re are fewer than 16 r e -

r e f i n e r s producing 1 ess than 63 m i l 1 i o n gal o f r e - r e f i n e d o i l p e r y e a r (1,16).

Several reasons have c o n t r i b u t e d t o t h i s dec l i ne . These inc lude :

0 Undercapi t a l i z e d smal l businesses.

0 Lower crude o i l p r i c e s .

0 Higher feedstock p r i c e s as a r e s u l t o f c o m p e t i t i o n f rom o t h e r uses f o r used o i l .

0 S p e c i f i c a t i o n s f o r b i d d i n g use o f r e c y c l i n g m a t e r i a l s .

0 E l i m i n a t i o n o f government f i n a n c i a l i ncen t i ves .

0 R e s t r i c t i v e l a b e l i n g requirements.

0 High c o s t o f environmental compliance.

45

Page 62: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

I

o :I 3 I W 1

0 I- o 3 0 0 0: fi

W 0 W

0

U f) I- Z W 0

LL 0

A

z 0 I- -t

I-

LL

a d

A

.. h

CIJ aJ L V 3 L 0, 3 -7 0 LL Ln

46

Page 63: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

All of these factors have combined t o resu l t i n a s ignif icant decline o f the re- ref i n i ng i ndu s t ry .

lubricating oi l begins w i t h a pretreatment step, such as the application of heat and f i l t r a t i o n , followed by one of the following processes: vacuum d i s t i l l a t i o n w i t h clay or hydrogen f inishing; solvent extraction with clay or hydrogen finishing; and chemical treatment with hydrotreating. The major charac te r i s t ics of the various re-refining processes are summarized in Table 26. ref i n i ng processes:

The process of producing clean, re-refined, h i g h qual i ty , base

In general, the d a t a show the following charac te r i s t ics for re-

0 Most o f the re-refining processes have an average product yield ranging between 70 t o 80%.

0 Majority of the re-refining processes will n o t accept PCBs- containing used o i l s .

0 Re-refined o i l s perform as good as virgin o i l s . Other charac te r i s t ics of re-refining processes w h i c h are current ly being developed o r used commercially a re described i n detai l below. Also discussed are the uncontroll ed and control 1 ed envi ronmental , health, and safety impacts associated w i t h each process.

ACID-CLAY PROCESS

In the t radi t ional acid-clay process ( see Figure 81, used oi l i s

i n i t i a l l y subjected t o f i l t r a t i o n and dewatering mechanisms (e .g . , heating a n d / o r s t r ipping) t o remove water, debris , and other sol id par t ic les . then contacted w i t h 92 to 93% su l fur ic ac id which ex t rac ts metal s a l t s , acids, aromatics, asphal t ics , and other impurities from the o i l and forms an acidic sludge t h a t s e t t l e s o u t of the o i l (18).

Next, the s l i gh t ly acidic oi l i s mixed with act ive f u l l e r ' s ear th ( a clay) to remove mercaptans and other contaminants and to improve color. Approximately 0.4 lb of clay are required for every gal of o i l processed (10).

The final steps i n the process are neutralization and d i s t i l l a t i o n . The re- refined product o i l i s removed as overhead while spent clay i s removed from the bottoms by f i l t r a t i o n (18).

The acid-clay process i s very simple to design and operate and , depending

upon operating conditions and feed composition, i t will y ie ld 45 t o 75% of the

I t i s

47

Page 64: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 26. CHARACTERISTICS OF RE-REFINING PROCESSES

Process Energy Process Environmental Product Development Process Yleld Requlreinents Compl ex1 ty Conslderatlons Qual i ty S t a t u s Coments Process

Simp1 e; f 1 exi bl e c apac i ty

Generates large amount Good o f corrosive acid sludge and spent clay; few a i r emf ssfons

Comnercfal Recent €PA regula- tions have closed many fac l l l t i es ; will not accept PCBs-contalnl ng waste o i l s

Hlgh royalty pay- ments.

Acid-Clay Process 45-75s. dependlng Low; 12.000 upon operating B t u per gal conditions and of product feed composition

Relatively com- plex and lnfl exibl e; designed spe- c i f ica l ly for automotive 011.

Relatively com- plex and flexl- ble; suited to con t l nuous operations

Relatively com- plex; suited to large-scale operations

Few a i r emlsslons; Excellent neutral phosphate f l l t e r cake Is easlly landfllled

Comerclal Phill ips Re-refined 011 Process (PROP)

_ _ Good Will accept PCBs- containing waste o i l s

82% 13.000 B t u per gal of product 1 arge- scal e

Conned a1 I zed i n U.S. and Europe

Kinetics Technology Interndtlonal , 6.V. Process (KTI)

Generates acid Good sludge, .oily clay, and olly waste- water--less than acid-cl ay process

Generates organic High sludge and a caustlc effluent; few a l r emlsslons

Qual i ty

Good __

Comerclal ized I n Europe; no U.S. Installa- tions

Wlll not accept PCBs-contai n ing waste 011s

Propane Extraction Process

70-82% Up to 32.000 B t u per gal of product

P co Pi lo t plant PCBs-contai n lng

waste 011s are not acceptable.

71-75s -- Relatively com- plex and flexible

Bart1 esvi 11 e Enerqy Techno1 ogy (BETC) Process

Resource Technology. Inc. Process ( R T I )

75%

70-75s

13.000 B t u per gal of product

--

Mod era tel y simpler t h a n KTI process

Fully automated continuous process (Luwa evaporator

Partial u n l t I n operation In Nonay

Three plants In U.S.

Will not accept PCBs-containlng waste 011

Will not accept PCBs-conta i n l ng waste 011; Luwa thin fllm evap- orator Is much newer t h a n Pfandler thln film evaporator

--

01 s t i l l ation-Clay Fi l t ra t ion Process

Negliglble; small amount of spent clay generated

Good

Recyclon Process 70% Moderately com- plex t h a n acid- clay process

Moderately com- plex than acld- clay process

Negllglble waste- -- water effluents; few a i r emissions

-- Good

Pl lo t plant

Krupp Research Ins t i tu te Super- c r l t ical Process

Pilot plant Will accept PCBs- contalning waste 011 s

Page 65: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

W

3 0 J

m d

A

A

k J 0 I- z W Q m

z 0 I- < - J z! I- v)

0 -

z 0 I-

[L: c

LL

> a

d

0 4 W 0: I-

a: U

< .. co

a, W L V 3 L (5, 3 -7 0 LL v,

49

Page 66: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

feed o i l .

process i n t h e U n i t e d States.

because o f t h e h i g h cos ts and d i f f i c u l t y assoc ia ted w i t h d i spos ing l a r g e volumes o f t he a c i d and c l a y waste byproducts produced by t h e process. The

a c i d sludge, f o r example, i s produced a t a vo lumet r i c r a t e o f one-tenth the

o i l feed r a t e (10). I n a d d i t i o n , t he s ludge con ta ins s u l f u r i c ac id ,

combustibles, lead, organo-metal1 i c s , su l fona tes , and p o s s i b l y some c a r c i n -

ogenic m a t e r i a l s (see Table 27).

s o l u b l e compl icates the d isposa l dilemma. t i b l e ; however, i t should n o t be burned because o f t h e h i g h c o n c e n t r a t i o n o f

s u l f u r oxides (SOx) and very f i n e me ta l - con ta in ing p a r t i c u l a t e s t h a t may be

emi t t e d ( 10).

i t i s composed o f p o l a r compounds such as oxygen- and n i t r o g e n - c o n t a i n i n g

organ ics (see Table 27). Both the a c i d i c t a r and spent c lay , t he re fo re , pose d isposa l problems. I n

a d d i t i o n , t h e ac id -c lay process i s o n l y m a r g i n a l l y e f f e c t i v e i n t r e a t i n g used

o i l c o n t a i n i n g h i g h l e v e l s o f a d d i t i v e s .

s to rage tanks, p rocess ing vessels, wastewater t rea tment f a c i l i t i e s , and

sludge, and o i l s p i l l s . I n some r e - r e f i n i n g opera t ions , odors can be c o n t r o l l e d adequately by s e a l i n g open vesse ls and tanks, good housekeeping

p r a c t i c e s , and by v e n t i n g process vesse ls t o furnaces where vapors can be

combined w i t h normal p l a n t f u e l and burned. Some p l a n t s have used c a u s t i c

scrubbers t o t r e a t gases emanating f rom the va r ious process steps (10).

f i n i s h i n g steps. These streams whose composi t ions a re shown i n Table 28 w i l l

r e q u i r e t rea tment p r i o r t o d isposa l . Several t rea tmen t o p t i o n s are ava i 1 ab1 e

b u t they w i l l a l l vary f rom p l a n t t o p l a n t , depending upon c o o l i n g water

f a c i l i t i e s , water r u n o f f problems, l a n d a v a i l a b i l i t y , water concen t ra t i on o f

feedstock, government r e g u l a t i o n s , and a v a i l a b i l i t y o f l o c a l sewage t rea tment

f a c i l i t i e s . A t y p i c a l wastewater i n s t a l l a t i o n w i l l i n c l h d e a separa tor f o r

o i l skimming, equipment f o r pH c o n t r o l , some water recyc le , and d ischarge t o a

sewage p l ant .

o i l . Recent r e s u l t s o f l a b o r a t o r y s imu la t i ons f o r t h i s process show an

o v e r a l l 70% removal o f i n o r g a n i c elements (9) The corresponding reduc t i ons

Th is process was f o r many years t h e most w i d e l y used r e - r e f i n i n g I t s use has been d r a s t i c a l l y reduced r e c e n t l y

The f a c t t h a t 30 t o 50% o f t h e s ludge i s The a c i d s ludge i s a l s o combus-

U n l i k e a c i d i c sludge, t h e spent c l a y generated by t h e process i s bas ic ;

It a l s o con ta ins a h i g h o i l con ten t o f 20 t o 30%.

Other concerns o f t h e a c i d - c l a y process r e l a t e t o odors emanating f rom

The major process wastewater streams o r i g i n a t e f rom t h e dewater ing and

Despi t e these disadvantages, t he a c i d -c l ay process produces good qual i ty

50

Page 67: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 27. ANALYSES OF CLAY AND SLUDGE STREAMS FROM THE ACID-CLAY RE-REFINING PROCESS

Proper ty

b Re-Ref iner No. la Re-Refiner No. 2

Spent Ac id Spent A c i d C1 ay S1 udge C1 ay S1 udge

Phys ica l P roper t y Ash, w t . % 87.69 4.29 44.32 8.64 Heat V a l ue , B t u / l b (g ross ) 3,807 11 , 228 11 , 230 9,275 N o n - v o l a t i l e res idue, w t . % 99.74 81.58 89.03 58.97

Chemical Proper ty A c i d No., mgKOH/g 3.90 140 5.89 282 Pentane inso lub les , w t . % 68.01 60.93 33.15 60.12 Benzene inso lub les , w t . % 77.39 11.63 37.61 40.61 Carbon, w t . % Hydrogen, w t . % N i t rogen , w t . % S u l f u r , w t . % To ta l c h l o r i d e , w t . % Organic c h l o r i d e , w t . %

Metals, ppm (by w t . A1 umi num Barium N icke l Copper C hromj um I r o n S i 1 v e r Cadmium Zinc Magnesium Cal c i um Sodium Potass i um Manganese Lead T i n S i 1 i c o n Vanadium Arsen ic Selenium Mercury Boron Phosphorus

22.68 3.56 0.029 0.131 0.264 0.004

14 , 400 124 42 14 10

942 4

11 76

1 , 938 516

1,898 2,048

35 <1 <1 11 12 24 <o. 01 0.02

113 189

83.04 59.93 41.93 13.83 9.82 6.99 0.190 0.032 0.142 5.23 0.199 38.56 0.107 0.105 3.52 -- 0.60 0.209

71 467

4 20 <1 16 2 7

45 18 23 12

5 <1

9,960 <1 2

<1 4.7

<0.01 0.06

63 1 , 668

12,000 <1 25 18 18

467 1

12 66

891 30

2 73 1 , 822

88 <1 <1 17 35

3 <0.01 0.04

26 173

1 , 349 544

23 170

14 38 1

2 8

64 1 , 320 1,149

41 4

62 2,265

<1 8 4 0.07 0.02 0.10

<1 42

aWith used automot ive o i l s as feedstock. bWith a b lend o f used automot ive and used i n d u s t r i a l o i l s as feedstock.

Source: Booz, A l l e n & Hamilton, Inc . (19)

51

Page 68: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 28. ANALYSES OF WATER STREAMS FROM THE ACID-CLAY PROCESS

b Re-refiner No. la Re-refiner No. 2

Property Combined Dehydrated Oehyd. Fin1 shlng h Finishing Yater Ydter Ydter

PhySiCal/ChalCdl PH 01 ssolved oxygen, mg/l S u l f i t e . mg/l ( a s SO Total nitrogen. m /13(as N) h o n i a n i t r o en !NH3) mg/l

N i t r i t e (as N). mg/l Total s u l f u r (as 5 ) . mg/l Sul fate ( a s SO4), mg/l Su l f ide (as 5 ) . ng/ l Organic chlor ide, mg/1 Inorganic chlor ide. mg/1 Total phosphates, mg/l O i l h grease. mg/1 Chemical oxygen demand. ng / l Total organic carbon. ng / l

Total suspended sol ids Total dissolved so l ids

N i t r a t e (dS Nq. mg/l

Total a1 kdl in1 ty. mg/l

Total hardness (as CdC03) mg/1

Metals. n g / l N i c kel Copper Chroniua I ron S i 1 ver

Magnesl M Zinc Sodium Potassium MdnganeSt? Lead Tin A1 m i n m Barium S i 1 icon Vanadium Arsenic Bo ron Mercury

1.2-Oic h l orobenrene 1 .4-Oichlorobenzene Hexac h l orocycl opentadiene N i trobenrene B i s f 2-C h l oroe thoxy ) Me thane Isophorone Naphthalene F1 uorene Diethyl phthalate N- N i trosod i phenyl m i n e Anthracene 01-n-Butyl phthalate Bls(2-ethylhexyl )phthalate Di-n-octyl phthal ate 2-Chlorophenol 2-Ni trophenol Phenol 2.4-Dimethyl phenol 2.4-Oic h l orophenol p-Chl o ro-acreso l Pentdc h l orophenol 4 -N i trophenol Methylene ch lo r ide T r i c h l o r o f l uomethdne 1,l-Oichloroethane Chlorofom 1.2-Oichloroethane 1.1,l-Trichloroethane Tr ichloroethylene 1,1~2-Trichloroethane Benzene Tetrachloroethylene To1 uene Chlorobenzene

cd(hillM C d l C i l I R l

P r i o r i t y Pol 1 utants, mg/l

9.8 1.7

62 33 61 t1 (0.01

540 725

96 3 3 6.0 0.18

2,870 7,900 5,520

46 1,980

140

3.6 <o. 02 t0.04 18.8 0.12 0.62

16.8 10.0

75 20.1 to. 02 1.4

23 5.3

t l 31 to. 2

37.5

0.72

0.09

0.029

60 NO ND NO ND

180 120

ND ND NO 30

ND NO

2,200 NO

4.600 900 130

NO 15 98 68 NO ND 12 NO 42 23 NO 38

120

7.6

3.3

7.9

1.6 2.6

11.400 155 163 (1 (0.01

6.460 2.880

44 8 4 4.4 0.18

28,800 22,000 39,250

10 663 309

17.8 22.0 8.8

1.3 1.1 0.21 0.96 5.5 1.0

to. 2 28 40 14.3 2.1

t1 52

1.0 0.68

54.0 0.026

197

ND NO 25

1.100 1,600

NO NO NO

NO NO NO NO NO NO NO

99.000 NO ND

1.600 NO NO 92 NO

NO NO

990 NO

1 .ooo 24

700 2,500

NO

8.5

7.8

4.4 3.4

3,943 19 18 t l <o. 01

1,971 230 138

5 8 0.3 0.15

3,780 3,200

175 10

751 282

1.0 1.0

(0.04

(0.03 to. 05 7.0

10.0 2.3

22.0

110

104

0.80 0.70 2.0 5.9 1.0

40 <o. 2 0.10 0.50 0.015

NO 2 50

NO NO NO ND

700 NO 29

270 NO NO

280 NO

160 NO

15,000 NO NO

170 NO NO 38 NO 24

2 280

1,800 100 250 150 580 530

NO

$ i t h used automotive o i l s ds feedstock.

Source: Booz, Al len h Hamilton. lnc. (19)

With a blend o f used automotive and used i n d u s t r i a l o i l s as feedsroc<.

52

Page 69: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

i n the l e a d and z i n c con ten ts o f ac id -contac ted o i l were 70 and 77%, respec- t i v e l y (see Table 29).

elements analyzed was reasonable f o r a l l b u t a few elements, e.g., aluminum, s t ron t ium, t i n , and t i t an ium. These h igh values f o r m a t e r i a l balance c l o s u r e

can be a t t r i b u t e d t o e s s e n t i a l l y complete chemical reac t i ons and c o n t r i b u t i o n s

from t h e reac tan ts used i n a c i d - c l a y processes (9 ) .

compounds a r e main ta ined w i t h i n t h e produc t stream. A1 though some r e d u c t i o n

i n c o n c e n t r a t i o n l e v e l s r e s u l t e d from the a c i d - c l ay t rea tments , t h e r e d u c t i o n

i s n o t as pronounced ( f o r t h e compounds analyzed).

c o n t a c t i n g s tep appears t o have removed the n-n i t rosod ipheny l amine added as a

sp i ke t o t h e o i l . The two p h t h a l a t e compounds present i n the feed a l so appear

t o have been destroyed i n the a c i d c o n t a c t i n g step. I n genera l , however, t h e

r e d u c t i o n o f most compounds, shown as p o s i t i v e l y i d e n t i f i e d i n used o i l , would

n o t be expected s ince most a r e r e s i s t a n t t o s u l f u r i c a c i d and a re n o t

p r e f e r e n t i a l l y adsorbed by t h e c l a y (9).

show t h e d i s t r i b u t i o n o f c o n s t i t u e n t s r e s u l t i n g from t h e process ing o f 1 g o f

feedstock. Thus, contaminant stream concen t ra t i ons i n ppm (ug/g) i n the streams are equal t o t h e va lues shown i n t h e t a b l e m u l t i p l i e d by t h e r a t i o o f

t he feedstock f l o w r a t e t o the stream f l o w r a t e . As an example, t h e va lue o f 30 ug/g o f feed shown i n column 4 f o r l e a d i s e q u i v a l e n t t o a c o n c e n t r a t i o n o f

about 200 ppm o r ug lg [30 x (100/15)1.

Furthermore, t h e m a t e r i a l balance c l o s u r e f o r t h e

The r e s u l t s o f o rgan ic analyses i n d i c a t e t h a t most o f t h e s e m i v o l a t i l e

For example, t h e a c i d

It should be noted t h a t the r e s u l t s i n Table 29 have been normal ized t o

PHILLIPS RE-REFINED OIL PROCESS

The P h i l l i p s r e - r e f i n e d o i l process (PROP) begins by m i x i n g an aqueous sol u t i o n o f diammonium phosphate w i t h heated used o i l t o reduce t h e meta ls

c o n t e n t o f used o i l .

20 pounds per square i n c h gauge ( p s i g ) , meta l1 i c phosphates are formed which

a r e subsequently removed by f i l t r a t i o n (18). reac t i ons , water and l i g h t ends are a l so formed; these a re g e n e r a l l y taken o f f as overheads.

Through a s e r i e s o f r e a c t i o n s t h a t occur below 3OO0F and

During the demetal l i z a t i o n

Next, t h e remaining o i l i s heated, mixed w i t h hydrogen, p e r c o l a t e d

through a bed o f c lay , and passed over a n i c k e l molybdate c a t a l y s t . The

o v e r a l l o b j e c t i v e o f these s e r i e s o f ope ra t i ons i s t o remove s u l f u r , n i t r o g e n ,

Page 70: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 29. ANALYSES OF PROCESS STREAMS FROM AN A C I D - C L A Y RE-REFINERY

~ _ _ _ _ _ _ _ - - - Mater i a1 Balance

Acid C 1 ay con tac ted ( P e r c e n i C 1 ay-

P rope r ty Feed stock S1 udge S1 udge Produc t Closure 1

R e l a t i v e Flow Rate, we igh t

Contaminant Weight,ug/g o f feed

Ino rgan ic Compounds A1 umi num An t i mony Arsenic Barium Bery l 1 ium Boron Cadm i um Cal c i um Chromium Coba l t Copper I r o n Lead Magnesium Manganese Molybdenum N icke l Selenium Si1 i c o n S i l v e r Sodium S t ron t i um T h a l l ium T i n T i tan ium Vanadium Z inc

Organic Compounds Chlorobenzene B i s( c h l oromethyl e t h e r Phenol Chlorophenol Dichlorobenzene N i t r o benz e ne N i t rophenol Naphtha1 ene 2-Chloronaphthalene 2,4,6-Trichlorophenol Acenaphthene N i - N i t rosodiphenylamine Hexac hlorobenzene Phenan t h rene/A n t h racene D i b u t y l p h t h a l a t e Bu ty lbenzy l p h t h a l a t e Pyrene Benz( a lanthracene Tr iphenylphosphate Benzo( a) pyrene 4,4'-DDE PCBS

100

34 0.6 9.7

70 <0.1 9.2 1.4

9.5 1.1

1,140

36 280

1,250 240

16 3.6 4.1

<1 55 <0.1

260 2.1

<1 19 10

820 4.7

N D ~

ND' N D ~

ND'

ND

ND ND

54 ND 43 ND 98 ND

260 820 110 28 24 ND ND 68 43

20

28 0.9 5.4

0.07 9.8 1.1

41

6 50 75

41 225 880 190

13

8.9

3.4 4.5

(0.2 12

160 0.06

1.4 <0.4 43

3.8 4.2

630

ND ND N D ~

N D ~

ND ND

9.0 ND 14 ND ND ND 28 ND ND ND ND

ND 1.8

2.6 3.4

15

12 <0.1 <0.2

1.5 <a. 01 <o. 01 <o. 01 20 <3.01 <0.01 0.04

11 30 11 0.2

<0.01 <o .01 CO.1 9.5

<o. 01 2.3 0.4

(0.1 1.1 1.7 0.4 3.0

ND ND

ND ND ND NOC

ND

ND ND ND 10 ND ND

6 .O

8.3

0.4 0.5

ND ND

10 2.6

65

12 0.8 2.0

12 <o. 1 0.2

<0.1

0.4 (0.1 0.2

51 240

56 1.3

<0.1 <0.2 ~ 0 . 5 13 <0.1 15

2.0 <1

1.2 7.5 0.2 9.0

130

ND ND N D ~ N D ~

N D ~

ND ND

3.3

3.5 ND

ND ND ND

ND ND

ND ND ND ND

8.5

5.0

2.7

aMate r ia l ba lance c l o s u r e f o r columns 2 through 5 (<values = 0) ; i . e . , column 2 should equal column 3 + b ~ ~ l u n n 4 + column 5.

Unless i n d i c a t e d otherwise, a l l ND< - 1D ug/g. C ~ ~ < - 20 vg/g.

54 Source: GCA Corpo ra t i on ( 9 )

Page 71: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

oxygen, c h l o r i n e , and o t h e r t r a c e i no rgan ic compounds and t o improve the o i

co lo r . The t r e a t e d o i l i s then f lashed, cooled, and d i s t i l l e d t o s t r i p o f f

any remaining contaminants from lube o i l (see F i g u r e 9) .

The major advantages o f t he PROP process are i t s h igh y i e l d s ( g r e a t e r

than 90%) and i t s a b i l i t y t o produce h i g h q u a l i t y l u b e o i l , w i t h l e s s than

ppm metal s and n e g l i g i b l e s u l f u r and n i t r o g e n contents. The process a1 so

' S

0

generates a n e u t r a l phosphate f i l t e r cake which can be s a f e l y disposed o f i n a

l a n d f i l l . I n add i t i on , i t produces a s idestream o f l i g h t ends and heavy

gaso l i ne ( i n the d i e s e l - f u e l range) which can be used as a f u e l (18). Recent analyses o f process streams from t h e PROP process f o r i no rgan ic

and organic m a t e r i a l s a r e shown i n Table 30. The data show t h a t , a1 though the

d e m e t a l l i z i n g s tep i s reasonably e f f e c t i v e , t h e l e a d con ten t o f t h e o i l from the d e m e t a l l i z e r i s r e l a t i v e l y h i g h (-200 ug/g) . Much o f t h e lead, however,

appears t o have been removed by c l a y t reatment , w i th h i g h l e v e l s o f l e a d found i n the spent c lay ; t h e l e a d conten t o f t he f i n a l p roduc t was l e s s than 5 ug /g

(9) . I n general , t h e elemental con ten t o f t he f u e l f r a c t i o n was n e g l i g i b l e ,

w i t h o n l y i r o n ( 2 ~ g / g ) found a t l e v e l s exceeding 1 ug lg . Thus, use of t h i s

f r a c t i o n as a process f u e l appears t o be env i ronmenta l l y acceptable.

a d d i t i o n , a1 though the sol i d waste streams, i n c l u d i n g spent c l a y and f i 1 t e r

sludge from t h e demeta l l i ze r , c o n t a i n h igh l e v e l s o f meta l contaminat ion,

these streams a r e c u r r e n t l y approved f o r 1 and f i 11. c a t a l y s t i s t y p i c a l l y t r e a t e d as a hazardous waste (9).

With respec t t o o rgan ic compounds, Table 30 i n d i c a t e s t h a t some o f t he

v o l a t i l e s , no tab ly to luene, a re n o t comple te ly removed by the process. Other

compounds present i n b o t h t h e feedstock and produc t a r e naphthalene and PNA

compounds, i n c l u d i n g benz(a)pyrene, a t modest l e v e l s ( 10 pg/g) .

concen t ra t i ons b u t are ac tua l weights r e l a t i v e t o the feed f l o w ra te .

Contaminant concen t ra t i on ( i n ppm), t h e r e f o r e , can be ob ta ined by d i v i d i n g contaminant we igh t by t h e r e l a t i v e f l o w r a t e (shown i n the same column i n t h e

f i r s t row).

I n

I n comparison, spent

It should be noted t h a t the va lues shown i n Tables 29 and 30 are n o t

On the b a s i s o f the above cons ide ra t i ons , i t can 'be concl uded t h a t the PROP process i s env i ronmenta l l y q u i t e benign. The f i l t e r cake produced d u r i n g the demetal l i z a t i o n s tep a l l ows f o r safe d isposa l i n a c o n t r o l l e d l a n d f i l l .

I n add i t i on , by conver t i ng the s u l f u r i n the used o i l t o hydrogen s u l f i d e

55

Page 72: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

LIGHT ENDS

UNTREATED U S E D OIL

)DE U ETALLIZATIO N. > FILTRATION

2

Figure 9. Simplified Phillips Re-Refined Oil Process

Source: Chemical Engineering (18)

CATALY ST > CLAY > TREATY E N T HEATING

A

V V

FILTER D I A U U O N I U U P H 0 SP HATE CAKE

FLASH

TANK

V

Page 73: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 30, ANALYSES OF PROCESS STREAMS FROM A PROP RE-REFINERY

Proper ty F i l t e r Oemetall i z e d Spent Fuel Product

Feedstock Cake O i l Clay F r a c t i o n O i l

R e l a t i v e Flow Rate, weight

Contaminant Weight, ug/g o f feed

Ino rgan ic M a t e r i a l s A1 umi nun, Antimony Arsenic Barium Bery l1 ium Boron Cadmium Calcium Chromium Cobal t Copper I r o n Lead Magnesium Manganese Molybdenum N icke l Selenium Si1 i c o n S i l v e r Sodium Stront ium Tha l l i um T i n T i tan ium Vanad i um Zinc

Vola t i l e s Organic Compounds

T r i c h l o r o f 1 uoromethane T r i c h l o r o t r i f l uoroethane Methylene c h l o r i d e 1 . l -Oich loroethane 1.2-Dichloroethane t- 1 ,2- O ich l oroe t h y l ene Chloroform 1.1.1-Trichloroethane T r i ch lo roe thy lene Carbon t e t r a c h l o r i d e Tetrac h l oroe t h y l ene Benzene To1 uene E t h y l benzene

Semivo la t i l es Chlorobenzene Phenol Chlorophenol 0 i ch 1 o robenzene Nitrobenzene N i trophenol Naphthalene 2-Chl oronaphthal ene 2.4.6-Trichlorophenol Acenaphthene N i - N i trosodiphenylamine Hexachl orobenzene Phenanthrene/Anthracene Pyrene Benz(a1anthracene Benzo (a )py rene

PCBs 4,4' -ODE

100

8.3 <0.3

1.7

~ 0 . 0 4 6.6 0.8

3.4 0.2

150

610

13 110

2,060 270

13 1.4 0.6

<0.4 22 t0.04 59 0.1

4 . 7 2.2 2.2

<0.2 630

<20 < 20 <20 < 20 <20 < 20 <20 <20 <20 < 20 <20 90

670 160

<20 <10 <lo <10 <lo <10 280 <10 < l o <10 < l o <10 130

20 12

<10 <20 <1

90

<0.2 1 .o 1.6 2.2

co.01 2.8 0.05

14 <0.06 <0.06

2.3 5.2

1.3 0.04 0.3

<0.1 <0.4 <0.1 <o .02 89 <o .02 <0.8 2.1 0.02

<0.1 3.3

180

<19 <19 <19 <19 <19 <19 <19 <19 <19 <19 <19 <19 260 150

<19 (10 < l o < l o <lo <10 210 <10 < lo < 10 < l o <10 110

15 < lo 16

<19 <I

5

<0.01 <o .02 (0.03 <0.01 <0.01 0.02

CO.01 0.08

qo.01 (0.01

0.03 0.1 0.03

C0.02 <0.01 <0.01 <0.01 <0.02 <0.01 <o. 01 <0.01 <0.01 C0.04 <0.04 <0.01 <0.01 0.01

<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1

32 75 45

<2 5

<1 <1 <1 (1 30 <1 <1 (1 <1 <1

5 2 <l <1 c2 <0.1

85

<0.1 <0.3 <0.5 0.06

<0.01 0.09

<0.02 1.5

<0.06 tO .06 <0.03 2.6 3.5 0.2 0.08

(0.03 c0.09 <0.3 <0.09 <0.02 c0.2 <o .02 ~ 0 . 7 <0.7 <0.02 <o .02 0.3

<17 <17 <17 <17 (17 4 7 <17 <17 (17 (17 <17

16 160

70

4 7 < l o < l o < 10 < lo <10 95

< l o <10 <10 <10 <10 71 15 5 6

<17 <1

Source: GCA Corporat ion ( 9 )

57

Page 74: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

(H2S) i n t he hydrogenat ion s tep and subsequent ly absorb ing t h e H2S, a i r

p o l l u t i o n can be reduced.

s u l f u r emissions may escape t o the atmosphere where t h e ' ' r o t t e n egg" odor o f

H2S may be an i r r i t a n t t o the p u b l i c .

wastewater a re generated by the process. Th is stream does n o t c o n t a i n many

contaminants and, consequent ly, can be sent t o mun ic ipa l d isposa l systems,

depending upon l o c a l and s t a t e r e g u l a t i o n s , w i t h o u t any pre t rea tment (18 ) .

c o s t ( P h i l l i p s Petroleum Co. r e q u i r e s a $1 m i l l i o n r o y a l t y fee a lone) . The PROP process i s a l s o r e l a t i v e l y i n f l e x i b l e ; i t i s designed s p e c i f i c a l l y f o r

automot i ve crankcase o i 1 s (20). The on ly f u n c t i o n a l PROP f a c i l i t y i s i n Mexico. Two o t h e r p l a n t s

(Raleigh, Nor th Caro l ina , and Toronto, Canada) were b u i l t but , t o date, bo th

a re n o t ope ra t i ona l . The Ra le igh p l a n t has been c losed f o r severa l years

w h i l e t h e Toronto f a c i l i t y was shut down i n October 1986 due t o f i n a n c i a l d i f f i c u l t i e s .

However, if t h e va lves are n o t c losed c o r r e c t l y ,

I n a d d i t i o n , o n l y smal l amounts o f

Among the disadvantages o f t he PROP process a re i t s complex i ty and h i g h

K I N E T I C S TECHNOLOGY INTERNATIONAL, B.V. PROCESS

As shown i n F igu re 10, t he K i n e t i c s Technology I n t e r n a t i o n a l , B.V. (KTI )

process combines d i s t i l l a t i o n and h y d r o f i n i s h i n g t o remove most o f t he

contaminants o f waste o i l . The f i r s t d i s t i l l a t i o n column removes water and

l i g h t hydrocarbon f a c t i o n s w h i l e vacuum d i s t i l l a t i o n produces an overhead produc t i n the l u b e o i l range. The l a t t e r equipment a l s o generates a heavy

res idue c o n t a i n i n g asphal tenes, meta ls , and po lymer i za t i on produc ts ( 7 ) . The

o i l t h a t remains i s then mixed w i t h hydrogen, heated, and passed through a

c a t a l y t i c r e a c t o r t o improve the c o l o r o f the o i l and t o reduce the odor o f t he l i g h t ends and o the r overhead products .

s t r i p p e d w i t h steam o r f r a c t i o n a t e d i n t o d i f f e r e n t l ube c u t s depending upon

produc t requirements and s p e c i f i c a t i o n s .

no l a r g e byproduct streams; e x c e l l e n t p roduc t q u a l i t y ; h igh y i e l d s (82%); process f l e x i b i l i t y ; and a b i l i t y

t o accept PCBs and o the r hazardous m a t e r i a l s . The pr imary disadvantage i s t he

hydroheat ing c a t a l y s t s ' s e n s i t i v i t y t o va r ious contaminants r e s u l t i n g i n

f requent changes (18) . A t the present t ime, f o u r K T I p l a n t s a re i n commercial

operat ion, one each i n t h e Un i ted States, West Germany, Greece, and The

The hyd ro t rea ted o i l i s f i n a l l y

The advantages o f t he KTI process inc lude:

Page 75: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

z W 0 0 a ;I I- O

> I

m

I

n I z

m aJ V 0 L n

h, t

7

n E .r v,

0 I+

aJ L 3 m

59

Page 76: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

Netherlands. t o produce 10 million gal of finished lubricat ing base o i l s annually.

The U.S. plant i s located i n Newark, California, and i s designed

PROPANE EXTRACTION PROCESS

The basis fo r this process, developed by Ins t i t u t Francais du Petrole ( I F P ) , i s the use of propane to select ively ex t rac t base lube materials from the additives and impurities contained in used o i l . The propane, containing dissolved o i l , i s then removed as an overhead from the extractor , while the h i gh boi 1 i ng, dark-col ored asphal t i c and oxidized hydrocarbons and suspended solids are recovered as a bottom residue. The bottoms are mixed with a fuel o i l and used as plant fuel , or otherwise disposed o f ; whereas the propane i s flashed off from the o i l and recycled.

As shown i n Figure 11, the process scheme of the I F P process consis ts of the following 6 operations:

0 Dis t i l l a t ion

0 Solvent extraction

0 Solvenl; separation and recovery

0 Acid treatment

0 Clay treatment

0 Fi l t r a t ion

Following receipt , the waste o i l i s f i rs t d i s t i l l e d to remove water and l i g h t hydrocarbon fract ions. r a t io of 15 t o 2O:l (propane: waste o i l ) t o produce a h i g h qual i ty product. The propane-oil mixture i s next sent to the separation section where the propane is flashed off from the o i l and recycled. residue, a dark asphal t ic-1 i ke materi a1 containing oxidized hydrocarbons and suspended sol i d s , i s a1 so generated d u r i n g t h i s operation (10).

The recovered lube o i l next undergoes an acid-clay treatment similar t o t h a t described e a r l i e r . already been removed, the acid and clay doses i n the propane extraction process are only ha1 f of t ha t used i n the acid-cl ay re-refining process (10). The f i n a l step i n the operation i s f i l t r a t i o n .

I t i s then mixed w i t h propane ( i n an ex t rac tor ) i n the

As mentioned above, the

Because a s ign i f icant amount of contamination has

60

Page 77: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

W

m 0 z

u 0 L a c 0 .C

61

Page 78: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

The wastes f rom the propane e x t r a c t i o n process a re d i s t i l l a t i o n bottoms, a c i d sludge, and spent c lay . Even though the sludge and c l a y q u a n t i t i e s a re

sma l le r than those from the a c i d - c l a y process, t he d isposa l problem i s s t i l l

s i g n i f i c a n t because o f t he waste 's c h a r a c t e r i s t i c s . Small amounts o f o i l y

wastewater a re a l s o generated by t h e process. I n general , t he propane e x t r a c t i o n process produces a good q u a l i t y o i l a t

r e l a t i v e l y h i g h y i e l d s o f 70 t o 80%.

o f t he p roduc t a re a l s o s u p e r i o r t o t h a t o f t he a c i d - c l a y process. t h e KTI process i s more expensive than the a c i d - c l a y process.

The odor and c o l o r s t a b i l i t y q u a l i t i e s However,

BARTLESVILLE ENERGY TECHNOLOGY CENTER SOLVENT EXTRACTION PROCESS

T h i s process, devel oped by B a r t l e s v i 1 l e Energy Techno1 ogy Center (BETC )

o f t h e U.S. Department o f Energy (now c a l l e d Na t iona l I n s t i t u t e f o r Petroleum and Energy Research (NIPER), i s s i m i l a r t o t h e KTI process w i t h a d d i t i o n of

s o l v e n t t rea tment . As shown i n F i g u r e 12, t he incoming waste o i l i s f i r s t

dehydrated and s t r i p p e d o f l i g h t hydrocarbon f r a c t i o n s i n a d i s t i l l a t i o n column. The dehydrated s ludge-conta in ing o i l i s then t r e a t e d w i t h a 3 : l m i x t u r e o f mixed so l ven ts ( b u t y l a l coho l , i s o p r o p y l a l coho l , and me1 t y l e t h y l

ketone). The solvent-used o i l m i x t u r e i s a l lowed t o s e t t l e and the sludge i s

drawn o f f t he bottom o f t h e s e t t i n g tanks o r c e n t r i f u g e d t o recover the o i l and so lvent . The s o l v e n t i s n e x t sen t t o a s o l v e n t recovery u n i t t o recover

and reuse t h e so l ven t . F i n a l l y , t he e x t r a c t e d o i l i s d i s t i l l e d i n a vacuum f o l l o w e d by c l a y t rea tment o f t he d i s t i l l e d o i l t o remove c o l o r bodies and t o

improve odor. I n the o r i g i n a l c o n f i g u r a t i o n o f t h e BETC process, c l a y c o n t a c t i n g was

used t o produce a c lean f i n i s h e d l u b e stock. Recent ly, however, BETC has been

e v a l u a t i n g m i l d hydro t rea tment as a s u b s t i t u t i o n f o r t h e c l a y c o n t a c t i n g s tep

t o produce o i l s o f s u p e r i o r c o l o r and c l a r i t y w i t h acceptable v i s c o s i t y and

heteroatom c o n t e n t ( 2 1 ) . I n a d d i t i o n , t h i s new techn ique o f f e r s ope ra t i ona l

simp1 i c i ty and environmental a t t r a c t i v e n e s s . Other advantages o f t he m i 1 d

h y d r o t r e a t i n g opera t i on a re a compara t ive ly s imple and cont inuous opera t ion ,

e l i m i n a t i o n o f t h e b u l k y and inconven ien t c l a y t reatment, and r e d u c t i o n i n

s o l i d s hand l ing . problem i s e l im ina ted . A f i l t r a t i o n s tep may s t i l l be necessary, b u t t h i s

merely i n v o l v e s p o l i s h i n g the p roduc t th rough a smal l , inexpens ive f i l t e r

Product y i e l d s may a l s o be improved and the c l a y d isposa l

(22 ) .

62

Page 79: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

L I G H T E N D S

+ S L U D G E

\ O L V E N T

r - -

U N T R E A T E D > U S E D O I L

- L I H Y D R O - 1 T R E A T M E N T

S E T T L I N G S O L V E N T ' R E C O V E R Y > E X T R A C T I O N

T A N K D I S T I L L A T I O N -

\L L U B E O I L

V A C U U M

D I S T I L L A T I O N

-I 0 T R E A T M E N T

L F l L T R A T l O N

S P E N T \L C L A Y

Figure 12. Simplified Bartlesville Energy Technology Center (BETC) Process

t

Page 80: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

In general , i f hydrofinishing were subst i tuted for clay contacting, some equipment would be eliminated and new items added. contacting apparatus and the la rger , more expensive f i l t r a t i o n appara tus would be removed, and i n t he i r place, a h i g h pressure ca t a ly t i c reactor would be added for m i l d hydrotreatment of lubricat ing o i l s .

For example, the clay

Among the hydrofinishing process' disadvantages are ( 2 2 ) : 0 S1 i ghtly h i gher capital costs for the hydrogenation equipment

t h a n the aci d-cl ay process.

0 Elevated temperatures and pressures which pose dangerous operating conditions.

0 Expl osi ve hydrogen stored on p l a n t s i t e , requi ri ng add i t i onal care and hand1 i ng.

0 Occassional p l a n t shutdowns possibly resul t ing i n excessive

0 A d d i t i o n a l energy requirements t o main ta in the h i g h temperature

hydrogen 1 osses from the cryogenic storage u n i t .

and h i g h pressures i nvol ved i n hydrogenation versus 1 ower temperature f o r the atmospheric clay contacting operation. T h i s i s ref lected i n higher u t i l i t y costs.

0 Decreased operating f l e x i b i l i t y ; i . e . , flow rates must be relat ively constant, which c a l l s for smoother operation of the en t i re plant.

Although the BETC process eliminates many of the problems associated w i t h the h a n d l i n g and disposal of acid sludge and o i ly clay of the acid-clay process, i t does produce two other waste streams which must be u t i l i zed or disposed of i n an adequate manner. solvent sludge from the solvent recovery and vacuum d i s t i l l a t i o n operations; this stream, as shown i n Table 31, contains hydrocarbons and heavy metals. The second source of waste stream i s d i s t i l l a t e residue.

waste and product streams. normalized to show the d i s t r i b u t i o n of consti tuents resul t ing from the processing of 1 g of feedstock. T h u s , contaminant stream concentrations i n parts per million ( ~ g / g ) i n the streams are equal t o the values shown i n the table multiplied by the r a t i o of the feedstock flow rate t o the stream flow rate. equivalent t o a stream concentration of a b o u t 4 pg/g [12 x (100/294)].

As shown i n Table 31, the effectiveness of the solvent treatment

One of the waste streams produced is

Table 31 shows the resu l t s of laboratory simulations of the BETC process' As mentioned previously, these resu l t s have been

As an example, the value of 12 Dg/g shown i n column 4 fo r iron is

64

Page 81: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

cn Ui

TABLE 31. ANALYSES OF PROCESS STREAMS FROM THE BARTLESVILLE ENERGY TECHNOLOGY CENTER RE-REFINING PROCESS

Hydrofinished Clay-finished Percent D i s t i l l a t e Solvent Property Feeds toct Sludge Solvent Residue D i s t i l l a t e Product Product Recoverya

Relat ive Flow Rate, weight

Contaminant Weight, q / g o f feed

Inorganic Compounds A1 umlnum An ti mony Arsenic Barium Beryl1 ium Boron Cadmium Calcium Chromium Cobalt Copper I r o n Lead Magnesium Manganese Molybdenum Nickel Selenium Si1 icon S i l ve r Sodium Strontium Thall ium T in Titanium Vanadium Zinc

Organic Compounds Chlorobenzene B f s( ch l oromethyl ether Phenol Chlorophenol Dichlorobenzene Nitrobenzene Nt trophenol Naphthalene 2-Chloronaphthalene 2.4,6-Trichlorophenol Acenaphthene N-Nitrosodiphenylamine Hexachl orobenzene Phenathrene/anthracene Dibutyl phthalate Butylbenzyl phthalate Pyrene Benz(a) anthracene Triphenyl phosphate Benzo(a)pyrene 4.4' OOEe PCBS

100

34 0.6 9.7

70 (0.1 9.2 1.4

9.5 1.1

1,140

36 280

1,250 240 16

3.6 4.1

(1 .o 55 (0.1

260 2.1

<1 19 10

820 4.7

NOC NOC NOd NOd NOC NOC

54 NOC 44

98 NOC

260 820 110 280 24 NOC NOC 68 43

NDd

N D ~

4.3

13 0.6 4.8

0.02 1.0 0.6

4.6 0.4

22

300

16 80

530 43

4.0 1.6 1.3 0.1

20 <o . 01 86 0.7

(0.2 17 4.1 1.1

320

NOC NOC

Nia5 NOC NOC NOd

N i t 0

N k 8

N V

1 .o NOC

2.7

N,0e4 0.6

1.7 0.5 0.6

294

Nob NOb NO NOb NOb NOb NO

OD6 3 NO k b NOb NOb NOb NO NOb NO NOb NO

NO NO NO NOb

N D ~

0.9

Noc NOC NOd NOd NOC NOC NOd NOC NOC NOd N D ~ Noc NOC NOC NOC NOC

NOC NOC NOC NOC

N D ~

N D ~

19.2

16 0.6 3.3

0.06 8.2 0.5

5.2 0.6

42

700

13 210 420 195 11 1.8 2.5

(0.3 19 (0.01

160 1.2 (0.5 30

1.5 3.4

340

NOC NOC NOd NOd NOc NOC NOd NOC NOc NOd HOC NOC NOC NOc NOC NOC

NOC NOC

N D ~

i t 5 (1 u g / g

76.5

4 .O (0.8 (0.8 (0.08 (0.8 (0.2 (0.8

3.0 0.1 (0.08 0.2

26 0.3 1.0 0.5 (0.08 2.1 0.3 6.7 (0.8 2.0 (0.08 (1.5 12 (0.08 (0 .08 34

NOC NOC NOd NOd NOC NOC NOd 60 NOC 14 NOC

110 NOC 34

1 ,ow 80 40 30 NOC

400 40 24

70

1.2 3.0

(0.7 a 0 7 (0.07 0.6

~0 .7 1.5

(0.07 <0.07 1.4 5.1 0.3 0.8 0.07

(0.07 <0.15 1.9 5.3

(0.07 2 .o <O .07 (1.5 13 <0.07 (0.15 1.6

NOC NOC 21 NOd NOC NOC NOd

NOC NOd NOC NOC NOC 45 77 NOC 56 NOC NOC NOC NOC

49

(1 u9/9

70

0.4 0.7

<0.7 <0.07 (0.7 0.5

(0.7 0.4 (0 .07 (0.07 <0.07 1.2

(0.07 (0.07 (0.07 <0.07 (0.15 (0.15 (0.15 (0.07 1.8

(0.07 1.5 5.7

<0.07 (0.15 1.3

NOC NOC NOd NOd NOC NOC NOd 30 NOC NOd NOC

NOC NOc 80

1,200 NOC 34 40 NOC

250 50 20

--- b h t e r i a l balance closure f o r streams o r co lmns 2 through 6; 1 . e . . Column a = Column 3 t Column 4 t Column 5 t column 6. ,NO< = 0.1 u g / g (detect ion l i m i t ) . dNO< = 10 u g / g (detect ion l i m i t ) . ,NO< = 20 u g / g (detect ion l i m i t ) .

Source: GCA Corporation (9).

DOE, added as a spike. was the only p r i o r i t y po l l u tan t pest ic ide Iden t i f i ed .

Page 82: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

opera t ion , as determined by t h e o v e r a l l removal o f 27 elements, i s about 35%. Th is removal i s l e s s than the ash r e d u c t i o n va lues o f 42 t o 86% achieved by

DOE i n a s e r i e s o f t e s t s w i t h the same s o l v e n t system as used i n t h i s study.

Many parameters such as temperature, a g i t a t i o n , and composi t ional f a c t o r s a re

probable c o n t r i b u t o r s t o the apparent d i f f e r e n c e s between the two s tud ies . The data a l s o show comparable reduc t i ons i n the i no rgan ic elemental con ten t o f

c l a y - f i n i s h e d and h y d r o f i n i s h e d d i s t i l l e d o i l s . Th is observa t ion suggests

t h a t more complete removal o f t r a c e elements than t h a t achieved by e a r l i e r p rocess ing opera t ions (e.g., so l ven t t rea tment and d i s t i l l a t i o n ) would be

d e s i r a b l e t o reduce c a t a l y s t po ison ing and a t t r i t i o n d u r i n g the h y d r o f i n i s h i n g

s tep ( 9 ) .

concen t ra t i on o f benzo(a)pyrene i n the p roduc t f rom wiped f i l m d i s t i l l a t i o n . It appears t h a t t h i s compound was generated d u r i n g the d i s t i l l a t i o n opera t i on

even though a subsequent a t tempt t o r e p l i c a t e t h i s r e s u l t was n o t successful

( 9 ) .

o f h y d r o f i n i s h i n g i n des t roy ing PCBs and n i t rosoamine compounds, p resen t as

sp ikes i n the feed. I n c o n t r a s t , the c l a y - c o n t a c t i n g opera t ion , as s imu la ted

i n the l abo ra to ry , d i d n o t r e s u l t i n the removal o f these compounds. Al though

some odor and c o l o r removal was noted by c lay -con tac t i ng , t he e f f e c t s were l e s s than those observed w i t h h y d r o f i n i s h i n g . Thus, f rom the s tandpo in t o f

c o l o r and odor, the h y d r o f i n i shed so l ven t t rea tment -d i s t i 11 a t i o n produc t i s super io r t o the f i n a l p roduc t ob ta ined f rom ac id -c lay and PROP r e - r e f i n i n g

processes ( 9 ) .

Fur ther , the r e s u l t s o f o rgan ic analyses show r e l a t i v e l y h i g h

Another observa t ion o f i n t e r e s t i n Table 31 i s t he e f f e c t i v e n e s s .(-97.7%)

RESOURCE TECHNOLOGY, I N C . PROCESS

I n the Resource Technology, Inc. (RTI) process (see F i g u r e 131, used o i l

i s i n i t i a l l y dewatered, heated, and then f l a s h e d i n an atmospher ic d i s t i l l a -

i o n tower t o remove e m u l s i f i e d water and l i g h t f u e l f r a c t i o n s b o i l i n g below

425OF (23).

where more l ight -medium f u e l f r a c t i o n s (up t o 62OoF) a re vapor ized.

f u e l f r a c t i o n s can be e i t h e r burned o n s i t e o r s o l d a f t e r some form o f f i n i s h -

i n g such as c l a y p o l i s h i n g .

The remain ing used o i l i s then i n j e c t e d a t h igh v e l o c i t y i n t o a c y c l o n i c

vacuum d i s t i 11 a t i o n c o l umn.

Next, t he dehydrated used o i l f r a c t i o n i s sen t t o a vacuum column

These

The h igh v e l o c i t y stream generates an ext remely

66

Page 83: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

L LL

I : I

d

I 4

0 w !- < W

I- f =I

a

\

=! 0

0 W v)

3

v) v) aJ V 0 L a

V c H

n

aJ Q) L V 3 L 0) 3 -7 0 L L v,

Page 84: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

large centrifugal force which aids i n the separation of the remaining additives and contaminants from used oi l without the formation of coke. The contaminants , which are generally removed as residual bottoms from the vacuum tower, are marketable, without fur ther processing, t o the a s p h a l t industry. The d i s t i l l e d lube o i l i s then mixed w i t h diatomaceous earth and activated clay, followed by f i l t r a t i o n i n a plate-and-frame f i l t e r press.

The RTI process produces a re la t ive ly clean product o i l w i t h a low ( l e s s t h a n 5 ppm) metals content. waste o i l stream i s recovered as a base lube stock. Furthermore, the process generates negligible air emissions, and the wastewater produced requires minimal treatment ( 2 3 ) . In addition, no sol id wastes are generated by the RTI process since a l l the byproducts/wastes produced are considered marketable or usable.

In addition, approximately 80% of the incoming

DISTILLATION-CLAY FILTRATION PROCESS

There are f ive d i s t inc t a n d separate u n i t operations comprising t h i s simple re-refining process. fo l 1 owing: pretreatment; dehydration ; s t r i p p i ng ; d i s t i 1 1 a t i on ; and cl ay treatment and f i l t r a t i o n . o i l wi l l depend upon i t s source and extent of contamination. Usually, automotive used o i l s wi l l skip pretreatment, while most industrial o i l s are generally t reated w i t h chemicals t o remove emulsified water and d i r t . clean oi l i s then heated t o f lash of f the water a t 30OoF.

dehydrator are condensed and pumped t o wastewater treatment while the o i l i s sent to the d i s t i l l a t i o n section.

As shown i n Figure 14, these include the

Whether pretreatment will be used for a given used

The The vapors from the

The dehydrated o i l i s next heated before being fed i n t o a f l a s h t a n k . the heated o i l enters the f lash t a n k , the low boiling fract ions of o i l are

temporary storage. Meanwhile, the higher boiling o i l i s c i rculated back t o where the system controls regulate the flow t o the t h i n f i lm evaporator. adjusting the level of vacuum, differ ing amounts of l i g h t ends can be removed d u r i n g t h i s process step ( 2 4 ) .

The o i l flows continuously from the fuel s t r i p p i n g step t o the t h i n f i lm evaporator. The jacket temperature of the t h i n f i lm evaporator and the internal vacuum are controlled t o a l low a wide range of products t o be

As

. flashed of f as vapor , condensed, collected i n a receiver, and pumped t o

By

68

Page 85: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

e-

%-

L

S 0

a

0 .r c, c , a J

69

Page 86: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

generated. a t two d i f fe ren t temperatures. This d i f fe ren t ia l provides p a r t i a l condensation of the d i s t i l l a t e vapor so tha t o i l s w i t h d i f fe r ing product charac te r i s t ics can be produced on a consistent basis. bottoms product i s collected and pumped t o storage. The bottoms can be s o l d d i rec t ly or they can be mixed w i t h dehydrated oi l to form a salable No. 6 fuel o i l . The vacuum for this process is produced by a steam e jec tor system. The condensed steam from the e jec tors i s collected i n a hotwell and then pumped t o wastewater treatment storage.

process consists of adding clay i n the correct proportions. then pumped through a f i l t e r press to remove the clay and any other impurities.

Company, Inc. i n Buffalo, New York ( 5 million gal/year) in a fully-automated, continuous mode. operations i n a continuous mode, they are generally integrated w i t h other batch operations. en t i r e system i s continuous. the d i s t inc t ly unique configuration of the various u n i t operations. to handle industr ia l o i l s select ively and i n a form amenable t o subsequent continuous processing, a batch pretreatment step i s u t i l i zed . Add i t iona l ly , the process involves the innovative use of a Luwa t h i n film evaporator i n a p a r t i a l condensation mode ( 2 4 ) .

of high-temperature vacuum d i s t i l la t ion operation has been the continual f o u l i n g of the d i s t i l l a t i o n column which causes substantial downtime and costly cleanups. minimize the problems commonly associated w i t h h i g h temperature, vacuum d i s t i l l a t i o n by s ignif icant ly reducing f o u l i n g and minimizing downtime. low hold-up i n the Luwa evaporator limits the amount of time the o i l i s subjected t o h i g h temperatures while the a g i t a t i o n imparted by the rotor reduces hot-spots t h a t could al low degradation and caking ( 2 4 ) .

ref ine used o i l are a lso i n commercial use a t Motor Oils Refinery Co. i n McCook, I l l i n o i s , and a t CAM-OR, Inc. i n Westville, I n d i a n a . The principal

The o i l vapors are condensed by two condensers i n se r ies operating

The undis t i l l ed o i l or

The f i n a l step i n the operation of the d is t i l l a t ion-c lay f i l t r a t i o n The s lurry i s

A t the present time, t h i s process i s being used commercially by Booth Oil

While other re-refining processes may involve similar u n i t

The operation a t Booth Oil Company i s unique i n t h a t the This continuous system i s possible because of

However,

Histor ical ly , the most s ign i f icant disadvantage associated w i t h any type

The use of the Luwa t h i n f i lm evaporator i s expected t o

The

Simi la r process schemes using d i s t i l l a t i o n and clay treatment to re-

70

Page 87: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

d i f f e r e n c e s between the r e - r e f i n i n g process a t these two f a c i l i t i e s and the

one a t Booth O i l Company i s t he t ype o f evapora tor used f o r d i s t i l l i n g the

used o i l . While the Booth O i l Company f a c i l i t y uses the Luwa t h i n f i l m

evaporator, the o t h e r two f a c i l i t i e s use t h e P f a u d l e r wiped f i l m evapora tor .

U n l i k e the r e c e n t l y i n t r o d u c e d Luwa evaporator, t he P f a u d l e r evapora tor i s a

proven technology; i t has been used t o r e - r e f i n e 15 m i l l i o n ga l / yea r o f used

o i l a t Motor O i l Company's p l a n t f o r about 14 yea rs (20) . With respec t t o environmental c h a r a c t e r i s t i c s , no major problems a r e

expected f rom a d i s t i l l a t i o n - c l a y f i l t r a t i o n r e - r e f i n e r y . Odor and wastewater problems a re n o t b e l i e v e d t o be any more se r ious w i t h t h i s process than w i t h a

t y p i c a l ac id -c lay opera t ion . However, if a baromet r ic condenser i s used f o r

t h e vacuum column, t h e q u a n t i t y o f contaminated wastewater can be very l a r g e .

Water o r a i r - c o o l e d su r face condensers a re p r e f e r a b l e t o ba romet r i c condens-

ers, b u t a re more expensive; however, t h e i r inc reased c o s t must be balanced

a g a i n s t t he decreased c o s t of wastewater t rea tmen t (9). Analyses o f process streams f o r elemental compos i t ion show t h a t most o f

t h e elements i n used o i l feedstock end up i n the bottoms f rom t h e Luwa d i s t i l l a t i o n u n i t (Tab le 32). The t a b l e a l s o shows t h a t t he elemental con ten t

o f t he aqueous phase from t h e dehydra t ion step, a l though appear ing h igh , i s

w i t h i n t o x i c i t y l i m i t s (9 ) . Table 33 presents the concen t ra t i on o f o rgan ic

compounds i n the process streams from the same d i s t i l l a t i o n - c l a y f i l t r a t i o n

r e - r e f i nery.

RECYCLON PROCESS

The Recycl on process , devel oped by Leybol d-Heraeus GmbH o f West Germany,

i s shown i n F i g u r e 15. Waste o i l s a re f i r s t d i s t i l l e d t o remove water and

l i g h t hydrocarbons. The dehydrated o i l i s then sen t t o a r e a c t o r where sodium

p a r t i c l e s rang ing i n s i zes o f 5 t o 15 micrometer a re added i n s u f f i c i e n t amounts t o make a 1% s o l u t i o n o f metal i n o i l . Through a s e r i e s o f reac t i ons ,

which i n c l u d e p o l y m e r i z a t i o n o f unsatura ted o l e f i n s and convers ion o f halogen

and s u l f u r compounds, t he i m p u r i t i e s i n the o i l a r e t rans formed i n t o compounds

t h a t cannot be d i s t i l l e d ; consequently, they remain i n the res idue (18). The o i l i s then passed through a s e r i e s o f t h i n f i l m evapora tors f o r f i n a l

separa t i on o f l u b e o i l f rom the residue.

7 1

Page 88: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

T A B L E 32. ELEMENTAL ANALYSES OF PROCESS STREAMS FROM A D I S T I L L A T I O N - CLAY F I L T R A T I O N RE-REFINERY, PPM

Oehydrati on Vacuum d i s t i l l a t i o n

Organic Aqueous Fuel L igh i H e a q Spent Light Feedstock Phase Phase Product cut Feed Bottoms Lube Lube C l ay Producta

Re la t ive flow r a t e , weight

Elements A1 uninum Antimony Arsenic Barium Beryl 1 i um Bo m n Cadmium Calcium Chromium Cobalt co PPe r I ron Lead Magnesium Manganese Molybdenum M i c kel Sel eni um Si1 icon S i l v e r Sodium S tron ti um Thallium Tin Ti taniun Vanadium Zinc

100

650 1.1 4.5

0.3

1.0

84

11

1,030 18

130 1.300

350 240

27 12 25

200

450

1.2

0.4

0.02

3.4 0.9

16 20

340 7.5

3 17

100 0.8 0.4 0.02 0.4 0.03

12 0.2 0.06 0.001 0.4 1.5 0.1 0.001

3.0 0.004 0.09 0.005

24 22

20 0.1 220 3.5

56 1.5 9.4 3.9 0.8 0.4 1.8 0.004 1.7 0.08 0.4 0.02 0; 1 1.7- 0.02 0.001

0.3 0.02 0.8 0.04 2.9 0.03 0.9 0.001 1.0 0.005

22 13

19 4.4

80

680 1.0 5.5

0.3 8.9 1.2

95

890 20

130 1,260

500 220 32 14 17

200

61 0

1.0

0.4

0.02

3.7 0.9

18 28

400 5.5

14 66

32 4 70 0.4 0.4 0.7 3.7 7.0 100 0.02 0.1 3.3 6.3 0.1 1.8

1.7 16 0.07 0.5 9.3 150

120 1.080 57 930 20 330

1.5 24 0.8 11 2.1 10 0.4 0.4

36 5.2 0.02 0.02

33 420 0.2 4.1 0.9 0.8 2.0 23 2.3 26 0.5 5.9

47 880

83 1.290

13

670 0.4 8.3

0.3

5.7

14

13

3.480 35

265 1.600 2,090

900 43 26 16

1.4

0.4 8.6 0.02

8.7 0.8

590

34 53

2.960 6.2

45

0.8 0.4 0.7 0.03 0.02 1.0 0.02 0.8 0.4 0.07 4.7

2.8 0.4 0.07 0.04 0.5 0.4

0.02 5.1 0.02 0.9 0.7 0.02 0.1 0.5

30

10

8

2.4 0.4 0.7 0.3 0.02 1.3 0.02 4.2 0.1 0.07 2.6 6.8 7.4 0.8 0.1 0.04 1.3 0.4 7.0 0.2 7.9 0.02 0.9 1.3 0.2 0.1 4.6

6

2.08 0.4 0.4

140 211 27

7,730 18

14 7,120

9,450 90

0.5

1.5

0.4

0.04 6.9 0.4

0.02 150

400 44

0.8 4.1

200 20

140

43

1.4 0.4 0.7 0.07 0.02 0.3 0.02 0.7 0.07 0.07 0.9 1.7 2.7 0.4 0.02 0.04 0.4 0.4 4.7 0.02 4.2 0.02 0.9 0.7 0.2 0.1 0.5

'Clay-treated product.

Source: GCA Corporation (9)

Page 89: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 33. ORGANIC ANALYSES OF PROCESS STREAMS FROM A DISTILLATION- CLAY FILTRATION RE-REFINERY PPM

Oehydrat ion Vacuum d i s t l 1 l a l l o n

Organic Aqueous Fue l L igh f Heawr Spent i i g m i Feedstock Phase Phase Product Cut Feed Bottoms Lube Lube C lay Proaucta --

R e l a t i v e f low 100 3 I1 80 I 4 66 13 4 5 8.5 6 43 r a l e . weight

V o l a l l l e Orpanics lrichlorotrlfluoroethanes Dibromoethanes Dibromoelhmes Cyclopentan*. methyl Cyclohezane. methyl Chloromethane Oich lo rod i f luoromethrne Ilrowomethane V i n y l c h l o r i d e Chloroethane Ihthylene Chlor lde A c r o l e i n A c r y l o n i t r i l e 1 r i C h l o r o f l u o r o W t h a n e 1.1-Oichloroetnylene 1.1-Dichloroethane lrans-l.2-dichloroethylene Chloroform 1.2-Dichloroethane 1.1.1- l r ichloroethane Carbon l e l r r c h l o r i d e Browodichloromethane ) i s - c h l o r o a e t n y l e t h e r 1 .I-OIch I oropropane lrtns-l.3-dichloropropene I r l c h l o r o e t h y l e n e Oibromochlorowethane Cis- l .3-dlchloropropcne 1.1.2- l r ichloroelhane Bentene 2-Ch loroe thy lv lny l e t h e r Bromoform l e l r a t h l o r o e t h e n e ~.1.2.2-letr~chloroelh~ne Toluene Chlorobenzene Ethylbenzene D i r l n y l b e n z e n e s Alkylbentenes (Cgnl2)

Semivolatile Organics Phenol Chlorophenol isomers Di th lorobenzene i s o w s I l t r O b e n I e n e 2-Nitrophenol Iaph lha lene 2-Chloronaphthalene 2 .4 .6 - l r i th lo ropheno l Acenaphthene I -N l t rosod lpheny lamtne Nexechlorobentene Phenanlhrenelrnthracene O l b u t y l p h t h r l a t e B u l y l b m z y l p h t h a l a t e ~ i s ~ ~ - e t n y l h e r y l l p h ~ h ~ l i Pyrene Benz(8lanthratene l r i p h e n y l phosphate Benzo(a )pyrene

K B s 4 . 4 ’ 4 0 L

1.400 < 30 -30 < I O 280 0 0 (30 < 30 < 30 < 30 (30 <30 0 0 (30 <30 < 30 (30 <30 (30

1.100 < I O (30 0 0 (30 < 30 790 t30 0 0 0 0

< I 0 0 (30 < 30 690 < 30

1.400 < 30 4 4 0

1.400 cx )

46 <6 1s t 6 <6

270 (6 (6

9 (6 t 6

I50 (6 <6 32 20 18 <6 (6 (6 18

13.000 t 2 O <20

I .goo 4.900

<20 (20 t2O (20 (20

2 .400 < 30 t 2 O

3.100 280 360 4 0 0 (90 <20

5 0 . m (20 (20 t 2 O <20 (20

20.000 c20 t20 (20

1.6W (20 < 20

8.2W c20

26 .OW <20

1 9 . m 18.000 21.000

(5 (S t S (5 (5

1.400 (5 8

(5 (5 (5 40 (5 <I

7 (5 <-a ( 5 c 5 <S

(11

310 (20 (20 (20 <20 (20 (20 (20 (20 (20 c20 (20 (20 (20 (20 (20 0 0 (20 t 2 O 610 t 2 O (20 (20 (20 (20 2 30 (20 (20 (20 t20 (20 (20 110 (20

1.300 (20 (20 270 t30

(0.02 (0.02 0.2 <0.02 (0.02 0.7 (0.02 CO .02 (0.02 <0.02 (0.02 0.03 (0.02 (0.02 0 . I

<0.02 <0.02 (0.02 (0.02 (0.02

(10

(20 (20 (20 <20

90 (20 <.‘O (20 (20 (20 (20 (20 (20 (20 (20 (20 (20 (20 <20 200 (20 (20 (20 (20 (20 160 (20 (20 (20 (90 (20 c20 I40 (20 340 ( 2 0

30 600

3.600

26 <5 9 0 <S

280 (5 t 5 <5 (5 (S

150 (5 (5 93 2s 19 (5 (5 (5

(21

0 0 0 0 MA NA (30 <30 MA NA (30 0 0 NA NA 0 0 0 0 NA NA c30 0 0 NA NA < I O (30 NA NA (30 0 0 NA NA

M A MA <30 <30 NA

HA

<” ‘” UA

<30 0 0 M A <30 (30 MA NA (30 <30 MA NA c30 t30 M A MA < I O 0 0 NA NA <30 (30 NA MA 0 0 0 0 MA NA (30 t30 NA NA .. < 30 < 30 < 30 0 0 < 30 0 0 <30 < 30 110 < 30 <30 (90 c90 (30 < 30 (30 < 30 290 (30 130 550 < 30

110 (4 <. t 4 (4

470 (4 (4 98

140 ( 4

670 IO ( 4

LIS 100 83 (5 (5 (5 t 0

.~ 0 0 0 0 0 0 0 0 t30 (30 0 0 (30 (90 (30 < 30 (30 < 30 0 0 (30 < 30 (30 <go < 30 < 30 < 30 < 30

<S t S (5 <S <5 31 <S (5 (5 (5 (5 46 (5 (5 25 18 31 (5 (5 (5

(19

NA NA M A W M A MA M A M A MA MA NA NA NA NA NA MA M A NA NA NA NA NA

(4 t 4 (4 <4 <4 (4 (4 (4 (4 t 4 (4 t 4 (4 ( 4 (4 (4 ( 4 <4 <4 (4

(11

MA MA M A MA NA NA NA NA NA M A NA MA M A MA HA UA MA NA NA NA NA NA

12 (5 (5 <5 (5 27 t 5 t S 13 (5 (5 200

(5 29 93 48 91 <5 I6 (5

(11

M A MA M A MA NA MA M A HA NA MA HA NA NA NA NA MA M A NA NA M A M A MA NA NA NA NA NA NA HA NA MA NA HA NA MA NA MA MA MA

(5 <5 (5 t S (5 <5 <5 (5 (5 (5 (5 22 (5 C 5 69 23

100 ( 5 65 <5

(11

HA NA NA NA NA NA NA M A NA M A NA M A NA NA NA MA NA NA NA NA NA MA NA NA NA MA NA NA HA NA NA NA NA MA NA NA MA MA NA

< I < I (1 (1 (1 < I (1 t l t l < I < I (1 < I < I < I

5 4 8 2

< I (8

MA NA HA MA NA HA MA NA MA MA NA MA NA NA M A M A MA NA MA NA NA MA M A M A NA NA NA MA NA NA M A NA NA NA MA M A MA NA NA

12 (5 (5 <5 <S <5 <5 (5 (5 8

<5 40 6 <5 <s 32 36 <S IS (5

t14

aClay- t rea ted product. NA - Not Anrlyamd ( a n a l r ~ m a no1 conducted f o r v o l a t i l m componmnlal.

Source: Gcn Corpora t ion (9)

73

Page 90: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

c 0

W I' lx

.. W W L 0 3 L m 3

0 v,

*r- LL

74

Page 91: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

The yield of the Recyclon process i s approximately 70%. Few a i r emissions are generated by the process. by the f i r s t d i s t i l l a t i o n column may be s l i gh t ly acidic; however, a f t e r neutralization, i t can be sent d i rec t ly t o a local sewer system (18).

I n addition, the wastewater produced

KRUPP RESEARCH INSTITUTE SUPERCRITICAL PROCESS

I n t h i s process, used o i l i s f i r s t atmospherically d i s t i l l e d t o remove water and l i g h t hydrocarbon components. t o a packed tower where the o i l i s extracted from the contaminants under supercr i t ical conditions of 1,500 psia and llO°F. tower as bottoms while the oil-laden solvent i s sent t o two more packed columns t o separate o u t the solvent from the lube o i l . cooled and sent back t o the f i r s t packed tower ( 2 5 ) .

Germany. PCBs and no metal ( 2 5 ) .

I t i s then mixed w i t h ethane and sent

The contaminants leave the

The ethane i s then

To date, the process has been evaluated a t the p i l o t level i n West Laboratory analysis show the lube o i l to contain less t h a n 50 ppm

MISCELLANEOUS PROCESSES

There are many other approaches for re-refining used oils. Some have focused on the use o f chemical f locculants and solvent precipi tants such a s a l u m i n u m chloride, triethanolamine, and tr ichloroethylene while others have centered on improving the performance of exis t ing processes. t h i s l a t t e r category i s the subst i tut ion of hydrofinishing fo r clay treatment (see Figure 16).

I n one version of t h i s process, f i l t e r e d used o i l i s f i r s t dehydrated i n a f lash d i s t i l l a t i o n column, which a l s o removes some l i g h t hydrocarbons. i s then d i s t i l l e d i n a thin-film evaporator, which permits feed fract ionat ion with minimal thermal degradation. Finally, the hydrotreatment o f the d i s t i l l e d lubes i s conducted i n two trickle-bed reactors i n se r ies . The f i r s t reactor contains a guard-bed material (e.g. , high-surface-area a lumina) and the second contains hydrotreating ca t a lys t (21 ) . hydrotreating improves product color and reduces the level o f halogen-, sulfur-, oxygen-, and n i trogen-containing compounds be t te r t h a n the acid-clay process ( 9 , 12 , 20) .

One example i n

I t

Recent reports show tha t

75

Page 92: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

S 0

?*r m w O Q - 0 0 S m

I z w QJ

L

n

Y

0

n

M

.. W V L 3 0 v,

76

Page 93: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

EFFECTS OF RECLAIMING OPERATIONS ON USED OIL COMPOSITION

The reprocess ing o f used o i l i s designed t o produce a fue l -g rade produc t

by m in im iz ing the amount o f contaminants such as metals, water, and c h l o r i n a t e d compounds. The na tu re o f the process ing technique w i l l depend

upon the in tended use o f the o i l , i t s composi t ion, and the na tu re o f r e g u l a t i o n s governing i t s use.

s e t t l i n g , f i 1 t r a t i o n , c e n t r i f u g a t i o n , and i n some cases, thermal p rocess ing f o r removal o f l i g h t ends and water. Table 34 shows the e f f e c t o f p h y s i c a l

t reatments on se lec ted contaminants o f used o i l . I n general , the data i n d i c a t e t h a t apprec iab le amounts o f water and sediment a re removed by

s e t t l i n g fo l lowed by f i l t r a t i o n o r c e n t r i f u g a t i o n . o i l by so lven t e x t r a c t i o n o r vacuum d i s t i l l a t i o n leads t o a d d i t i o n a l removal

o f water and sediment as w e l l as o f ash and lead.

Among t h e commonly used p h y s i c a l methods a re

F u r t h e r p rocess ing o f t h i s

TABLE 34. EFFECT OF REPROCESSING ON PHYSICAL PROPERTIES OF USED OIL, VOLUME %

Phys ica l P roper t y ~~ ~~~ ~

Treatment Process BS&Wa Water Sedi men t Ash Lead

No t rea tment 10 a 5 3 1

S e t t l i n g pre t rea tment 1 0 2.5 2.3 0.9

Cent r i fuga t i on 1.5 1 1.7 1.5 0.75

Sol vent e x t r a c t i o n 0.3b Ob 0.3b 0.3 0.1

Vacuum d i s t i 11 a t i o n 0 0 0 0 0

aBottom sediment and water. b W i t h hexane and 2-propanol.

Source: GCA Corpora t ion ( 9 )

Laboratory s imu la t i ons o f s e t t l i n g and f i l t r a t i o n opera t ions show t h a t these two techniques a re n o t e f f e c t i v e i n meta ls removal. However, some

77

Page 94: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

separa t i on o f metals can be achieved w i t h c e n t r i f u g a t i o n a t 10,000 g (27).

shown i n Table 35, a 30% r e d u c t i o n i n l e a d con ten t can be achieved by

c e n t r i f u g a t i o n w i t h h i g h e r separa t i on f o r o t h e r elements, e.g., aluminum,

chromium, and i r o n . Such h i g h l e v e l s o f removal f o r these o t h e r elements

As

TABLE 35. ELEMENTAL REMOVAL BY CENTRIFUGATION

Element

Cen tr i f u ged Composite O i 1 S1 udge Concent ra t ion Concent ra t ion Percent a

PPm PPm Separa t ion

A1 umi num Antimony Arsenic Barium Bery l 1 ium Boron Cadmium Cal c i um C hromi um Cohal t Copper I r o n Lead Magnesium Man ga ne se Molybdenum N icke l Selenium S i l i c o n S i 7 ve r Sodium S t r o n t i u m T h a l l ium T i n T i tan ium Vanadium Z inc

~~~ ~

31 0.6 8.1

61 <0.1 6.2 1.3

7.7 0.8

990

34 210

1,100 210

14 3.2 3.7

<1 40 <o. 1

260 1.9

<1 16 7.8 4.1

730

480 21

150 580

2 80 11

6,200 150

18 160

4,300 11,000

1,100 90 55

160 <7

400 <0.3

440 6.1

<13 500 69 26

4,330

46 100

55 29

39 25 19 58 68 14 61 30 16 19 52

128

30

5 10

94 27 19 18

--

-- --

--

Sludge c o n c e n t r a t i o n x 0.03 O i l concentrdt ' ion- apercent separa t i on =

Source: GCA Corpora t ion ( 9 )

78

Page 95: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

suggest t h a t they may be p resen t as wear p a r t i c l e s o f moderately l a r g e

p a r t i c l e s i zes ( 9 ) . S i m i l a r removal e f f i c i e n c i e s were observed w i t h c l a y

c o n t a c t i n g s i m u l a t i o n s i n the l a b o r a t o r y . With respec t t o dehydra t ion and l i g h t end removal, t h e r e s u l t s o f

i n o r g a n i c analyses o f t he feed, p roduc t , and byproduct streams (Table 36)

i n d i c a t e a p roduc t recovery i n the range o f 90 t o 100%.

e f f e c t o f dehydra t ion and l i g h t end removal on the elemental compos i t ion o f used o i l i s minimal (17) . Only s i l i c o n and sodium were found i n t h e water

f r a c t i o n a t l e v e l s exceeding 1 Dg/g ( o r 1 ppm). t r a t i o n s were observed w i t h o t h e r metals, e s p e c i a l l y lead, sodium, t i n ,

calcium, and i r o n . I n comparison, the r e s u l t s o f o rgan ic analyses show t h a t

almost a l l o f t he v o l a t i l e o rgan ics p resen t i n used o i l were removed, l e a v i n g

beh ind a water f r a c t i o n t h a t may r e q u i r e t rea tmen t p r i o r t o d ischarge i n t o a

sewer o r i n t o su r face waters (9 ) .

The r e s u l t s o f a r e c e n t study comparing t h e p r o p e r t i e s o f unprocessed and reprocessed used o i l s a re shown i n Table 37. I n general, t h e data show t h a t

the median concen t ra t i on of a lmost a l l of t he hazardous c o n s t i t u e n t s i s h i g h e r

i n p roduc t o i l than i n unprocessed used o i l . The c o n c e n t r a t i o n o f lead, f o r

example, i n the produc t o i l was about 86.9% h i g h e r than i n unprocessed o i l .

Other meta ls ranged from 3.4 t o 70.6% h ighe r i n the p roduc t o i l .

t r a t i o n s o f c h l o r i n a t e d and aromat ic so l ven ts a r e a l s o h igher .

unusual s ince these l i g h t f r a c t i o n s a re g e n e r a l l y e m i t t e d t o the atmosphere

w i t h steam d u r i n g d i s t i l l a t i o n and dehydrat ion. One p o s s i b l e exp lana t ion f o r such d isc repanc ies i s anamolies i n t h e data, r a t h e r than r e a l d i f f e r e n c e s i n

the exper imental c a l c u l a t i o n s (1). Another p robab le exp lana t ion i s t h a t most

reprocessors j u s t s e t t l e o u t water, sometimes u s i n g d e m u l s i f i e r s . Thus, t h e r e

i s no o p p o r t u n i t y f o r l o s s o f meta ls o r even l i g h t hydrocarbons. On the b a s i s o f t h e above cons ide ra t i ons , i t can be concluded t h a t , many

o f t he p o t e n t i a l l y hazardous c o n s t i t u e n t s which a r e s o l u b i l i z e d i n used o i l

a r e b a r e l y a f f e c t e d by any reprocess ing opera t ion , s h o r t o f r e - r e f i n i n g .

Unless these c o n s t i t u e n t s a re p resen t i n p a r t i c u l a t e fo rm o r s o l u b i l i z e d i n a

separable water f r a c t i o n , reprocess ing opera t i ons w i l l u s u a l l y n o t remove them

(1). I n general , reprocess ing methods a re u s e f u l f o r removing water, s o l i d s , and perhaps, t h e l i g h t hydrocarbons i n used o i l .

i n d i c a t e removal o f contaminants f rom used o i l .

I n o t h e r words, t h e

Somewhat h i g h e r concen-

The concen-

Th is i s r a t h e r

U n l i k e reprocessed used o i l s , the c h a r a c t e r i s t i c s of r e - r e f i n e d o i l s do

I n general , most of r e -

79

Page 96: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

I

TABLE 36. ANALYSES OF PROCESS STREAMS FROM A DEHYDRATION AND LIGHT END REMOVAL OPERATION

Mater f a 1

Composi te Light 01 1 (percent Pretreated balance

Contaminant oi 1 Water Ends Product recovery)a

Relative flow rate,

Contaminant Weight,

weight

@/g of feed Inorganic Materials

Aluminum Antimony Arsenic Barium Beryl 1 ium Boron Cadmium Calcium Chromium Cobalt Copper I r o n Lead Magnesi um Manganese Molybdenum Nickel Selenium Si 1 icon Si 1 ver Sodium Strontium Thallium Tin Ti tanium Vanadium Zinc

Volatiles Trichlorofluoromethane Tri chl orotri f luoroethane Methylene chloride 1.1-Dichloroethane 1.2-Oichloroethane t-1,Z-Dichloroethylene Chloroform l,l,l-Trichloroethane Trichloroethylene Carbon tetrachloride Tetrachloroethylene Benzene Toluene Ethyl benzene

Semivolatiles Chlorobenzene Phenol Chlorophenol Dichlorobenzene Nitrobenzene Nitrophenol Naphthalene 2-Chloronaphthalene 2,4,6-Trichlorophenol Acenaphthene N-Nitrosodiphenylamine Hexachlorobenzene Phenanthrene/anthracene Pyrene Benz(a)anthracene Benzo(a)pyrene 4,4 -DDE PCBS

100

31 0.6 8.1 61 <0.1 6.2 13 980

7.7 0.8 34 210

1.090 210 14 3.2 3.7 1 .o 4.0

<o. 1

1.9 260

<1 16 7.8 4.0

7 30

<4 110 <4 (4 <4 <4 <8

1,500 2.000

<4 670 75

2,800 570

<10 11

<20 80 30

<20 440 <10 40 <10 116 <10 150 60 40 <10 94 34

8.8

0.001 <0.002 (0.003 0.001 0.001 0.06 0.001 0.03 <0.001 <o. 001 <0.001 <0.001 <0.001 0.002 <0.001 <0.001 <0.001 <o * 002 0.11 <0.001 0.16 <0.001 <O. 003 0.005 <0.001 <o. 005 <0.001

<0.4 <0.4 5 <0.4 <0.4 <0.4 <0.4 12 20 (0.4 8 <0.4 14 <0.4

<1 <1 <2 <2 <1 <2 <1 <1 <1 < 1 <1 <1 < 1 <1 <1 <1 <1 <l

7.2

0.04 0.04 <o. 01 <0.01 <o. 01 0.1 <0.1 0.2 <o. 01 <0.01 0.02 0.14 0.83 0.01 <0.01 <o. 01 <o. 01 <O .06 0.02 <0.01 0.50

<o. 01 <o. 1 0.23 CO.01 <0.01 0.03

<0.4 25 12 <0.4 <0.4 <0.4 16

1,650 1,800

1,700 120

1,400 80

(0.4

<1 13 <20 56 10 <2 300 < 1 6

< 1 10 <1 6

<1 <1 <1 2

<1

84

29 0.50 8.1 5.8 <0.1 7.8 1.2

8.0 0.9

960

31 236 1050 200 13 3.0 3.5 0.8 4.7 <0.1

1.8 <0.8 16 8.4 4.0

220

690

<4 <4 <4 (4 <4 <4 <4 <4 <4 (4 100 <8 120 <4

<lo <10 <20 <20 <10 <20 45 <10 31 <10 82 <10 210 24 20 <10 57 36

--

94 91 100 95

127 92 98 104 113 90 110 96 95 96 94 95

119

86 95

99 110 100 94

--

- - - -

--

- - 23 -- -- - - -- --

111 91

270 160 55 14

- -

_ - 118

70 33

78

108

79

144 40 50

63 106

--

- - - - - - --

_ -

~ ~~ ~~

aMaterial Balance:

Source: GCA Configuration (9)

Column 2 = Column 3 + Column 4 + Column 5 e

Page 97: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 37. COMPARISON OF CONTAMINANT CONCENTRATIONS I N UNPROCESSED AND REPROCESSED USED OIL, PPM

Unprocessed Used O i 1 Product O i l

Percent 90 th 90th D i f f erencg

Contaminant Meana Median Percent i 1 e Meana Median Percent i 1 e i n Median

Metal s Arsenic Barf um Cadmium C h romi urn Lead Z inc

Ch lo r ina ted So lvents 1 , 1 , 1 -T r i c h l o r o e t hane T r i c h l o r o e t h y l ene Te t rach l o roe thy l ene Tota l c h l o r i n e

03 --I

Other Organics Ben zen e To1 uene Xyl eees PCBs

16.8 111.6 4.0 45.0 598.5 538.2

3,298 2,032 2,362 4,397

1,493 2,199 2,466

79

5 17 39 21 0 7 10 5.8 87

259 1,200 330 1,100

100 4,500 100 500 100 2,100

1,700 9,600

15 3 00 23 0 2,900 54 0 1,900 5 32

21.5 153.3 4.5 23.4 547.8 578.7

2,681 2,464 1,661 4,900

326 1,459 2,346

16.5

5 50 8 6

484 540

400 200 200

2,900

16 270 73 0 10

22 312 10 27 94 2

1,090

4,400 1,500 2,600 11,400

110 1,600 2,200

50

0 + 28.2 + 14.3 + 3.4 + 86.9 + 57.6

+300.0 +loo. 0 +loo. 0 + 70.6

+ 6.7 + 17.4 + 35.2 +100.0

aCalcul a ted f o r de tec ted concen t ra t i ons only.

bCal c u l a ted us ing :

‘A11 Val ues c a l c u l a t e d f o r de tec ted concen t ra t i ons only.

Product o i l va lue - Unprocessed o i l va lue Unprocessed 01 I Val ue

Unprocessed o i l had 14% d e t e c t i o n w h i l e processed o i l had 9% de tec t i on .

Source: Frank1 i n Associates Ltd. (1)

Page 98: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

r e f i n e d o i l ' s p h y s i c a l and chemical p r o p e r t i e s a re s i m i l a r t o v i r g i n l ube o i l and w i t h i n the range o f each o t h e r suggest ing o v e r a l l comparab i l i t y .

shows the s i m i l a r i t i e s and d i f f e r e n c e s among t h e p r o p e r t i e s o f v i r g i n and r e -

r e f i n e d l u b e o i l s . These data show t h e f o l l o w i n g c h a r a c t e r i s t i c s (20):

Table 38

0 V i r g i n base o i l s a re u s u a l l y l i g h t e r i n c o l o r than r e - r e f i n e d o i l s , i n d i c a t i n g p o s s i b l y h ighe r -v i scos i t y -g rade m a t e r i a l and/or t h e presence o f h i g h e r amounts o f s u l f u r o r oxygenated compounds i n r e - r e f i n e d o i l s .

0 The range o f r e f r a c t i v e index i n r e - r e f i n e d base o i l s i s h i g h e r than v i r g i n base o i 1 s suggest ing s l i g h t l y h ighe r aromat ic con ten t i n r e - r e f i n e d o i l s .

0 The h i g h d e n s i t y and molecu la r we igh t es t imates f o r r e - r e f i n e d base o i l s i n d i c a t e h i g h e r average molecu la r we igh t c u t s w i t h a broader d i s t r i b u t i o n a t bo th the l i g h t and heavy ends o f t he mol ecu l a r spectrum.

0 Compared t o v i r g i n base o i l s , r e - r e f i n e d base o i l s have h i g h e r water content, t o t a l a c i d number, s a p o n i f i c a t i o n number, c h l o r i n e and bromine content, ash, and carbon residue, b u t a re lower i n n i t r o g e n con ten t as r e f l e c t e d i n t h e t o t a l n i t rogen , b a s i c n i t rogen , and t o t a l base number r e s u l t s .

e The lower n i t r o g e n con ten t i n r e - r e f i n e d o i l s may be p a r t i a l l y due t o the r e a c t i o n o f n i t r o g e n compounds t o form o x i d a t i o n produc ts o r v a r n i sh/sludge which may be subsequently removed d u r i n g the r e - r e f i n i n g process.

0 The h ighe r s a p o n i f i c a t i o n number, t o t a l a c i d number, and carbon res idue o f r e - r e f i n e d o i l s appear t o suggest h ighe r oxygen con t e n t .

0 Both c h l o r i n e and bromine appear t o s u r v i v e the r e - r e f i n i n g process p o s s i b l y suggest ing t h a t these elements may be fuel - d e r i v e d i n o r i g i n .

0 Although n o t shown i n Table 38, r e - r e f i n e d base o i l s have h ighe r PNAs ( 7 t o 75% compared t o 6 t o 9%) and p o l a r c o n t e n t (1.7 t o 3.4% versus 0.3 t o 0.6%) than v i r g i n base o i l s . on sa tu- ra tes , p a r a f f i n s , naphthenes, and aromat ics a re approximately the same f o r t he two lubes.

Data

Thus, t he p r o p e r t i e s o f r e - r e f i n e d base l u b e o i l s a re s i m i l a r t o t y p i c a l v i r g i n base o i l s w i t h o n l y a s l i g h t con taminat ion o f c h l o r i n e , oxygenated

compounds, and some t r a c e metals. The performance and environmental c h a r a c t e r i s t i c s o f rec la imed o i l s a re a l s o comparable t o v i r g i n o i l s ; these

and o t h e r aspects o f used o i l u t i l i z a t i o n a re discussed i n Sec t i on 4.

Page 99: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 38. COMPARISON OF V I R G I N & RE-REFINED LUBE O I L PROPERTIES

b V i r g i n Base O i l s a

Range Range

Re-Refined Base O i l s

Composite Composite P roper t y Low High Average Low High Average

Physic a1 P roper t y V i s c o s i t y index Ref raE ti ve i ndex

3 C o l o r Densi ty , lb/,Jt Pour p o i n t , F lash p o i n t , 'F Mol ec u l a r weight

(average) B o i l i n g p o i n t

d i s t r i b u t i o 10% p o i n t , 8, 50% p o i n t , OF 90% p o i n t , OF

Chemical P roper t y Mo is tu re , ppm To ta l a c i d No.,

mg KOH/g To ta l base No.,

mg KOWg S a p o n i f i c a t i o n No. C h l o r i n e , ppm Bromine, ppm Sul f a t e d ash ,

Carbon residue, w t . %

w t . %

95 1.4798 0.5 7.26 10 428

440

721 846 91 6

26

0.001

0.03 0.18 0.01 0.01

0

0.02 .. .

To ta l n i t r o g e n , ppm 18 Basic n i t r o g e n , ppm 8 S u l f u r , wt. % 0.01 I no rgan ic meta ls , ppm

Zinc -- Lead -- I r o n -- Manganese -- Magnesium -- Cal c i um -- B a r i um -- S i 1 i c o n --

Elemental ana lys i s , wt. % Carbon 85.1 Hy d rog en 13.4

100 1.4829 1.0 7.31 21 460

460

795 86 9 984

55

0.02

0.2 0.76 0.2 0.02

0.0005

0.09 55 49 0.16

<1 <1 <1 <1 <1

<lo <lo <5

86.2 13.6

98 1.4816 0.8 7.29 16 441

4 50

763 855 94 8

37

0.006

0.1 0.4 0.1 0.005

0.0002

0.07 33 26.1

0. oa <1 <1 <1 <1 <1

<lo <lo <5

85.7 13.5

90 108 102 1.4825 1.4881 1.4852 3.0 8.0 5.5 7.29 7.37 7.33 5 18 14

345 466 408

43 2 51 6 4 80

61 9 792 70 5

928 988 97 0 777 882 828

40 21 9 92

0.076 1.69 0.4

<o. 001 0.041 0.0091 0.9 4.1 0.9 6.6 1,140 231 0.15 3.9 5.82

0.0005 0.0144 0.0043

0.12 0.27 0.2 9 47 21 0.4 14.7 3.3 0.12 0.25 0.18

<o. 2 41 <1 8.0 0.5 13.0

<1 0.08 <1 0.78 <o. 2 13.2

<5 -- <lo -- <

6.19 2 2.8 0.03 0.44 3.04

:10 <5

85.2 86.6 86.3 13.1 13.8 13.4

aTyp ica l va lues from t h r e e medium v i s c o s i t y grade base o i l s : one m id -con t inen t , one inid- beast, and one 50/50 m i x t u r e o f l i g h t and heavy n e u t r a l s .

C~~~~ c o l o r scale. T y p i c a l va lues from t e n r e - r e f i n e d based o i l s .

Source: Weinste in , K.D., e t a l . (19)

33

Page 100: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

CURRENT STATUS OF USED OIL RECLAIMING INDUSTRY

A t the present time, the use o i l reclaiming industry i s i n a period of severe and unpredictable change. For example, Booth Oil Company i s i n bankruptcy proceedings. Canadian Oil Company, a subsidiary of Shell Canada, and one of the newest and most modern re-ref iner ies , closed recently for financial reasons. A brand new large re-refinery i n Pennsylvania never s ta r ted up; financial problems closed i t down d u r i n g shake-up. All of these incidents a t t e s t t o the unsett led nature of the industry. Finanacial reasons alone, however, have not been responsible f o r t h e i r demise. Governmental regulations and market conditions have a l s o contributed t o the decline i n the number of re-refiners from about 150 i n 1960 to fewer t h a n 16 a t the present time. In comparison there are 200 to 300 reprocessors i n the United States .

84

Page 101: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

SECTION 4 ENVIRONMENTAL CHARACTERIZATION OF WASTE OIL UTILIZATION AND DISPOSAL

The most impor tan t environmental , hea l th , and s a f e t y (EH&S) impacts

assoc ia ted w i t h waste o i l a re encountered when i t i s reused d i r e c t l y e i t h e r as

a f u e l supplement o r as a dust c o n t r o l agent o r i s disposed o f v i a

i n c i n e r a t i o n , 1 a n d f i l l , o r sewage t rea tment processes. The f o l l o w i n g sec t i on addresses the p o t e n t i a l a i r , water , and land p o l l u t i o n e f f e c t s o f commonly

employed reuse and d isposa l techniques. The most impor tan t o f these impacts a re summarized i n Table 39. Also discussed i n t h i s s e c t i o n a re the hazards

associated w i t h t h e va r ious contaminants i n waste o i l .

TABLE 39. SUMMARY OF EH&S IMPACTS OF USED OIL UTILIZATION AND DISPOSAL

EH&S Area A f f e c t e d

Method A i r Water Land

Use Combust i on

Large systems Small systems

Road o i l i n g

Disposal I n c i n e r a t i on Sewer Landf i 11 Lagoon Well i n j e c t i o n

X Xa Xa X

X X

X X X X X X X

aPossib ly , from a i r emissions c o n t r o l .

COMBUSTION I N LARGE BOILERS

INORGANIC AND TRACE ELEMENT EMISSIONS

A summary o f waste o i l t e s t burns i n l a r g e commercial b o i l e r systems i s shown i n Table 40. These data i l l u s t r a t e t h a t waste o i l can be burned as

85

Page 102: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 40. SUMMARY OF USED OIL COMBUSTION TESTS I N LARGE BOILERS

Destruction Type of Type o f % E f f i c i ency f o r Element3 Ambient A i r

Source V i rg in Fuel Waste O i l Waste O i l Organics, % Emitted Concentration

Mobil O i l No. 6 481 ppm Pb 5% --

Humble

Shell O i l

Gulf O i l

Northern States Power Co.

Hawaiian E l e c t r i c

No. 6

No. 6

No. 6

No. 6

No. 2

Coal

No. 6

No. 6 No. 6 No. 6 No. 6 No. 6

100%

5.000 ppm Pb 75%

9.000 ppm Pb 75%

10,000 ppm Pb 75%

2,800 ppm Pb 25%

187 ppm Pb --

Used 6.07-14.87% automotive 011

4 ppm Pb 7 ppm Pb

492 ppm Pb 418 ppm Pb

1,490 ppm Pb

S t . Lawrence Cement No. 6 -- --

No. 6 100 ppm Pb 1-15% No. 6 300 ppm Pb 1-15% No. 6 500 ppm Pb 1-15% No. 6 1,000 ppm Pb 1-15% No. 6 1,500 ppm Pb 1-15%

Exxon No. 6 4,200 ppm Pb 100%

Continental Can Co. No. 6

F lo r i da Power and No. 6 L igh t Company

Duke Power Co. No. 6

General Motors Corp. No. 6

Union E l e c t r i c Co. No. 6

Recon Systems, Inc. No. 6

--

No. 6

PCBs - -- containing waste o i l

containing o i 1

PCBS -- contaminated waste o i l

PCBS -- contaminated waste o i l PCBS -- contaminated waste o i l

ReDrocessed 20.8%

60-808 PCBS --

o i i , 132 ppm Pb

Reprocessed 100% o i l , 627 ppm Pb

Used 20.6% i ndustr i a1 o i l , 3 ppm Pb

99.1- 99.8

99.999

99.92

99.99

99.99

Pb -- 55% Pb -- 0.5 u g h 3 ( f o r 100 ft. stack) -- 1.0 ug/m3 ( f o r 35 ft. stack)

-- Pb -- 0.06 u g h 3 ( f o r 35 ft. stack)

u g/m

stack)

ug/m ( f o r 310 f t stack)

Pb -- up t o Pb -- 4 u g h 3 ( f o r 28% 15 ft. stack)

Pb -- 42-49s Pb -3 1.1-2.3

Pb -- 20-26% ( f o r 130 ft

Pb -- 2844% -3 0.02-0.22

Pb -- 99% --

Zn -- 60% s -- 95%

Pb -- 100% Pb -- 39.47% Pb -- 51% Pb -- 31, 36% Pb -- 100%

Pb -- 89.2% Zn -- 100% B r -- 72.2%

Pb -- 54% Pb -- 44% Pb -- 36% Pb -- 24% Pb -- 19%

Pb -- 91% Ca -- 69% P -- 90% Zn -- 76% Fe -- 85% Ea -- 100%

- -

- -

- -

- -

- -

Pb -- 23%

Pb -- 97%

Pb -- 100%

No increase i n Pb, Zn, o r P emissions during waste o i l comb us t i on

Maximum 10 min ground level concentrat ion i s approximately 10 times seasonal concentrat ion

a6 ‘AS a funct ion of incoming fuel. Sources: GCA Corporation (14) and Recon Systems, Inc. and ETA Engineering, Inc. (26).

Page 103: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

a

mixtures w i t h fuel o i l s of various types (including No. 2, No. 4, and No. 61, as 100% used o i l , or a s a fuel supplement in a coal-fired boiler. Other observations t h a t can be drawn from this tab le include the following ( 9 , 14, 26) .

Between 20 t o 100% of the lead entering a steam boi ler ( w i t h o r without a virgin fue l ) can be expected t o be emitted from the stack. Most of the remainder i s deposited on the tubes o r elsewhere i n the combustion furnace. As shown in Table 40 and Figure 17, there appears ( f o r most data points) t o be an inverse correlat ion between the lead concentration in used o i l and i t s emissions. In general, increased lead concentration i n used oi l decreases the amount of lead emitted a s a percent of lead i n p u t . I n other words, as the concentration of lead increases, i t s removal from used oil decreases.

0

0 I t i s possible t h a t some lead emissions are of a form other t h a n par t icu la tes , e.g., aerosol or vapor. In the two instances where i t was possible to account for furnace deposits (Northern States Power Co. and Exxon t e s t s ) , lead material balances exceeded 90%. Furnace deposits may be removed during sootblowing ( i f practiced) o r d u r i n g furnace and boi ler cleaning. Sootblowing i s generally limited to large boi lers while a l te rna t ive cleaning methods are used i n smaller units.

0 In one t e s t (Exxon), over 90% of the emitted lead was associated with par t ic les smaller t h a n one micron. Of these fine par t iculates , about 75% were recovered from the tubes while the remaining 25% were emitted d i rec t ly t o the atmosphere.

0 Lead emissions from used oil combustion can be controlled. For example, l e s s t h a n 0.2% of the lead i n used o i l f i red with coal i n a boi ler equipped w i t h an e l ec t ros t a t i c prec ip i ta tor (Northern States Power t e s t ) was emitted t o the atmosphere. In another example, only abou t 0.03-C).05% of the 1 ead i n a waste-oil - f i red suspension preheater cement k i l n equipped with el ec t ros t a t i c precipi ta tors was emi t ted. Finally, by pa r t i a l ly replacing No. 2 fuel oil w i t h used crankcase o i l bottoms i n a lead smelting reverberatory furnace equipped w i t h a baghouse, lead emissions will not increase.

Table 41 shows the concentration of elements from used o i l combustion as measured by a recent (1983) study. These d a t a indicate t h a t approximately 59% of the incoming lead i s emitted compared to z inc ' s 71%. This estimate of the fract ion of lead emitted i s consistent w i t h t h a t reported in the l i t e r a t u r e , and comparable t o the value o f 52.4% measured by a similar study ( a s an average o f fou r experimental runs) in 1980 (9). During two of the runs con- ducted d u r i n g the 1980 t e s t period, the concentration of lead i n the f lue gas was measured a t 19,000 clglcuhic meter ( m shown i n Table 41, the values estimated by the recent study are two to three

3 3 and 25,000 Ug/m . However, as

87

Page 104: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

10 ,000

1 , 0 0 0

1 0 0 '

10

0 2b 4d 66 8'0 100

Lead Removal by Combustion, %

Figure 17.

Source:

Lead Emissions From Used Oil Combustion

Recon Systems, Inc. and ETA Engineering, Inc, (26)

Page 105: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 41 ELEMENTAL EMISSIONS DURING USED OIL COMBUSTION IN LARGE COMMERCIAL BOILERS

Concentration, pg/m 3

E 1 ement

~~ ~

Experiment 1 Experiment 2

A1 uminum

An ti mony

Arsenic

Barium

Beryl 1 i um

Boron

Cadmium

Calcium

Chromium

Cobalt

Copper

Iron

Lead

Magnesium

Manganese

Molybdenum

Nickel

Selenium

Si 1 icon

Silver

Sodium

5 tron ti um

Thall i u m

T i n

Titanium

Vandium

Zinc

150

1

330

300

<1

70

40

10,000

95

2

900

2,800

43,000

3,600

270

90

110

<1

NA

<0.2

3,100

30

3

120

NA

440

35,000

340

<0.2

550

1,600

<l

270

45

18,000

95

1

1,000

3,700

65,000

6,200

330

100

55

<1

NA

<0.2

6,000

25

<1

220

20

150

41,000

NA - not analyzed due t o instrumental d i f f icu l t ies .

Source: GCA Corporation (9)

39

Page 106: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

t imes h igher .

a t t r i b u t e d t o v a r i a t i o n s i n t h e l e a d concen t ra t i on o f t he feed o i l , which was

660 ppm f o r the 1980 t e s t s and 1,890 ppm f o r the recen t s tudy ( 9 ) .

commercial b o i l e r s a r e shown i n Table 42. To assess the s i g n i f i c a n c e o f these concent ra t ions , t he t a b l e p rov ides two i n d i c a t o r s o f p o t e n t i a l environmental impact. The f i r s t i n d i c a t o r , des ignated as the environmental impact index, i s de f i ned as t h e pr imary n a t i o n a l ambient a i r q u a l i t y s tandard f o r p a r t i c u l a t e s ;

These d i f f e r e n c e s i n f l u e gas concen t ra t i on can be l a r g e l y

The concen t ra t i ons o f o t h e r compounds i n the f l u e gas s tacks o f

TABLE 42. MEASURED EMISSIONS AND CALCULATED S E V E R I T Y FACTORS

FOR SPEC IF IC POLLUTANTS FROM COMMERCIAL BOILERS~

Con tamin a n t

Env i r o nmen t a l impact3 i ndex Emi ss jons Sever i t d

vg/m bg/m Facto r

P a r t i c u l a t e s C

Metal s Cadm i um Chromium Coba l t

I r o n Lead N icke l Z inc

Copper.

Org an i c Compo und s Naphtha1 ene Phenanthrene Py ren e Bend a) anthracene Benzo( a) pyrene

75

50 500 50

200 1,000

150 100

5,000

50,000 1,600

230,000 45

0.02

225,000

40 95

2 870

2,850 42,700

110 34,800

3 2

ND ND ND

0. l ld

0.03 0.008

0. 15d 0.12

0. 04d 0.28

0.008

11

<o. 001 <o. 001 --

aBasis: bTLV values f o r t r a c e elements; DMEG va lues f o r o rgan ic compounds. ‘Primary n a t i o n a l ambient a i r q u a l i t y standard f o r p a r t i c u l a t e s . d Ind i ca tes f a c t o r s i n excess o f 0.05.

s tack h e i g h t -- 10 m.

Source: GCA Corpora t ion (9)

t h e Threshold L i m i t Values (TLVs) as repo r ted by the American Conference of

Governmental I n d u s t r i a l Hyg ien i s t s f o r t r a c e elements; and as t h e Discharge

90

Page 107: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

Mult imedia Environmental Goals (DMEG) values f o r s p e c i f i c organic compounds. The second measure o f environmental impact i s the source s e v e r i t y f a c t o r devel oped by Monsanto Research Corporat ion. de f ined as the r a t i o o f the c a l c u l a t e d maximum ground l e v e l concent ra t ion o f the p o l l u t a n t species t o the l e v e l a t which a p o t e n t i a l environmental hazard ex i s t s . i n d i c a t i v e o f p o t e n t i a l hazard. ( 9 )

t race element emission o f most concern. Other elements o f poss ib le concern are copper, i r o n , and z inc .

o ther elements cou ld a l so have p o t e n t i a l impact. Leaky f l ues o r excessive con tac t w i t h the f l u e gas due t o down d r a f t s o r low l e v e l d ischarges cou ld l ead t o g r e a t l y e leva ted human exposures.

show them a t s u b s t a n t i a l l y h igher l e v e l s than o ther t r a c e metals. concentrat ion, f o r example, ranges between 5,380 pg/m and 72,400 ug/m , corresponding t o an average emission r a t e o f 0.12 l b /hou r (28). based on s i m p l i f i e d models have shown t h a t , i n some cases, l e a d emissions a t these l e v e l s cou ld cause v i o l a t i o n s o f ambient a i r q u a l i t y standards f o r

lead.) I n comparison, the concent ra t ion o f z inc i n the f l u e gas ranges from 3,100 pg/m t o 34,000 pg/m , corresponding t o an average emission r a t e o f 0.06 lb /hour . Thus, the r a t i o o f l e a d and z inc emissions i s approximately 2:1, which i s cons i s ten t w i t h t h e i r concent ra t ion i n feed o i l a t 1,550 ppm and

760 ppm (by weight ) , respec t i ve l y . Repeated experiments and mass f l o w c a l c u l a t i o n s i n d i c a t e t h a t 50 t o 60% o f the l ead in t roduced i n t o commercial b o i l e r s e x i t s from the system i n f l u e gas streams.

Other metals, e.g., arsenic , cadmium, and chromium, are genera l l y p resent a t very low concent ra t ions i n the stack gas such t h a t when d i l u t e d i n the atmosphere they should no t cause major problems, b u t the s i t u a t i o n i s s t i l l o f some concern as the concent ra t ion o f these metals cou ld be s u b s t a n t i a l l y h igher i n d i f f e r e n t used o i l feedstocks. The r e s u l t s o f metal emissions from

the EPA study are sumnarized i n Table 43. Another est imate o f t r a c e element concent ra t ions and t h e i r p a r t i c l e s i z e

d i s t r i b u t i o n i s shown i n Table 44.

q u a n t i t i e s o f the l e a d and z i n c emissions from used o i l combustion i n l a r g e b o i l e r s are submicron i n s i z e (14) .

r e a d i l y i nhal able.

The source s e v e r i t y f a c t o r i s

A source s e v e r i t y f a c t o r equal t o o r g rea ter than 0.05 i s considered

The data o f Table 42 show t h a t l ead from commercial b o i l e r systems i s the

Depending upon t h e i r concentrat ions i n used o i l ,

EPA's own data on emission ra tes o f l ead and z inc f rom commercial b o i l e r s

Lead 3 3

(Ca lcu la t i ons

3 3

These data i n d i c a t e t h a t s i g n i f i c a n t

These p a r t i c l e s , there fore , would be

91

Page 108: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 43. CONCENTRATION OF METALS IN FLUE GAS OF LARGE COMMERCIAL BOILERS

Outlet Concentrcjti on

u g/m In1 e t

Concentration E 1 emen t D9/9 Low Hi gh

Arsenic 14.0 11.2 655

Cadmium 2.2 8.3 350

Chromium 7.1 62.3 263

Lead 1,520 5,300 72,450

Zinc 743 3,134 33,700

Source: Fennelly, Paul F., e t a l . (28)

With respect t o f l ue gas emissions of hydrogen chloride ( H C 1 1, EPA's data indicate tha t i t s concentration averages 2.6 lb /hour . below the 4.0 l b / h o u r a i r emission standard established for hazardous waste incinerators, this is a re la t ive ly h i g h emission ra t e (28 ) .

Although i t i s well

GASEOUS EMISSIONS

Part iculate emissions are primarily a function of to ta l ash i n the fuel , including metals and other inorganics. Assuming no chemical changes and no soo t from incomplete combustion, a 0.3% ash content i n a blended o i l would resu l t i n a par t iculate emission r a t e o f 0.12 grainldry standard cubic feet (SCF) a t zero percent excess air. Extrapolating this estimate t o waste o i l i n general shows t h a t between 0.5 and 1.2 l b of particulates/mill ion B t u (heat i n p u t ) would be emitted from waste o i l containing 0.9 t o 2.2% ash (see Table 45) (9,14).

Similar results were observed by EPA i n tests o f six boi lers ranging between 0.5 and 12.5 million B t u / h o u r o f heat i n p u t (rated capacity). Agency's tests show t h a t par t iculate emissions ranged from 0.07 t o 1.2 lb/hour

The

92

Page 109: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 44. ELEMENTAL COMPOSITION FROM USED OIL COMBUSTION I N LARGE BOILERS

Contaminant

Lead Calcium Phosphorus Zinc I r o n Barium

P roper ty Low High Low High Low High Low High Low High Low High

Source: GCA Corporat ion (14)

Page 110: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 45. PARTICULATE EMISSIONS DURING USED OIL COMBUSTION I N LARGE BOILERS

Gas Volume Average Emissions Corrected O2 Corrected t o a Emissions t o Zero Excess A i r

Type o f Percent Ash Run V i r g i n Waste Conc. Conc. No. O i 1 O i 1 % % Zero Excess A i r g r a i ns/SCF ( dry g r a i ns/SCF ( dry)

P

No. 2

No. 2

No. 2

No. 6

No. 6

No. 6

No. 6

-- No. 6

0 0.02

15-2!jb 0.13

8' 0.04

0 0.01

9.72' 0.09

60.4' 0.48

20.8d 0.20

lood 0.91

20.6b 0.05

13.0

11.0

10.0

9.8

6.6

7.5

5.3

6.0

5.8

0.3812

0.4764

0.5240

0.5335

0.6858

0.6430

0.7477

0.7144

0.7239

0.0179

0.0329

0.0310

0.0062

0.0139

0.0476

0.0283

0.0841

0.0145

0.047

0.069

0.059

0.012

0.020

0.074

0.038

0.118

0.020

aCorrect ion = [lo0 x (%02) x (4.76)]/100. i n d u s t r i a l o i l s .

'Used automotive oi l s . dReprocessed o i 1.

Sources: Recon Systems, Inc. and ETA Engineering, Inc. (26)

Page 111: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

w i t h an average value of 0.73 lb/hour C0.34 lb/million B t u (heat i n p u t ) ] . This is significantly higher than the l i t e r a tu re value of 0.09 lb/million B t u for commercial boilers f i r i n g residual o i l ; b u t the higher value is consistent w i t h the much higher ash content of used o i l , which can range from 0.15 to 1.5%. test s i t e s indicated tha t 80 t o 90% of the par t iculates containing lead are submicron i n nature and would be readily inhalable.

sulfur, nitrogen, phosphorus, and halides d u r i n g used o i l combustion. In general, the form of emissions result ing from the i r combustion will vary w i t h the source and type of waste o i l and the nature of the combustion process. Some examples of inorganic emissions expected from large steam boilers include:

Further, par t iculate sizing measurements conducted a t four of the six

Few data are available about the fa te of inorganic elements such as

0 S u l f u r -- the majority of the sulfur contained i n used oi l i s emitted as sulfur dioxide (SO 1 with some sulfur tr ioxide (SO3) and sulfur ic acid ( H SO 1. Small $mounts of sulfur are also l o s t w i t h par t iculate emissiois %nd as boiler deposits i n su l fa te and s u l f i t e compounds. Approximately 0.152 to 0.465 l b SO /mi l l ion B t u can be expected from used oil containing 0.16 t o 0.36% %ulfur (See Table 46).

0 Nitrogen -- as gaseous emissions, nitrogen is emitted i n the form of nitrous oxide (NO) and n i t r i c oxide (NO2). boiler deposits (as n i t r a t e and n i t r i t e compounds) a l o n g w i t h some ammonia compounds are other sources of nitrogen emissions i n a few instances. Some nitrogen emissions data are presented i n Table 47.

Particulate emissions and

0 Halides and phosphorus -- organic bromine, chlorine, and f luorine compounds are emitted as hydrobromic, hydrochloric, and hydrofluoric acids. Phosphorus, i n comparison, i s emitted w i t h particulates i n the form of phosphates.

ORGANIC EMISSIONS

W i t h respect t o organic emissions from commercial boiler systems (0.5 to 12.5 m i l l i o n Btu/hour), E P A ' s data indicate t h a t used oi l combustion eff ic ien- c ies wil l range from 99% to greater t h a n 99.9%, which in turn correspond t o destruction and removal eff ic iencies of 99.4 t o 99.99% (see Table 48). No

strong correl a t i ons were observed by EPA between destructi on eff i ci enci es and boiler sizes or f i r i n g techniques. However, one trend t h a t was apparent from the d a t a was t h a t the destruction eff ic iencies fo r semivolatile compounds were consistently higher than those f o r vo la t i le compounds. T h i s fac t i s

95

Page 112: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 46. SULFUR EMISSIONS DURING USED OIL COMBUSTION I N LARGE BOILERS

Fuel SOx Emi ss ions

Type o f Percent Run No. V i r g i n O i l Waste O i l Gal/Hour S Content % l b / h r lb/1,000 gal l b / m i l l i o n Btua

1 No. 2 0 33.0 0.16 1.021 30.9 0.221

2 No. 2 15-25b 30.6 0.17 0.651 21.3 0.152

3 No. 2 8' 12.8 0.25 0.418 32.7 0.234

4 No. 6 0 140 0.30 7.020 50.1 0.358

5 No. 6 9.72' 134 0.31 5.224 39.0 0.279

cn 6 No. 6 60.4' 142 0.35 6.677 47.0 0.336

7 No. 6 20. gd 136 0.31 7.214 53.0 0.379

8 -- lood 131 0.36 8.534 65.1 0.465

9 No. 6 20.6b 133 0.27 5.880 44.2 0.316

a

aBasi s : i n d u s t r i a l o i 1 s.

'Used automoti ve o i 1 s. dReprocessed o i 1 .

140,000 Btu/gal .

Sources: Recon Systems, Inc. and ETA Engineering, Inc. (26)

Page 113: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 47. NITROGEN EMISSIONS DURING USED OIL COMBUSTION IN LARGE BOILERS

NO, E m i ssi onsa

Type o f Percent Fuel Rate Run No. Virgin Oil Waste Oil Gal /Hour 1 b/hr 1 b/1000 gal 1 b/mill ion B t u b

No. 2

No. 2

No. 2

No. 6

No. 6

No. 6

No. 6

-- No. 6

0

15-25%'

8%d

0

9.72%

60. 4%d

20. 8%e

d

20.6%'

33.0

30.6

12.8

140

134

142

136

131

133

0.376

0.376

0.253

3.184

3.662

2.540

2.236

2.482

2.786

11.4

12.3

19.8

22.7

27.3

17.9

16.4

18.9

20.9

0.081

0.088

0.141

0.162

0.195

0.128

0.117

0.135

0.149

aNitrogen content o f used o i l n o t a v a i l a b l e . bBasis: 140,000 Btu/gal . 'Used i n d u s t r i a l oils. dUsed automotive oi 1 s. eReprocessed oi 1 . Sources: Recon Systems, Inc. and ETA Engineering, Inc. (26)

Page 114: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 48. DESTRUCTION AND REMOVAL EFFICIENCIES OF ORGANIC COMPOUNDS I N COMMERCIAL BOILERS, %

Range

Compound Low High Average

Vol a t i 1 e Compounds Chloroform T r i c h l oroethane T r i ch lo roe thy lene Perch1 oroe thy l ene

Semi vo l a t i 1 e Compounds T r i c h l orobenzene 1-chloronaphthalene 2,4,5-Trichl orophenol

99.65 99.95 99.37 99.95 99.45 99.92 99.73 99.96

99.84 99.98 99.92 99.98 >99.92 >99.99

99.88 99.80 99.82 99.84

>99.92 >99.95 >99.97

Source: Fennel ly, Paul F., e t a l . (28)

cons is ten t w i t h the rank ing o f s e m i v o l a t i l e compounds on the EPA Hierarchy o f

Waste I n c i n e r a b i l i t y (28). Furthermore, EPA found the lowest d e s t r u c t i o n e f f i c i e n c i e s i n the

smal les t b o i l e r . Th is u n i t norrqally f i r e d a No. 2 f u e l o i l , and i t s adapt ion t o f i r i n g waste o i l proved d i f f i c u l t . Eventual ly , d i l u t i o n o f the waste o i l on a 1:l bas is w i t h No. 2 o i l was requ i red f o r acceptable operat ion. Even

w i t h t h i s mod i f i ca t i on , the combustion and des t ruc t i on e f f i c i e n c i e s were

s i g n i f i c a n t l y lower than o ther u n i t s (28).

po lych lo r i na ted d ibenzodiox in compounds were found i n the f l u e gas o f some o f the b o i l e r s tested. These compounds, when present, were u s u a l l y a t l e v e l s l e s s than 5 ug/m , which i s l e s s than 0.5 ppb (by volume) i n the stack gas. The ex ten t t o which these compounds pose a hazard a t these low l e v e l s i s

undetermined. Tests done on used o i l , w i t h and w i t h o u t sp iked contaminants, t o determine the ex ten t t o which the o i l may have conta ined t r a c e l e v e l s o f

d iox ins i n d i c a t e no d i o x i n o r dibenzofuran compounds i n the o i l samples. I f d i o x i n compounds were present a t o r below t h e i r de tec t i on l i m i t s (200 ppb), such a q u a n t i t y would no t be l a r g e enough t o account f o r the observed l e v e l s

i n the stack gas even w i t h zero percent des t ruc t ion . Therefore, d i o x i n and

I n add i t i on , de tec tab le l e v e l s o f po l ych lo r i na ted dibenzofuran and

3

98

Page 115: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

dibenzofuran found i n the stack gas are most probably formed dur ing the combustion process (28).

benzo(a)pyrene concentrations measured i n the various fuels generally agree w i t h e a r l i e r data (see Table 24) ; i .e. , No. 2 fuel oi l and v i r g i n lubricating o i l tend to be low i n benzo(a)pyrene content while heavier fuel o i l s and used o i l tend to have s l igh t ly higher amount of PNAs. However, none of these fuels resulted i n measureable emissions of benzo(a)pyrene d u r i n g combustion (9,141.

Simi lar resul ts were observed w i t h regard to PNA emissions by Recon Systems, Inc. I n general, t he i r data indicate tha t PNA and total hydrocarbon emissions from waste o i l combustion would be i n the range previously measured fo r No. 2 and No. 6 fuel o i l s (26) . In addition, GCA Corporation's recently completed study ident i f ied only two PNA compounds (naphthalene and phenanthrene/anthracene) and t h a t too i n very low concentrations (2-3 ug/m of f lue gas) ( 9 ) . l i t t l e , i f any, PCBs and PNA compounds would be emitted during used-oil combustion i n large comnercial boilers.

W i t h respect to emission of PNA compounds, i t has been reported t h a t

3

These observations, therefore, tend to indicate tha t very

IMPACT OF EMISSIONS ON AMBIENT A I R QUALITY

W i t h respect t o impact on ambient a i r quali ty, Table 49 shows t h a t the 3 average quarterly lead concentration of 5.0 ug/m is well i n excess of the

1.5 ug/m federal standard. Furthermore, w i t h reasonable ash and sul fur levels i n used o i l , the ambient a i r concentrations for par t iculates and SO2 would be very h i g h when emissions are n o t controlled. controlled by an e lec t ros ta t ic precipi ta tor or baghouse, the impact of particulates can be reduced t o almost negligible proportions. SO2 emissions can also be controlled, b u t the i r high cost makes t h i s o p t i o n less l ikely (26 ) . The expected increases i n used o i l sulfur concentration i n the future make i t l ikely t h a t SO2 emissions will be a s ignif icant problem, possibly requiring some control equipment or dilution of the waste oi l w i t h low sulfur o i l s prior t o burn ing i n areas where emission standards are very stringent. I n the past, used o i l was sometimes used i n blends t o reduce the sulfur level of h i g h sulfur containing fuels.

3

However, when

I t should be noted that the d a t a i n Table 49 represent a "reasonable

worst cast analysis". The impact i n most instances will be localized and less

99

Page 116: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 49. A I R QUALITY IMPACT OF VARIOUS POLhU&ANTS EMITTED FROM LARGE STEAM BOILERS ’

E m i ssi on Concentration Calculated Maximum

Quarter 1 y Average Concentration Ambient Air Soncentration

Pol 1 u t a n t i n Oil % Control l b / h r s/m

Lead 625 ppm 0 5.0 5.0

Lead 625 ppm 0 6.7 6.7

Particulates 0.5% Ash 0 53.3 53.3

Parti cul a tes 0.5% Ash 98 1.0 1.1

0.5% S 0 .6 .6 s02

N02 -- 0 15.6 15.6

Hy d roc a r b o n s -- 0 0.7 0.7

aWorst case analyses. bBasis: Southern Californja, 2nd quarier stack: 1.5m diameter, 22.5 m h i g h ;

f lue gas: hrslday, 7 days/week.

25.8 m /sec a t 310 F 1,421 gal/hour (25% used o i l ) , 24

Source: Recon Systems, Inc. and ETA Engineering, Inc. (26)

than that indicated in the table. On the other hand, individual s i tuat ions could be even worse; e.g., a lead concentration of 6,250 ppm when b u r n i n g 100% used o i l could increase the calculated impact by a factor of ten.

On the basis of the i r experiments, Recon Systems, Inc. calculated emission factors for used oi l and for used oil-virgin fuel mixtures. These factors are shown i n Table 50 for lead, par t iculates , SO2, NO2, carbon monoxide, and hydrocarbons. Preliminary emission factors for PNAs, hydrochloric and hydrobromic acids, and phosphorus, are a1 so included.

COMBUSTION IN SMALL BOILERS

As shown i n Table 51, lead emissions from small boilers and space heaters typically range between 50 and 85% of the i r i n l e t concentrations. An

130

Page 117: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

T A B L E 50. UNCONTROLLED E M I S S I O N FACTORS FOR USED O I L COMBUSTION I N LARGE B O I L E R S

Emission Factors, lb/1,000 ga l

Po l l u tan t EPA AP-4P Suggested f o r Used O i l b Comnents

Lead 0.0075(L) Uaste o i l : 0.0075(L) L = ppm lead I n o i l . Based on 100% emlssion a t 7.5 l b /ga l o i l density.

Lead Virgin o i l : O.O042(L) -- (Resfdual, D i s t i l l a t e )

Based on s u b s t a n t i a l l y l ess than 100% emissions. Average L = 1.0 f o r res idual 011s and 0.1 f o r d l s t i l l a t e o i l s .

Coal: 1.6 (L) , lb/1,000 ton -- (Bituminous. Anthrac i te)

Uaste o i l : 75 ( A ) 75(A)

Based on 80% emissions

Par t i cu la te A = Percent ash i n o i l . Based on 100% equlva lent emission a t 7.5 l b /ga l o i l density.

Pa r t i cu la te V i r g l n o i l No. 6: lO(S) + 3 No. 5: 10

S - Percent s u l f u r In o i l . Note t h a t used o i l with approximately 0.13% ash would be equiva lent t o No. 5 f u e l o i l .

No. 4: 7 I n d u s t r i a1 / C a n e x i a1 d i s t l l l ate Domestlc d l s t i l l e d : 2.5

Other metals Not included I n p a r t i c u l a t e

Residual 011: 157 (5 ) D l s t i l l a t e o i l : 1 4 2 6 ) s02

so3 A l l v i r g i n o i l s : 25

0.0075(L ) L = ppm metal I n o i l .

150(S) S = percent s u l f u r i n o i l

2s S = percent s u l f u r i n o i l .

NOx ( t o t a l as NO2) Residual o i l s -- Power p lan t tangentlal:50 Power p l a n t other: 105 I n d u s t r i a l 4Comerc i a1

I n d u s t r i a l /Commercial d i s t l l l a t e : 22 Domestlc d i s t i l l a t e : 18

22-400 (N)

N = percent n i t rogen i n o i l . See AP-42 f o r f u r t h e r dlscussion o f NO, m iss ions .

-- Hydrocarbons ( t o t a l . as CH4)

PNAs

A l l v l r g l n o i l s : 1 1

Not included

Recon measurements ranged from 14 t o 165 ug/g fue l ( l j 3 avg) as canpared t o 1 lb /10 g a l (approx. 133 ug/g) emission factor .

0.0075 Corresponds t o 1 pg/g. I n s u f f l c i e n t data t o deternine how PNA emlsslons f o r used o i l s compare w i t h v i r g l n o i l s .

HC1

HE r

P ( i n p a r t i c u l a t e )

co

Not included

Not Included

Not Included

5

77(C) man.

76(B) max.

75(P) max.

5

C = percent ch lo r i ne I n o i l .

B = percent bmmine i n 011.

P = percent phosphorous I n o i l .

CO emlsslons vary w i t h combustion con t ro l on a l l fuels. No CO emission detected by Orsat analyses i n Recon tes ts 1-4. Detennlnatlons by Kitagawa detector tube show 10 t o 100 ppm i n the f l u e gas o r an average o f about 5 lb/1.000 gal.

- :Reference 29.

Inc lud ing used o i l / v l r g i n o i l mlxtures.

Sources: Recon Systems Inc. and ETA Engineering, Inc. (26) and U.S. Envl romenta l P ro tec t l on Agency (29)

101

Page 118: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 51. LEAD EMISSIONS FROM USED OIL COMBUSTION I N SMALL BOILERS AND SPACE HEATERS

Operat ing Loada Type o f V i r g i n Percent Lead Emi t ted M i 11 i o n Btu/hr Fuel Waste O i l %

Mobil O i l Company 19

G u l f O i l 0.44

Aberdeen Prov ing Ground Edgewood Arsenal 5.3

Esso Research and Engineer ing 1

A Skidmore Col lege, 0 Saratoga Spr ing, New York 5.7 and 11.4 r\)

U. S. Environmental P r o t e c t i o n Agency

GCA Corporat ion 0.25:

0.12; 0.25

0.25

No. 6

No. 2

No. 2

None

None

None None

None None

5

25

30

100

100

100 100

100 100

50

28

3

50

50

10; 30-100

5 74 -8 1

aOne m i l l i o n B tu /h r i s equ iva len t t o 1.05 GJ/hr. bVa po ri z i ng Un i t . ‘A i r -a tomi z i ng U n i t . Source: H a l l , Robert E., e t a l . (30 )

Page 119: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

exception i s noted i n the EPA t e s t of the a i r atomizing space heater where almost a l l of the lead i n a truck crankcase o i l fuel was found i n the f lue gas. Another exception i s observed w i t h the very low level of lead emissions in vaporizing units. combustion i n small boilers and space heaters are discussed below.

These differences and other aspects of used o i l

INORGANIC AND TRACE ELEMENT EMISSIONS

Table 52 compares the trace element emissions, i n terms of f lue gas loadings, d u r i n g used oil combustion i n space heaters f o r the recently completed E P A and GCA Corporat ion studies. burner design has a marked ef fec t on trace element emissions w i t h the vaporizing u n i t retaining most of the trace elements w i t h i n the p o t residue (see Figure 181, whereas the a i r atomizing burner emits most of the elemental species i n the f lue gas. concentrations f o r the EPA study. considering the trace element content of the feed o i l used i n the two studies. The EPA t e s t o i l , f o r example, contained 3,300 u g of lead/g of fuel and about 1,100 ug of zinc/g of fuel compared to GCA composite o i l ' s content of 1,100 and 730 clg/g fo r lead and zinc, respectively.

I n general, the GCA Corporation data show t h a t the percent of lead ( i n the feed t o the atomizing u n i t ) that i s emitted w i t h the f lue gas i s 81% and 74% for the representati ve and composite oi 1 s , respecti vely. values for zinc are 89% and 78%. I n comparison, almost 100% of the incoming lead i s emitted w i t h the f lue gas from the atomizing u n i t when truck crankcase o i l s were burned by the EPA. The percent emissions, however, drops t o roughly 30% when automotive o i l s are burned. Comparable values for zinc are abou t 60% and 30%, respectively, for t e s t s with truck and automotive crankcase o i l s .

Corporat ion and E P A studies show t h a t almost a l l (approximately 95%) of the trace elements are retained within the vaporizing p o t . (aluminum, boron, strontium, and chromium) are emitted a t levels greater than 10% of the amount introduced w i t h the fuel. These elements are n o t particularly vola t i le and the i r presence i n the f lue gas a t higher t h a n anticipated concentrations can most 1 ikely be at t r ibuted t o experimental error ( 9 )

I n general, the data indicate t h a t

The table also shows s l igh t ly higher elemental These higher values are reasonable

Comparable

I n the case of the v a p o r i z i n g u n i t , the resul ts of b o t h the GCA

Only 4 elements

Page 120: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

I

T A B L E 52. TRACE ELEMENT E M I S S I O N S FROM USED301L COMBUSTION I N SPACE HEATERS, ug/m

b vapor iz ing uni ta Atan i r i ng u n i t

Element GCA Test 1' GCA Test 2d EPA Teste GCA Test 1' GCA Test 2d CPA Teste

A1 u n i n m

Antimony

Arsenic

Barium

Bery l l i um

Boron

Cadnrium

Calc iun

Chromf um

Cobalt

Copper

I ron

Lead

Magnesium

Manganese

Molybdenum

Nickel

Sel en i um

S i 1 icon

S i l v e r

Sodium

S t r o n t i M

Thal l ium

T in

T i t a n i m

Vanadium

Zinc

200

3

3

4

<1

130

<1

380

6

<1

6

20

280

90

3

3

5

<1

500

<1

60

<1

<1

2

8

<1

40

390

2

13

90

<1

-- 3

2.600

50

7

30

630

580

-_ 30

20

25

<1

-- <1

170

30

<1

30

10

30

250

25

-_ --

25

-- 670

1

25

4,200

54

16

15.200

1,600

8

420

250

21

<1

-_ -- _-

<4

7

340

2

<1

190

570

40

700

3,800

3

100

65

93,000

2 50

5

1 * 200

5,300

97,000

14.500

800

190

60

<1

1.360

2

4.100

85

<1

230

30

7

56,000

1.900

40

380

1.900

4

-- 60

59,000

450

75

2.200

19,500

51 ,000

-- 100

21 0

270

(1

-- (1

14.300

150

<1

1.400

670

2 20

40,000

650

-- -- 1,300

-- 1.960

110

11,900

4.950

70

2,400

22.300

144.000

7,000

1,300

1,300

3,500

<1

_ _ -- --

50

7

490

m 16

66.000

t K r o l l Model U8OOL (Model U400L used f o r EPA Test). ,Oravo Hastings Thennoflo Model 2040. dUi th representat ive o i l . ,Uith canpasite o i l . U i t h autanot ive used o i l .

Source: GCA Corporation ( 9 1

1 i)4

Page 121: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

AI 0 Be

Waste oil

0 Pot Residue

II,- Cd Co Cr Cu Mn M o Ni Se Sn Sr Ti V Y

Element

Figure 18. Comparison of Total Mass of Elements i n the Fuel and Pot Residue

Source: Hall, Robert E . , e t a1 . (30) of a Vaporizing Pot Heater

W i t h respect t o emissions breakdown by automotive and truck crankcase o i l s , Figures 19 and 20 show higher metall ic content i n the f lue gas from used automotive o i l s combustion. content of automotive o i l s which i s a t t r ibu tab le to wear of metal engine parts o r , i n the case of lead, t o exposure of residues from lead-containing gasoline t o 1 ubricated surfaces ( 3 0 ) .

T h i s i s primarily due t o the h i g h metall ic

GASEOUS EM ISS IONS

W i t h respect t o par t iculate emissions from space heaters, Table 53 shows t h a t the a i r atomizing burner emits par t iculates a t levels t h a t are an order of magnitude higher than the vaporizing unit . T h i s i s -pr imar i ly due t o differences in the f i r ing type between the two burners. As a r e su l t , the vaporizing p o t burner re ta ins much of the inorganic material i n the p o t residue, while the a i r atomizing burner permits more of the inorganic material t o escape with the f lue gas . Table 53 also i l l u s t r a t e s t ha t the a i r atomizing

Page 122: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

-0 W r L S m Air Atomizing Burner. Truck Oil Air Atomizing Burner. Automobile Oil m, t i -

aJ 0 Waste Oil

0 SASS Train

Dilution Tunnel -. 2100

u 1800

w 1500 n - 1200

c,

W c,

E:

E m W

w

0

- 600

+ 300 - " I

1 Ce Fe M g P Pb Zn Ca Fe M g P Pb Zn

Element

Figure 19.

Source: Hall, Robert E . , e t a l . (30)

Comparison of Elemental Emissions fo r the Air Atomizing Heater Burn ing Automoti ve and Truck Crankcase O i 1 s

-0

1 Ca F c M g P Pb Zn Ca F c M g P Pb li Zn

V A P O R I Z I N G B U R N E R - T R U C K V A P O R I Z I N G B U R N E R - A U T O M O T I V E

Element

Figure 20.

Source: Hall, Robert E . , e t a l . (30)

Comparison of Elemental Emissions fo r the Vaporizing Pot Heater Burn ing Truck or Automotive Crankcase O i 1 s

Page 123: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 53. PARTICULATE LOADINGS IN USED OIL SPACE HEATERS, MG/M3

Particulate Loading

Burner/Oi 1 a GCA Test EPA Test

b Air-atomizing burner No. 2 fuel oil Automotive waste o i l Truck waste oil Representative o i l Composite oi 1

Vaporizing burner' No. 2 fuel o i l Automotive waste oil Truck waste o i l Representa t i ve oi 1 Composite oi 1

-- 470 470

-- 8

22

10.3 224.5 223.4 --

--

24.2 18.2 26.7 -- --

aSee Table 13 for used oil properties. bSame burner used in b o t h studies. 'GCA tests w i t h Kroll Model W800L and E P A tests with Kroll Model W400L.

Source: GCA Corporation (9)

burner emits more particulates when firing used o i l t h a n when firing No. 2

fuel o i l . t h a n virgin No. 2 fuel oil (30).

compares these emissions from the vaporizing and air atomizing burners while firing No. 2 fuel o i l , automotive used crankcase oils, and truck used crankcase oils. I n general, carbon monoxide and hydrocarbon emissions are similar t o those of a conventional oil burner while NOx and SO2 emissions are significantly higher from waste oil combustion t h a n from No. 2 fuel o i l combustion because the fuel nitrogen and sulfur contents of used o i l are much higher. Furthermore, the air atomizing burner i s capable of operating a t lower excess air levels, and thus provides more efficient combustion (30).

This difference i s due t o the higher inorganic content of used o i l

Addit ional da t a on gaseous emissions are shown i n Table 54, w h i c h

107

Page 124: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 54. GASEOUS AND PARTICULATE EMISSIONS FROM SMALL WASTE OIL HEATERS

Burner /O i l

Carbon Unburned N i t r i c S u l f u r Monoxide Hy d roc arb on Oxide D i ox i de

Excess

Vapor iz ing burner No. 2 f u e l o i l 9.45 76.9 31.2 0.48 2.5 0.06 51.2 0.84 20.1 0.7 Automotive waste o i l 9.98 84.6 14.7 0.23 3.3 0.08 104.4 1.72 195.6 6.9 Truck waste o i l 10.08 86.7 16.5 0.25 1.8 0.04 90.3 1.47 318.6 11.1

A i r a tomiz ing burner 4 No. 2 f u e l o i l 4.2 23.5 12.9 0.2 1.7 0.04 59.4 0.97 55.9 1.9

Automo ti ve waste o i 1 4.83 27.9 25 0.38 3.1 0.08 158.1 2.61 214 7.5 Truck waste o i l 4.83 28 16.7 0.25 2.1 0.05 109.6 1.79 333 11.6

0 02

Source: Ha l l , Robert E., e t a l . (30)

Page 125: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

ORGANIC EMISSIONS

Recently completed t e s t resu l t s o f used o i l combustion i n space heaters i l l u s t r a t e t h a t emissions of organic compounds will range from 1.1 t o 1.4 mg/m3, w i t h the concentration being s f igh t ly lower for used automotive o i l s combustion t h a n w i t h truck crankcase o i l s combustion (30). Chemical analyses of these emissions show two major types of consti tuents. These include hydrocarbons (such as a1 iphat ic , o le f in ic , and aromatic compounds) and oxidized species such as ketones, e s t e r s , aldehydes, acids , and ( t o a l esser extent) e thers , anhydrides, alcohols, and lactones. I n addition, s ign i f icant quant i t ies of PNAs are found i n the gaseous discharges of the vaporizing burner u s i n g automotive crankcase oi 1 s. A1 though not measured or ident i f ied , similar types of PNA compounds are expected i n the vapor i z ing p o t residue for used truck crankcase o i l s . Furthermore, truck crankcase o i l s tend t o generate more oxidized organic species t h a n automotive crankcase o i l s combustion. This i s evidenced by the re la t ive ly higher levels of acids and lactones i n the gaseous discharges of truck crankcase o i l s (30) .

The resu l t s of gas chromotography/mass spectrometry analyses of the semivolatile organic emissions, as measured by GCA Corporation, are shown i n Table 55. These results show tha t the f lue gases of small waste o i l heaters are essent ia l ly f ree of semivolatile organics. Furthermore, none of the components present as spikes in the feed oi l were detected i n the f lue gases

3 a t a detection l imi t corresponding t o a f lue gas concentration of 0.15 ug/m . In general, these r e su l t s appear comparable to those found for combustion of conventional fuel oils . Further analysis of the contaminant concentrations i n the feed and the f lue gases leads to the following expression (assuming a l l contaminants i n the fuel are emitted) ( 9 ) :

3 Emission Concentration (mg/m ) = Fuel Concentration (ppm) x 1-4.762 (O2/lO0) --

24.04 F where:

O2 = Concentration of oxygen i n f lue gas, %

F = Number of gram moles of dry e f f luent per gram of fuel burned under stoichiometric conditions.

The value of F i s 0.46 for an average d i s t i l l a t e o i l and 0.44 for an average residual o i l . A typical F value for used lubricat ing o i l would be i n the same

109

Page 126: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

I

TABLE 55. ORGANIC ANALYSES OF GASEOUS EMISSION5;PROM USED OIL COMBUSTION I N SPACE HEATERS, ug/m

.-_ - .. Vaporizing u n i t Atomizing u n i t

Orqdnic Compound Representative Oi l Composite o i l Representative o i l Composite 011

_ - ch i orobenzenc

0 t sch 1 orome thy 1 ether

Phenol

Chlorophenol

Dichlorobenzene

HI trobcnzene

Ni trophenol

Naphthalene

Chloronaphthalene

lrichlorophenolb

Acenaphthene

W-ni trosodiphenylamineb

Hexachlorobenzene

Phenanthrenefanthracene

Oibutylphthalate

Butylbenzylphthalate

Eir iZ-ethylhexyl lphthalate

Pyrene

Benzlalanthracenefchrysene

Triphenyl phosphate

Benzola )pyrene

Adrin

4.4 -DOEb

PCBsa

:Detection l i m i t : 0.15 4/m3.

Source: GCA Corporation 19)

Spike components.

range. Given an i n i t i a l concentration of PCBs i n the o i l feed of 34 clg/g of o i l , the calculated destruction efficiency achieved a t a detection level o f 0.15 ug/m would be 99.993%. A t a concentration level of 100 u g l g , the destruction efficiency would be 99.9977%. above equation to calculate the emission concentrations.

measure of environmental impact indicates t ha t lead from the atomizing space heater i s the t race element emission of most concern (see Table 56). Other elements of possible concern are copper, iron, and zinc. concentrations i n used o i l , other elements could a l s o have potential impacts. Leaky f lues or excessive contact w i t h the f lue gas due to down d ra f t s or low level discharges could lead to greatly elevated human exposures ( 9 ) . more, both EPA and GCA Corporation t e s t s indicate tha t the vaporizing

3

A value of 0.45 was used i n the

The use of the source severity factor (as defined previously) as a

Depending upon t h e i r

Further-

110

Page 127: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 56. MEASURED EMISSIONS A N D CALCULATED SEVERITY FACTORS FOR SPECIFIC POLLUTANTS FROM SMALL BOILER SYSTEMS

Vaporizing Space Heater A i r-Atomizing Space Heater

In1 e t Env i ronmentaa

W g u g h u g h Factor ~1 g/m Factor Concentration Impact Jndex Emissions Severity Emissjons Severity

Par t iculates

Metals Cadm i um Chromium Cobalt Copper Iron Lead Nickel Zinc

Org an i c Compound s Naphtha1 ene Phenanthrene Pyrene Benz( a) anthracene Benzo( a) pyrene

1.6 4.1

<o. 1 23

170 1,890

1,000

580 21 0 40 20

<10

1 .2

75

50 500 50

200 1,000

150 100

5,000

50,000 1,600

230,000 45

0.02

7,840

1 6 1 6

20 2 80

5 40

190 160 100 30 30

<o . 001

<o . 001 <o. 001 <o. 001 0.005

<o. 001 0.015

<o. 001 <o. 001

<o. 001 <o. 001 <o. 001

OtO05 11

473,000

65 2 50

5 1,200 5,300

97,000 60

55,700

1 . 2 1

ND ND

0.006

0.013 0.005

0.6 OtO55' 7 0. 006c 0.114

(0. og1

<o . 001 <o. 001 <o. 001 -- --

aTLV values for t race elements; DMEG values fo r organic compounds. bPrimary national ambient a i r qual i t y standard fo r par t iculates . 'Indicates factors i n excess of 0.05.

Source: GCA Corporation ( 9 )

Page 128: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

burner is not a s ign i f icant source of par t icu la te or lead emissions although i t d i d emit more organics than other systems; fo r example, benzo(a)pyrene is emitted i n s ign i f icant amounts as determined by the source severity factor .

The emissions d a t a provided above confirm t h a t b o t h burner design and fuel composition have a major impact on the emissions of inorganic elements. The vaporizing pot burner, for example, re ta ins a s ign i f icant amount of the t race elements in the p o t residue, whereas the a i r atomizing burner allows more of the t race elements to be carr ied by the f lue gas in to the stack. Par t iculate emissions from t h i s burner are a lso an order or two higher t h a n those from the vaporizing u n i t .

hydrocarbon emissions from both types of boi 1 ers are comparable. emissions are a lso similar to those from virgin fuel o i l combustion. I n comparison, NOx and SO2 emissions from used o i l combustion are s l i gh t ly higher due to i ts higher nitrogen and sulfur contents. I n addition, the disposal of the pot residue from the vaporizing burner can be a problem because of the o i l ' s h i g h t race element and PNA contents. 3% of the feed, contains over 90% of the o i l ' s t race elements and a variety of

I n addition, the data i l l u s t r a t e t h a t carbon monoxide and unburned These

T h i s residue, representing about

organic components, including PNAs.

In general, waste o i l s are considerably cleaner fue and coal. Because they contain fewer amounts of sulfur , vanadium, and nickel than residual fue l , t h e i r emissions amounts of these compounds. They will a lso generate l e s

s than No. 6 fuel o i l s i l i con , sodium, w i 11 contai n small e r

particul a sions than coal. Thus, s u b s t i t u t i n g waste o i l for coal will r e su l t reduced emissions of the contaminants l i s t e d above as well as of ca i ron, magnesium, beryllium, manganese, s i l v e r , strontium, aluminum, boron, and molybdenum ( 14 1.

e emis- i n sharply cium, titanium,

Similar resu l t s would be obtained i f small quant i t ies of used o i l were blended w i t h residual o i l and coal. Table 57 presents the estimated t race element content of 1 and 5% (by weight) blends of waste o i l and v i r g i n fuels (residual o i l and coal) . The t race element content of 100% waste o i l and unblended v i r g i n fue ls are a l s o shown for comparison. table indicates t h a t , compared w i t h unblended coal, blending 1% (by weight) waste oi l w i t h coal will not r e su l t i n a substantial difference i n t race ele- ment content. A 5% blend of waste o i l and coal, however, does have s ign i f i - cantly higher lead concentration and, to a l e s s degree, higher phosphorus

Examination of this

112

Page 129: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 57. TRACE ELEMENT CONTENT OF V I R G I N AND USED OIL QLENDS, PPMa

Waste O i l & V i r g i n Fuels Residual O i l Blend

Waste O i l & Coal Blend

100% 100% Waste Residual 100% 1% 5% 1% 5%

E l ement O i 1 O i 1 Co a1 Waste O i l Waste O i l Waste O i l Waste O i l

Mag nesi um

Cal c i um

I r o n

Lead 4 4

w

Copper

Barium

Zinc

Phosphorus

S i 1 v e r

T i n

Chromium

559

1,850

1,025

6,000

177

1,005

1,650

1,250

1

58

29

14

48

120

3

1

C

C

C

-- -- --

0.3

C -- 13.7

1,362

7,768

14,467

71

64

258

123

30

1.7

225

24

20

66

129

63

2

10

17b

1 Z b

0.3

0. gb

13.9

41

138b

166

303b

gb

50b

85

60b

0.3

3.0b

14.5

1,354 1,324

7,709 7,412

14,333 13,745

138 375b

65 70

2 65 2 95

123 138

42 91

1.7 1.7

223 21 7

24.1 24.3

aMedi an Val ues b Ind i ca tes s i g n i f i c a n t d i f f e r e n c e o f g rea te r than 100 percent between contaminant con ten t i n b lend and

v i r g i n f u e l . ‘Unknown b u t assumed t o be zero f o r c a l c u l a t i o n o f b lend concentrat ions.

Source: GCA Corporat ion (14)

Page 130: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

conten t than pure coa l .

ments a re p resen t i n s i g n i f i c a n t l y h ighe r concent ra t ions i n waste o i l - res idua l

o i l b lends than i n unblended res idua l o i l . However, i n comparing these h ighe r

concent ra t ions w i t h the t r a c e metal con ten t o f pure coa l , these waste o i l b lends are d r a m a t i c a l l y c leaner except, again, f o r l e a d and phosphorus.

The t a b l e a l s o shows t h a t severa l o f t he t r a c e e l e -

RE-REFINING

The sources and p r o p e r t i e s o f the a i r emissions, l i q u i d e f f l u e n t s , and

s o l i d wastes generated from the va r ious u n i t opera t ions i n a r e - r e f i n e r y a re

discussed bel ow. I n general , the types and quant i t i e s of po l 1 u t i o n generated

w i l l vary depending upon the r e - r e f i n i n g technology used t o process the waste

o i 1. They w i l l a1 so be i n f 1 uenced by the composi t ion of the waste o i 1 as we1 1

as by the environmental c o n t r o l methods and management techniques employed t o

m i ti gate the po l 1 u t i o n sources.

A I R EMISSIONS

I n general , a p r o p e r l y ope ra t i ng r e - r e f i n e r y w i l l em i t very few a i r

emissions.

and wastewater t rea tment u n i t s , and s torage tanks.

ac tua l composi t ion o f the a i r emissions, a l though some odors a re apparent

around most r e - r e f i n i n g f a c i l i t i e s .

a re es te rs and organ ic compounds c o n t a i n i n g oxygen and n i t rogen .

concent ra t ions o f o rgan ic s u l f u r compounds may a l s o be present .

smal l amounts o f SO2 and SO3 may be produced by ac id-s ludge processes (10) .

A mathematical model was used r e c e n t l y t o p r e d i c t t he expected

concen t ra t i on o f a i rbo rne hydrocarbon contaminants a t va r ious d is tances down- wind o f the Booth O i l Company's f a c i l i t y i n B u f f a l o , New York ( 2 4 ) . The model

employed was general i n na ture and p rov ided f o r i n c o r p o r a t i n g such v a r i a b l e s

as wind speed and d i r e c t i o n , source l o c a t i o n and he igh t , and atmospher ic

s t a b i l i t y . It considered 31 d i f f e r e n t process emiss ion p o i n t s combined as a " s i n g l e p o i n t source''.

balance c a l c u l a t i o n s on i n d i v i d u a l sources, was used t o accumulate the t o t a l

mass emission r a t e f o r the f a c i l i t y .

t h e o r e t i c a l model showed t h a t a t a d is tance of s l i g h t l y more than t h r e e m i l e s

The p r i n c i p a l sources o f these emissions a re vents f rom process L i t t l e i s known about the

The most l i k e l y sources o f these odors Very low

I n a d d i t i o n ,

The emission r a t e p o t e n t i a l , as determined by m a t e r i a l

The computer-aided use o f t he

Page 131: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

down-wind of the s i te , the hydrocarbon contaminant concentration will be in the range of 0.016 t o 0.185 Dg/m of air. f a i r l y unstable atmospheric conditions while the upper concentra-tion represents nearly neutral atmospheric s t ab i l i t y . Nearer the s i t e , the emissions will be larger ; thus, fo r example, a t a distance of approximately 0.1 mile down-wind, the hydrocarbon contaminant concentration will range from 4.87 t o 10.56 ug/m3 of a i r (24).

A comparison of the predicted values with actual emission ra tes from the same faci l i ty showed t h a t , i n most cases, the actual emissions have the same order of magnitude as those theoret ical ly predicted (see Table 58). addition, many of the actual emissions were much lower t h a n those estimated by the model. Booth Oil Company, Inc. f a c i l i t y .

are normally sent t o a furnace where the combustible materials are burned. some plants, caustic or ammonia scrubbers may be used t o reduce the pollution impact of these emissions. T h u s , no separate a i r emissions control equipment i s necessary.

3 The lower concentration represents

In

Table 59 summarizes the daily hydrocarbon emission rates from the

W i t h respect t o mitigation techniques, the emissions from a re-refinery In

TABLE 58. COMPARISON OF PREDICTED WITH ACTUAL EMISSION RATES AT BOOTH OIL COMPANY, INC. 'S RE-REFINERY, MG/L

Source Predicted Actual

Feedstock storage tank

P re t r ea t men t tank

D i s t i 11 ation b u i 1 d i n g vent

Vacuum di s t i 11 a t i on u n i t

Residue storage t a n k

Lube o i l storage tank

Blending and f i l t e r s ta t ion

Oi 1 1 oadi ng/unl oadi ng s ta t ion

0.5 - 0.9

1.0 - 5.2

0.2

0.7

10.5

29.4

2.0

0.1

t race - <3.0

t race - 6.0

3.0

<3.0

negligible

23

t race

negl i g i bl e

Source: Booth 111, George T. e t a l . (24)

l l j

Page 132: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 59. EMISSION SOURCES AT BOOTH O I L COMPANY, I N C . ' S R E - R E F I N E R Y ~

Source Exit Hy d roc a r bon

Temperature, O F Emissions, lb/day

Feedstock storage tank

Pretreatment tank

Di s t i l l a t i on building vent

Vacuum d i s t i l l a t i o n u n i t

Residue storage tank

D i s t i 11 a t e storage tank

80

80

80

80

200

100

Light o i l storage tank 100

Heavy o i l storage tank 100

Hydraulic o i l storage tank 100

Heavy l u b e storage tank 100

Blending and f i l t e r s t a t ion 80

Fuel o i l storage 80

Oil loading/unloading s t a t ion 80

0.0579 - 0.1728

0.0810 - 0.4320

0.070

7.200

0. 218

0.001 r

5.0 x lo-'

2.5

2.3

2.3

1.500

0.120

0.400

aBasis: 6 mill ion gal/yr p lan t capacity.

Source: Booth 111, George T. e t a l . (24)

LIQUID EFFLUENTS

Liquid effluents from a re-refining plant emanates from several sources.

0 Water separated from raw drain o i l ; These include (10):

0 Cooling water from heat exchangers;

0 Contaminated cooling water;

0 Plant runoff water; and

116

Page 133: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

0 Water from vent gas scrubbers. I n a d d i t i o n , small amounts o f wastewater a re generated from t h e condensed

steam t h a t con tac ts o i l . C o l l e c t i v e l y , these sources generate between 100,000

and 2 m i l l i o n g a l / y e a r o f wastewater (31). s i g n i f i c a n t v a r i a t i o n s among r e - r e f i n i n g techno log ies , used o i l q u a l i t y , and

wastewater c o n t r o l management p r a c t i c e s . I n general , t h e c h a r a c t e r i s t i c s o f 1 i q u i d e f f l u e n t s depend upon the re -

r e f i n i n g process and t h e t y p e o f used o i l . The e f f l u e n t s a re expected t o

c o n t a i n t r a c e metal s ( a s d i sso l ved o r suspended so l i d s ) , c h l o r i n a t e d sol ven ts , phenols, and o t h e r organics, as w e l l as suspended o r e m u l s i f i e d o i l (10). As

shown i n Table 60, t h e d i f f e r e n c e s i n wastewater and used o i l composi t ions a r e

dependent upon t h e s o l u b i l i t y o f t h e i r c o n s t i t u t e n t s i n water and o i l . I n

general , t h e me ta l s remain i n the o i l r a t h e r than s e t t l e w i t h t h e wastewater.

Thus, t h e l ow meta l s concen t ra t i on i n t h e wastewater i s due t o t h e small

amount o f o i l t h a t remains i n t h e separated water f r a c t i o n . The c h l o r i n a t e d

and aromatic so l ven ts show f a i r l y h igh concen t ra t i ons i n t h e wastewater, b u t n o t s i g n i f i c a n t l y d i f f e r e n t from those found i n used o i l . The sol ub i1 i t y o f o t h e r contaminants i s s i m i l a r i n bo th phases. One-fourth o f t h e wastewater

samples were found t o c o n t a i n PCBs. Fu r the r , no PNAs were de tec ted i n

wastewater, b u t t h e data were l i m i t e d (9). The p r o p e r t i e s o f wastewater, i n tu rn , d i c t a t e the n a t u r e o f t rea tmen t

f a c i l i t i e s a t a r e - r e f i n e r y . These f a c i l i t i e s w i l l a l s o depend upon l o c a l

sewage t rea tment p l a n t a v a i l a b i l i t y and regu la t i ons . T y p i c a l l y , most re -

r e f i n e r i e s are equipped w i t h n e u t r a l i z a t i o n f a c i l i t i e s . They may a l s o be

equipped w i t h a more e labo ra te system capable o f t r e a t i n g aqueous e f f l uents. The produc t o f t h e wastewater t rea tment f a c i l i t y cou ld be used f o r c o o l i n g

water makeup o r cou ld be discharged i n t o a sewer system. One example o f a

t rea tment system designed t o handle r e - r e f i n e r y wastewater i s descr ibed be l ow.

This wide range i s due t o

B a s i c a l l y , t h e system i s comprised o f a s e r i e s o f steps which a l l o w f o r

cont inuous t rea tment o f t h e wastewater. I n i t i a l l y , t he wastewater i s

c o l l ected, accumulated, and then t r a n s f e r r e d th rough a " b e r t i c a 1 tube coa l esc-

i n g f i l t e r , which removes f r e e and mechan ica l l y -emu ls i f i ed o i l s . The water

then f l o w s t o a n e u t r a l i z a t i o n tank where the pH i s adjusted.

adjustment, f l o c c u l a t i n g agents a re added t o a i d t h e coagu la t i on and f l o c c u -

l a t i o n o f s e t t l e a b l e s o l i d s . Next, t h e water i s t r e a t e d by a combinat ion o f

A f t e r pH

117

Page 134: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

T A B L E 60. COMPOSIT ION OF WASTEWATER GENERATED DURING WASTE OIL STORAGE AND PROCESSING

Samples w i t h

Contaminant Co ncen t r a t i on Concentrat ion range. ppm Detected Co ncen t r a t i on

To ta l Mean Median a t 75 th a t 90 th Analyzed Concentrat iona Concentrat ion P e r c e n t i l e Percen ti 1 e

Low High Samples Number % Ppm Ppm Ppm PPm

Meta ls Arsenic Barium Cadm i um Chranium Lead Zinc

16 10 63 3.4 0.10 0.68 22 0.03 22 19 12 63 80 1.0 29 241 0 300

17 8 47 10 1.04 8.8 68 0 68 5 85 <0.1 2,300 19 15 79 27 1 5 107

19 17 89 2 50 5.5 200 1,300 (0.005 1,650

19 7 37 0. 34b 0.55 1.1 37 0 37

Ch lo r ina ted Solvents 1,1,1-Trichloroethane 13 10 77 666 250 T r i ch lo roe thy lene 11 7 64 561 100 Tetrachloroethy lene 13 10 77 309 110 Tota l Ch lo r ine 5 5 100 1,566 1,140

61 0 910 580

1,920

1,800 12 1,900 2,600 20 2,600

700 3.3 1,300 4,170 76 4,170

Other Organics Benzene 10 8 80 364 290 550 890 <O. 4 890 To1 uene 10 10 100 1,306 6 93 1,300 5,800 14 5,800 Benzo( a) anthracene 2 0 0 -- -- -- -- <0.02 tl Benzo( alpyrene 2 0 0 -- -- -- -- <o. 02 (1 Naphthalene 8 6 75 283 22 9 470 700 0.7 700 PCBS 21 5 24 2.9 0.19 0.2 14 0.04 14

:Calculated f o r detected concen t ra t i ons only .

Source: Frank1 i n Associates Ltd. (1)

One sample with a v e r y h i g h c o n c e n t r a t i o n I 3 7 ppm) was o m i t t e d t o avoid d i s t o r t i o n o f t h e mean.

Page 135: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

d i s s o l v e d a i r f l o t a t i o n and c l a r i f i e r , a f t e r which, t h e t r e a t e d water i s d i r e c t e d t o a h o l d i n g tank p r i o r t o reuse o r sewer discharge, depending on process c o o l i n g water requirements. C h l o r i n e d i o x i d e can be added a t any

p o i n t t o chemica l l y o x i d i z e any d i s s o l v e d o rgan ic contaminants ( 2 4 ) . F i g u r e 21 i s a process f l o w schematic o f t h i s t rea tmen t system w h i l e Table 61 shows t h e r e s u l t s o f t h e wastewater t rea tment system.

V E R T I C A L T U B E

C O A L E S C I N G A >

A C I D O R O I L I C A U S T I C

O I L

P H

A D J U S T M E N T

A

F I L T E R

O I L

V E R T I C A L T U B E

C O A L E S C I N G

P O L Y M E R , A L U M

A D D I T I O N

C O M B I N A T I O N D I S S O L V E D AIR

F L O T A T I O N -'

V C L A R I F I E R

C O A C U L A T l O N

W A S T E W A T E R I

EFFL'UENT T O

S E W E R

F i g u r e 21.

Source: Booth 111, George T. e t a l . (24 )

Schematic of Booth O i 1 u b z v ~ z ~ y , Inc ' ' s Wastewater Treatment System

119

Page 136: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 61. COMPARATIVE ANALYSIS OF THE PERFORMANCE OF BOOTH OIL COMPANY, INC. ' S WASTEWATER TREATMENT SYSTEM

Parameter Feed Eff 1 uent

7.70 7.69 PH

Aci d i ty/Al kal i n i ty , mg/l (as CaC03) 1,030

Total organic carbon, mg/l 3,730 1,450

1 , 770

Chemical oxygen demand, mg/l

Toxi ci ty Metal s , ppm Arsenic Barium Cadmium Chromium Lead Mercury Sel en i um S i 1 ver

18 , 700

0.011 <0.1 0.03

<o. 01 2.2

<o. 002 <o. 002 <0.1

8 , 562

0.002 <0.1 0.02

<0.01 0.2

<o. 002 <o. 002 <0.1

Other Elements, ppm A1 umi num 34.3 7.2

57.1 30.2 Boron Calcium 32 5 Total chromium 0.12 0.03 Copper 1.37 0.15

Magnesium 50.0 40.0

Phosphorous 6.7 7.6 Silicon 6.9 3.0

350

I ron 24.0 3.9

Manganese 1.32 3.74 Nickel 1.0 0.7

Zinc 5.3 1.9

Source: Booth 111, George, T. e t a l . (24)

SOLID WASTES

Most re-refining processes generate two types of so l id waste streams. These include sludge, such as dehydration sludge, acid sludge, and solvent sludge, and spent clay. Figures 22 and 23 i l l u s t r a t e the sources o f residues f o r two major re-refining technologies, the acid-clay and vacuum d i s t i l l a t i o n

120

Page 137: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

b b 7

b + Col lect ion In-L ine k d t e d 4

Truck F i l t e r S e t t l i n g - UdSte O i l I n - L Ine Genera tor F i l t e r

I 1-0I-jFH-I Fract lon Treatment Concactlng Blending

B r i ck/Pdv Ing Secure Acid Mdter id l Ldndf i 1 I* Recovery

Burn f o r

Recovery f o r Regenerdtlon

Landfi 1 I *

Figure 22. Residue Generation and Management in an Acid-Clay Re-Refinery

I

a Denotes most common methods of residue management.

Source: Frank1 in Associates Ltd. (1)

? b r

Page 138: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

Oi s t i 11 a te Fuels

L Uater

Dehydration Unl t

J Steam

Lube 011 Blending

J I

Fract ion Condensd l e

VdCUUll 01 s t l l l a t lon -

Under& Ler

Cunponen t

Figure 23. Residue Generat ion and Management i n a Vacuum D i s t

a Denotes most common methods o f r e s i d u e management.

l l a t i o n Re-Ref

Source: Frank1 i n Associates L t d . (1)

Page 139: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

processes, respectively. typical ly employed i n a re-refinery. re-refinery byproducts are presented i n Table 62.

They a1 so show reasonable management a1 te rna t i ves Other possible u t i l i za t ion options fo r

TABLE 62. POSSIBLE OPTIONS FOR RE-REFINERY SOLID BYPRODUCTS

Waste Stream Use

Dehydration sludge

Dis t i l l a t ion bottoms

Acid sludge

Sol vent treatment sl udge

Spent clay

Fi 1 t e r cake

Spent activated carbon

Boi 1 e r Fuel a Internal combustign fuel Lube o i l recovery

Fuel o i l a Asphalt componenta Lead recovery Carbon black comRonent Grease component

Combustion i n cement kilnsa- Asphalt component Soil s tab i l iza t ion Lead recovery Acid recycl i ng Fuel Gypsum manufaclure Neutralization Brick/paving material a

Fuel a A s p h a l t component Metal s recovery Combustion w i t h coal a

Combustiona a Re genera t i on Brick manufacture Asphalt aggregate

Asphalt componenta Fuel Regenerati on Fer t i 1 i ze r

Combus t i on w i t h coal a Regeneration Disposal

Technically feasible , b u t n o t necessarily economical, u t i l i za t ion options. a

Source: BOOZ, Allen & Hamilton, Inc. (19 )

123

Page 140: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

As shown i n Table 63, the type and quantity of so l id waste generated by a re-ref i nery w i 11 depend upon the process techno1 ogy employed a t the faci 1 i ty. I t will also be influenced by the composition and quali ty of used o i l . o f the sources and charac te r i s t ics of refinery so l id waste residue streams are br ief ly discussed below.

Some

TABLE 6 3 . SOLID WASTE GENERATION RATES FOR TYPICAL RE-REFINERIES

Generation Rate, Tons/Year

Residue Low H i gh

Aci d-cl ay re-ref i nery I n-1 i ne f i 1 tered resi due Acid sludge Spent clay

Vacuum d i s t i l la t ion re-refinery I n-1 i ne f i 1 tered resi due S p e n t clay

2 50 Od10 7 50 bo 300 500

0.25 2.5 500 2,000

aThousand gal /year.

Source: Franklin Associates Ltd. (1)

Sett led S1 udge -

Table 64 shows the composition of s e t t l ed sludge generated during used oil storage or as p a r t of the process fo r removing water and so l ids from waste o i l . These da ta indicate t h a t the composition of s e t t l ed sludge i s n o t much d i f fe ren t from t h a t measured fo r used o i l (Tables 9 and 13). This i s primarily because the sludge contains more t h a n 50% o i l (31).

Dis t i l l a t ion Bottoms

As the name implies, d i s t i l l a t i o n bottoms are residues, containing higher boi 1 ing and other nonvolati l e material s, generated by di s t i 1 la t ion processes. They typical ly contain s ign i f icant ly larger quant i t ies of ash, su l fur ,

124

Page 141: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

T A B L E 04. C O M P O S I T I O N OF S E T T L E 3 SLUDGES GENERATEG DIIRING Y A S T E O I L STORAGE AND P R O C E S S I N G

Samples w i t h Detected Concentrat ion

Contaminant Concentration Concentration Range, ppn Tota l Mean Median a t 75th a t 90th

Analyzed Concentration' concentrat ion Percen t i l e Pe rcen t i l e Low High Samples Number S Ppn PPD Ppn PPm

Metals Arsenic Barium Cahium C h m i u m Lead z inc

Chlor inated Solvents O ich lomd i f 1 uommethane T r i c h l o m t r i f l uomethane 1.1.1-Trichlomethane T r i ch lomethy l ene Tetrachl omethy l ene Total ch lor ine

Other Organics Benzo( aJpyrene PCBS

41 47 40 37 50 47

8 NOb 39 41 41 39

7 42

10 43 11 30 42 46

6

28 21 24 38

--

5 3

24 91 28 81 e4 98

75

72 51 59 97

--

71 7

11 <5 416 70

63 <7 215 20 802 300 568 259

131 22

1,575' 300 469 100

1.400 200 3,12Ed 1,780

-- --

4 1.4 182 17

<5 310 < l o 135 993 650

30 -- 1,100

3 60 1.000 7.790

3.6 50

12 1.200

48 714

1,400 1.550

59

5.400 1,100 1,900

13,100

12 50

--

0.013 24 0.21 3.610 0.02 21 6

<o. 5 2.130 0.02 7.770 0.09 3.150

<1 640 -- -- 19 110,000

2.2 1.300 70 8,200 88 181.000

<1 12 <1 500

~~ ~~~~

;Calculated f o r detected concentrat ions only. ,No data were avai lab le f o r t h i s cons t i t u ten t .

sample w i th a very h igh concentrat ion (110,000 ppm) was omi t ted t o avoid d i s t o r t i o n o f the mean. Two samples w i t h very high concentratfons (75.400 and 181.000 ppm) were a n i t t e d to avoid d i s t o r t i o n of the mean.

Source: Frank l in Associates Ltd. ( 1 )

Page 142: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

n i t rogen , and oxygen than the feed o i l . For example, ash con ten t may range

between 10 and 25% w h i l e l e a d con ten t approaches 1.5%, depending upon the

composi t ion o f the used o i l and the e x t e n t o f p re t rea tment p r i o r t o

d i s t i l l a t i o n (20). The concen t ra t i on o f some o f t he o the r t o x i c meta ls a re

a l s o f a i r l y h igh, b u t they a re g e n e r a l l y lower than the concen t ra t i on o f l e a d

(see Table 65). D i s t i l l a t i o n bottoms are commonly used as aspha l t extenders,

and i f discarded, they a re u s u a l l y disposed o f i n lagoons (31) .

Acid and So lvent Sludges

The pr imary source o f a c i d s ludge i s the ac id -c lay r e - r e f i n i n g process. I n t h i s process, waste o i l i s con tac ted w i t h s u l f u r i c ac id , a f t e r which the

a c i d sludge generated i s s e t t l e d o u t and removed, l e a v i n g r e l a t i v e l y c lean o i l

behind. Besides s u l f u r i c ac id , the a c i d s ludge con ta ins aromat ic and a s p h a l t i c compounds, metal s , polymers, and organ ic ac ids removed f rom the used

o i l (10). Some o f the c h a r a c t e r i s t i c s o f a c i d s ludge streams a re presented i n

Table 66. The h i g h a c i d con ten t r e q u i r e s t h a t the s ludge should be handled as

c a r e f u l l y as the o r i g i n a l ac id . As much as 30 t o 50% o f t he a c i d s ludge i s

water so lub le , comp l i ca t i ng l a n d d isposa l . Lead content , b e l i e v e d t o be i n

the 2 t o 10% range, p r i m a r i l y as s u l f a t e , i s another impor tan t f a c t o r t o be

considered p r i o r t o any dumping (*32). Since i t has no economic value, most o f t he a c i d s ludge produced i s

disposed o f i n l a n d f i l l s o r lagoons, u s u a l l y w i t h o u t n e u t r a l i z a t i o n .

N e u t r a l i z a t i o n and i n c i n e r a t i o n , w i d e l y p r a c t i c e d i n Europe, leads t o h igh SO2

emissions.

t i o n cos ts a re too h i g h t o j u s t i f y c e n t r a l i z e d recovery p lan ts .

s ludge 's d isposal i n t o wastewater can o n l y be p r a c t i c e d where h i g h volume

wastewater t rea tment f a c i l i t i e s a re a v a i l a b l e f o r d i l u t i o n ( 3 2 ) .

stream o f metal byproducts, h ighe r ash, lower s o l v e n t i nso lub les , lower

s u l f u r , h ighe r n o n - v o l a t i l e res idue, and h ighe r heat content .

repo r ted t o have o n l y a smal l f r a c t i o n of t he a c i d i t y conta ined i n a c i d s ludge streams.

processes such as the BETC and propane e x t r a c t i o n processes.

Ac id recovery i s very expensive on a smal l sca le and t ranspor ta -

Fur ther , t h e

U n l i k e the a c i d sludge, s o l v e n t s ludge con ta ins a more concent ra ted

It i s a l s o

This type o f waste i s produced p r i m a r i l y by s o l v e n t e x t r a c t i o n

126

Page 143: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 65. ELEMENTAL COMPOSITION OF DISTILLATION BOTTOMS FROM RE-REFINING FACILITIES

Metal s

Samples w i t h Detected Concent ra t ion

Con tam i n ant Range, Ppm Tota l Mean Median

Samples Concen t r a ti ona concen t ra t i on Analyzed Number % PPm PPm Low High

~~

Arsenic

Barium

C a h i um --I

Iu Chromium v

Lead

Z inc

~ ~~ ~~

4 3 75 8.1 1 <o. 01 15

5 5 100 477 25 6 1 , 400

5 4 80 12.7 9 0 29

5 5 100 43.2 35 7 100

5 5 100 6,543 4,235 1, 090 15,000

5 5 100 1 , 360.8 133 85 3 , 500

aCalcu la ted f o r detec ted concen t ra t i ons only.

Source: Frank1 i n Associates L td . ( 1 )

Page 144: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 66. ANALYSES OF A C I D SLUDGE

P rope r ty Diesel Fuel Waste O i l

Acid, %

PH

S u l f a t e d ash, %

S u l f u r , %

V i scgs i ty , SUS 75 10!iOF 125 F

Combustibles, %

Water so l ub l e, % Ash Acid

Water i n s o l u b l e , % Ash Acids V o l a t i l e s (15OoC (3 1 mm Hg) Lube o i l (naphthenes, p a r a f f i n s ,

Polymers Other p o l a r compounds Ashphal tenes and o t h e r res idues

aromat ics)

Elemental Analys is , ppm Copper A1 umi num I r o n S i 1 i c o n Lead Zinc Barium Chromium Cal c i um Phosphorous Boron Nickel T i n Magnesium

47.5

0.1

4.45

14.9

4,000,000 457,000 150,000

30-42

4.2 27.0

8.4 1.6 0.8

15.5 15.6

1.8 24.4

40 40

500 800

1,000 200 400 190

12,600 1,000

40 10 35 70

40.8

0.1

11.26

14.1

4 000,000 457,000 150,000

30-42

-- --

-- -- -- -- -- -- --

40 140

1,100 1,400

20,000 2,100 1,300

50 6,400 4,300

50 30 30

1,000

a A l l o r p r i m a r i l y crankcase o i l .

Source: Recon Systems, Inc. (32)

123

Page 145: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

Spent Clay

Spent c l a y i s generated p r i m a r i l y d u r i n g c l a y p o l i s h i n g o f t he used o i l ,

a t rea tment s tep commonly employed t o remove t h e f i n a l contaminants i n used o i l and t o improve the c o l o r and odor o f the f i n a l p roduc t . Small amounts o f

spent c l a y a re a l s o generated by processes u s i n g c l a y as a f i l t r a t i o n media.

Approximately 0.4 l b o f spent c l a y a re generated/gal o f o i l t r ea ted .

As shown i n Table 67, t he meta ls c o n t e n t o f spent c l a y v a r i e s w ide ly .

Although n o t shown i n t h e tab le , t h e i r c o n c e n t r a t i o n i s lowest i n t h e spent

c l a y s used t o p o l i s h l u b e o i l s f rom d i s t i l l a t i o n - c l a y r e - r e f i n i n g processes

w h i l e the h i g h e s t l e v e l s a r e r e p o r t e d f o r c l a y used i n c o n t a c t f i l t r a t i o n

process ing and i n chemical t rea tment -c lay bead r e - r e f i n i n g . I n t e r m e d i a t e

l e v e l s have been measured i n c l a y s f rom ac id -c lay r e - r e f i n i n g f a c i l i t i e s (31 ) .

Other common contaminants i n spent c l a y i n c l u d e a c i d and carbonaceous

res idues and n i t r o g e n - and oxygen-containing compounds such as PCBs. concen t ra t i on i n spent c l a y w i l l depend upon t h e i r presence i n used o i l . add i t i on , n e g l i g i b l e q u a n t i t i e s o f c h l o r i n a t e d and aromat ic so l ven ts a r e

present, p r i m a r i l y because these contaminants have a l ready been removed f rom

the used o i l p r i o r t o c l a y p o l i s h i n g (18).

such as a s u r f a c i n g m a t e r i a l have r e c e n t l y been i d e n t i f i e d (31) .

T h e i r

I n

Spent c l a y i s o r d i n a r i l y d isposed o f i n a l a n d f i l l , a l though some uses

Other Sol i d Wastes

I n addi ti on t o the major r e s i dues d i scussed above , r e - r e f i ners generate

several o t h e r types o f s o l i d wastes. 0 Tank bottoms f rom s t o r a g e / s e t t l i n g tanks;

Some o f these res idues are:

0 U l t r a f i l t r a t e s o l i d s ;

0 Cent r i f uge sludge;

0 A c t i v a t e d carbon from r e - r e f i n i n g (PROP);

0 F i l t e r cake f rom r e - r e f i n i n g (PROP); and

0 F i l t e r s ludge from screen f i l t r a t i o n . A l l o f these m a t e r i a l s a re contaminated by heavy metals.

a re p a r t i c u l a r l y high, w i t h concen t ra t i ons above 10,000 ppm common f o r some o f Lead concen t ra t i ons

129

Page 146: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 67. COMPOSITION OF SPENT CLAY GENERATED DURING USED OIL RE-REFINING

Samples w i t h Detected Co nc en t r a ti on

Contaminant Range, PPm To ta l Mean Median

Metal s Anal yzed Number % PPm PPm Low High Samples co ncen t r a t i ona concen t ra t i on

Arsenic

Barium

Cadni um

Chromium

Lead

Z inc

7 6 86 8.4 3.7 <o. 02 24

7 4 57 242 76 <1 62 8

7 7 100 6.9 11 0.5 13

7 7 100 35 17 5 169

7 3 43 61 4 1 <1 1,200

7 7 100 230 76 52 800

aCalcu la ted f o r detec ted concen t ra t i ons only.

Source: Frank1 i n Associates Ltd. ( 1 )

Page 147: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

t he r e - r e f i n i n g sludges and f i l t e r cakes. General ly, t he s imple screen

f i l t r a t i o n processes a re n o t e f f i c i e n t methods f o r removing meta ls from used o i l ; consequently, t h e i r sludges w i l l have the lowest metal concen t ra t i on o f a l l t he s o l i d waste residues. Lead l e v e l s i n screen f i l t r a t i o n sludges have

t y p i c a l l y been measured a t 100 ppm ( 1 ) .

hazardous c o n s t i t u e n t s o the r than heavy metals.

probably d i r e c t l y r e l a t e d t o t h e i r presence i n used o i l .

L i t t l e o r no data are a v a i l a b l e on the contaminat ion o f these res idues by Such contaminat ion i s

ROAD OILING

When used o i l i s a p p l i e d t o l a n d ( e i t h e r as a road o i l , o r as a dus t

supressant, o r when i ndi s c r i m i n a t e l y dumped), t he o i 1 and i t s contaminants can

m ig ra te by f l o t a t i o n ( p r e c i p i t a t i on - induced r u n o f f ) , by p e r c o l a t i o n through

the s o i l , by d i r e c t r u n o f f ( i f t he a p p l i c a t i o n i s excessive), by

v o l a t i l i z a t i o n , and by dust t r a n s p o r t (11). The q u a n t i t i e s of o i l and the

contaminants t ranspor ted by these va r ious mechanisms vary g r e a t l y , depending

upon the type and q u a l i t y o f used o i l , t e r r a i n , s o i l p o r o s i t y , wind and r a i n

cond i t i ons , temperature, t r a f f i c volume, and r a t e o f a p p l i c a t i o n .

Nonetheless, t he p o t e n t i a l f o r environmental contaminat ion i s s i g n i f i c a n t .

d i s p o s i t i o n o f waste o i l contaminants f o l l o w i n g i t s a p p l i c a t i o n t o a road

surface. One study r e p o r t s t h a t on l y about 1% o f the o i l a p p l i e d t o d i r t

roads over l o n g pe r iods (about 12 y e a r s ) i s r e t a i n e d on the road sur face (32). Approximately 17 t o 18% o f t he o i l i s l o s t through evaporat ion w h i l e another

10 t o 20% i s l o s t through r a i n f a l l r u n o f f , w i t h most o f the runo f f o c c u r r i n g

d u r i n g the f i r s t r a i n s f o l l o w i n g a p p l i c a t i o n .

i t has been suggested t h a t o the r f a c t o r s such as b iodegradat ion and r e -

entrainment o f o i l - c o a t e d p a r t i c l e s by road t r a f f i c c o u l d account f o r a l a r g e

f r a c t i o n o f the long-term o i l t r a n s p o r t from the road sur face (1, 32). D i r e c t p e n e t r a t i o n o f o i l beneath the f i r s t few m i l l i m e t e r s o f road sur face does n o t

appear t o be a major f a c t o r . Another s tudy ' s r e s u l t s i n d i c a t e t h a t i n a d d i t i o n t o o i l l o s t by

evaporat ion ( i n i t i a l l y 12%), another 3 t o 5% i s l o s t by r u n o f f (9). This

measured r u n o f f l o s s i s 3 t o 4 t imes l e s s than the 10 t o 20% found i n the

above study, probably r e s u l t i n g from d i f f e r e n c e s i n s o i l dens i t y and

I n general, very l i t t l e i n f o r m a t i o n i s a v a i l a b l e rega rd ing the f a t e o r

Although no data are a v a i l a b l e ,

131

Page 148: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

configuration. Furthermore, almost a l l of the o i l l e f t i n the soi l was retained w i t h i n a few millimeters of the surface. centimeter, the organic content of the soil was indistinguishable from the background level of untreated soil (9).

briefly discussed below.

Below a depth of 1

The various sources of contamination from road o i l i n g operations are

RUNOFF

In general, r a i n f a l l runoff i s intermittent i n nature and occurs primarily d u r i n g periods of heavy r a i n f a l l . analyses (see Table 68) indicate t h a t the t ransfer of some elements from the o i l (applied to the road surface) t o the runoff i s small, b u t possibly s ignif icant . An assessment of the data shown i n the table i s d i f f i c u l t because of the lack of temporal d a t a ( t ransfer as a function of time) and the possible influence o f external contributions to the concentrations i n the runoff. These external factors include pH of r a i n f a l l , leachates from the soil and i t s impurities, and windblown contaminants and d u s t f a l l ( 9 ) .

W i t h respect to organic analyses of the road o i l and r a i n f a l l runoff , Table 69 shows t h a t the major constituent of r a i n f a l l runoff i s phenol. addition, most of the organics present i n road o i l are present i n the runoff, i f a t a l l , a t concentrations below 10 Dg/l. Given the ppm concentration levels of compounds such as benzo(a1pyrene and PCBs i n the used oi l applied t o the so i l , i t i s doubtful i f they will be present a t the ppb level i n the runoff ( 9 ) .

study, i s shown i n Table 70. In general, these data indicate t h a t the level o f contaminants will depend upon the amount of r a in tha t leaves as runoff from the road surface. Furthermore, the concentration of contaminants r i ses w i t h the amount of runoff. T h i s i s primarily a t t r ibuted to contaminant s o l u b i l i t y under acidic conditions; t h a t i s , a t low levels of runoffs (e.g., 0.5%),

contaminant presence is associated primarily w i t h i t s solubi l i ty i n water while a t higher concentrations (e.g., 5% and above), b o t h soluble and adsorbed contaminants are normally present i n the runoff.

l ighter than water, o i ls will coat the water 's surface w i t h a t h i n film. For

The resu l t s of runoff I s elemental

In

Another estimate of the runoff 's composition, as measured by a recent

Oils are generally s table i n water. I n addition, because they are

132

Page 149: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 68. ELEMENTAL TRANSFER FROM OILED-ROADBED TO R A I N F A L L RUNOFF

Concentration Weight Concentratdon Weight P o f . o f O i l as Appl l e d i n Rungff i n Runoff Weight Applied

E l enent A w l i ed , ug/g ug u9/9 ug i n Runoff

A1 minum

Antimony

Arsenic

Barium

Bery l l i um

Bo m n

Cahium

Calcium

Chromium

Cobalt

Copper

I mn

Lead

Magnesi m

Manganese

Molybdenum

Nickel

Sel eni m

Si1 i con

S i l v e r

Sodium

S t run ti um

Thal l ium

Tin

T i t a n i um

Vanadium

Zinc

31

0.6

8.1

61

<o. 1 6.2

1.3

9#)

7.7

0.8

34

214

1.090

21 2

14

3.2

3.7

<1

40

<o. 1 257

1.9

<1

16

7.8

4.1

740

16.700

320

4.370

32.900

<55

3,350

700

535.000

4,160

430

18,400

116.000

589.000

115,000

7.600

1,730

2,000

<550

21.600

(55

139,000

1,030

<550

8,640

4,200

2.210

400,000

1.0

<o. 01 d.03

0.005

<0.0012

<o. 004

0.001

0.6

~0.003

<o. 003 <o .002 0.5

<o. 02 0.35

0.02

<o. 002 <O. 005

<o. 02 0.6

<o. 001 3.8

0.005

<O.M

<o. 03

0.002

0.005

0.16

'Sample corrected f o r runo f f fmn unoi led surface.

Source: GCA Corporation (9)

133

Page 150: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 69. ORGANIC MPOUND TRANSFER FR M O I L E R T RAINFALL tNOFF

Concentrat ion Weight Concentrat ion Weight % o f o f O i l as Appl i e d i n Rungff i n Runoff Weight Appl ied

Con tami nanta APPl i ed , P g / g u g y 9/9 i4 i n Runoff

Phenol

Chlorophenol

2 , 4 , 6-T r i c h l o ro phenol

Nitrobenzene

N-ni t r o s o d i phenyl amine

Naphtha1 ene

Phenanthrene/ anthracene

Pyrene

Benzo( a) pyrene

D ibu ty l ph tha la te

-I

w 2

4,41 - D D E ~

PCBs ( A r o c l o r 1260)

11

40

40

30

116

440

150

60

10

60

94

34

5,870

21,400

21 , 400

16,000

62,000

23 5 , 000

80,100

32,000

5,300

32,000

50 , 200

18,000

0.6

0.2

<o. 01

0.02

<o. 01

to. 01

<o. 01

<o. 01

<o. 01

0.02

<o. 01

<o. 01

aVol a t i l e compounds n o t detected. bvg/g = Hg /m l . ‘Pest ic ide.

Source: GCA Corporat ion ( 9 )

Page 151: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 70. S E N S I T I V I T Y ANALYSES OF A STREAN ADJACENT TO AN OILED SAND ROADa

1WI O i l Runoff 90% O i l Runoff 751 O i l Runoff 502 O i l Runoff 251 O i l Runoff 51 O i l Runoff 0.5: O i l Runoff --- Contaminant HighC Lord HighC Lowd HighC Lowd HighC Lord Highc LOWd Highc Lowd HighC Lewd

Metals Arsenic Barium CaQniun Chmnium Lead Zinc

0.36 0.01 0.32 9 . w 1 0 - ~ 0.27 7.50 0.18 5 . w 10-3 9 . w 10-2 2.50 1 8 1.80 io+' 5.01 1 . 8 1 8 5 . w loJ

0.09 2.65 I: 1 8 8.1 x 10:: 2.39 x 6 8 1.99 x 1 8 4.5 x 1.33 io:: 2.3 10-2 6.63 x loJ 4 5 a 1 . 3 3 x 4.50 1.33 x io

22.6 0 .66 20.3 0.59 17.0 0 . 50 11.3 0.33 5.75 0.17 1.13 3:30 x 10:: 0.11 3.30 26.0 0.76 23.4 0.68 19.5 0.57 13.0 0.38 6.50 0.19 1.30 3.80 x 10 0.13 3.80 x loJ

10.95 0.32 9.86 0.29 8.21 0.24 5.48 0.16 2.75 8.0 x lo-' 0.55 1.60 x lo-' 5.48 x lo-' 1.60 x 10::

0.63 1.85 x lo-' 5.70 x 10 1.67 x lo-' 417 x lo-' 1.39 x lo-' 3.1 x lo-' 9.25 x 10 1.6 x 10'2 4.63 x loJ 3:ZO x lom3 9 25 x 3.20 x 9.25 x lo-'

Chlor inated Organics D i c h l o m d i f l uommethane 19.4 0.57 17.5 0.51 14.6 0.43 9.70 0.28 4.85 0.14 0.97 2.85 x lo-' 9.70 a lo-' 2.85 x T r i c h l o m t r i f l u o m e t h a n e 2.93 0.09 2.64 8.10 x lo-' 2.20 6.75 x lo-' 1.40 4.5 x lo-' 0.73 2.25 x IO - ' 0.15 4.50 x 1.47 x lo-' 4.50 x 10''

0.15 4.30 x Tr ich lomethane 29.4 0.86 26.5 0.77 22.1 0.65 14.7 0.43 7.35 0.22 1.47 4.30 x 10" T r i c h l o m e t h y l ene 23.7 0.69 21.3 0.62 17.8 0.52 11.8 0.35 5.93 0.17 1.18 3.45 a 10:: 0.12 3.45 Tetrachlomethylene 27.1 0.79 24.4 0.71 20.3 0.59 13.6 0.40 6.78 0. 20 1.36 3.95 x 10 0.14 3.95

Other Oqan ics Benzene To1 uene Xylenes Benzol alanthracene Benzo( a ) pyrene Naphtha1 ene P C 8 S

3.61 0.11 3.25 9.90 x lo-' 2.71 8.25 x lo-' 1.81 5.5 x lo-' 0.90 2.75 x lo-' 0.18 5.50 x 1.81 x lo-' 5.50 x lo4

12.9 0.38 11.6 0.34 9.68 0.29 6.45 0 19 3.23 9.50 x lo-' 0.65 1.90 x 10:: 6.45 x 10:: 1.90 x loJ 0.79 2.31 r lo-' 0.71 2.08 x lo-: 0.59 1 73 x lo-' 0.40 1.16 lo-' 0.20 5.78 I loJ 4.00 x lo-' 1.16 I 10 4.W x 10 1.16 x 0.75 0.02 0.68 1.80 x 10- 0.56 I :M x IO-' 0.38 1.w x IO-' 0.19 5 . w x 10:; 3.80 x IO-' 1.w a 13:: 3.80 x 1 0 ' ~ 1.w x lo4

0.66 1.90 a 10 6.55 x 10:: 1.90 I 13.1 0 . 3 8 11.8 0.34 9.83 0.29 6.55 0.19 1.13 0.03 1.02 2.70 x lo-' 0.85 2.25 x lo-' 0.5' 1.50 x lo-' 0.28 7.50 x 5.70 x lo-' 1.50 x !O-' 5.70 x 10 1.50 x lo-'

27.1 0.19 24.4 0.71 20.3 0.59 13.6 0.40 6.78 0.20 1.36 3.95 0.14 3.95 1 8

3.28 9 5 x 10

-... ... . .. :Bared on 90th p e r c e n t i l e concent ra t ion and assuming roads placed a t one-mi le i n t e r v a l s . :.' .- ; - - < . : l )-rnq:rg:icn ;:,v. i i T d h l p 1 4 .

based on a I l g n r l y - o i i e d rodd ana a heavy F l o r i d a r a i n f a l l . .. ' . . . * I , *,w. ' 'y . \ ' ' e : ,:IC + , f A h r C > ) ,revdda r a i n f a l l .

Source: Metzler and J a r v i s 13)

Page 152: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

example, one pint of oi l can produce a s l ick of approximately one acre in size. As l i t t l e as 35 ppm of o i l can be seen f loat ing on water as a t h i n film. These surface o i l films coat and destroy p l a n k t o n , algae, and aquatic insects. Photosynthesis and re-eration of the water are also affected. Each year, many birds die a f t e r encountering large o i l s l icks . Water-impermeable compounds on the i r feathers are destroyed by the o i l , leaving the feathers wet and oily. The birds, unable to f l y , are then trapped i n the s l ick. Oil also inhibi ts egg-laying and hatching. Finally, low concentrations of oi l coat the g i l l filaments o f f i sh , causing suffocation ( 3 3 ) .

EVAPORATION

Compared to r a i n f a l l runoff, the evaporation, seepage, and dust transport of waste o i l occur primarily d u r i n g i n i t i a l application. These impacts occur simultaneously, b u t a t varying rates as i l l u s t r a t ed by Tables 71 and 72. Table 71 shows the evaporation ra te and the eight-hour airborne concentration of selected contaminants while Table 72 gives the average one-hour concen- t r a t i o n from a f i n i t e length of road surface.

the environmental impacts of t reat ing roads w i t h used oi l are dependent upon many factors including the composition of the oi l and s u r r o u n d i n g environ- mental conditions ( 3 4 , 35). I n general, the resu l t s tend t o indicate t h a t the environmental impact of road o i l ing i s n o t severe, a l though a few severe cases have been reported from highly contaminated oil (9). I n terms of impacts, most of the contaminants are lost to runoff and windborne d u s t par t ic les . Biodegradation and adhesion t o vehicles are responsible fo r some of the o i l leaving the road surface while penetration downward through the so i l i s m i n i mal .

On the basis of the above experimental resul ts , i t can be concluded t h a t

USED OIL DISPOSAL

I n general, only low quality used o i l s are disposed of by generators and collectors. quantit ies generated are n o t suf f ic ien t t o warrant storage and use. occurences, however, are normally rare w i t h 1 arge generators and col1 ectors of waste o i l .

In some cases, good quality oils are also dumped because the Such

136

Page 153: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 71. EVAPORATIVE EMISSIONS OF SELECTED USED OIL CONTAMINANTS FROM ROAD OILING

Con tami n a n t

Estimated Time

m /min min IJ g/m

Evaporagi on Genera tion for Compl etg Eight-Hour 3 Sate Evaporation Airborne Concjentration

m /m per hour

Arocolor 1248 (PCB)

Benzene

Dichlorodifluoromethane

Tetrachloroethyl ene

A To1 uene w u

Trichl oroethane

Trichl oroethyl ene

Trichlorotri f l uoroethane

Xylene

-- 0.0015

0.0096

0.0011

0.0033

0.0092

0.0047

0.0266

0.0008

-- 1.4 I O - ~

1.0

3.0

8.4

4.3

2.44

7.0

8.8 x

5 x lo8

255

23

161

96

24

47

5

3 43

--

1 99

3,598

345

60 2

3,804

1,231

15,450

127

aBased on 90th percentile contaminant levels. bAssuming constant evaporation rate.

Source: Metzler and Jarvis (3)

Page 154: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 72. AMBIENT A I R CONCENTRATIObjaDUE TO CONTAMINATED DUST FROM HEAVILY USED ROADS, ug/m

Contaminant

Distance f rom Roadway

1 Om 1 OOm

Low High Low High

Barium

Chromium

Lead

Zinc

To1 uene

Xylene

Naphtha1 ene

Arsenic

Cadmium,

Benzene

PCB s

T r i c h l oroethane

Tetrachloroethy lene

T r i ch l o roe thy l ene

0.0086

0.0005

0.0185

0.0209

<o. 0001

0.0010

0.0003

0.0003

<o. 0001

<o. 0001

0.0009

0.0001

0.0023

<o. 0001

0.1209

0.0070

0.2534

0.2866

0.0099

0.0160

0.1223

0.0040

0.0010

0.0005

0.0125

0.0958

0.0177

0.1203

0.0006

<o. 0001

0.0013

0.0015

<o. 0001

<o. 0001

<o. 0001

<o. 0001

<o. 0001

<o. 0001

<o. 0001

<o. 0001

0.0002

<o. 0001

0.0087

0.0005

0.0183

0.0207

0.0007

0.0011

0.0088

0.0003

<o. 0001

<o. 0001

0.0009

0.0069

0.0013

0.0087

I n l e t used o i l concen t ra t i on shown i n Table 14. a

Source: Me tz le r and J a r v i s (3)

138

Page 155: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

As shown p r e v i o u s l y i n Table 4 , o n l y 6.3% (42.1 m i l l i o n ga l ) o f t h e used

o i l f l o w i n g through t h e management system was disposed o f i n 1983. est imate, however, does n o t i n c l ude used o i l generated by DIYers.

q u a n t i t y was added t o t h e management system, then approx imate ly 405.9 m i l l i o n ga l o r 33.7% o f t h e t o t a l used o i l generated i n the Un i ted Sta tes was disposed

o f i n e i t h e r l a n d f i l l s , i n c i n e r a t o r s , o r sewers i n 1983.

o i l i n the sewer system i s urban sewer r u n o f f from road surfaces.

Th is If t h i s

Another source o f

SEWER DISPOSAL

O i l dumped i n t o s a n i t a r y sewers goes t o a sewage t reatment p l a n t where i t

can upset t h e opera t i on o f t h e p lan t . metal s a l t s can a1 so e f f e c t the p l a n t ' s ope ra t i on when such concent ra t ions

exceed c e r t a i n 1 i m i t s .

With respec t t o contaminant l e v e l s i n aqueous sewer systems, t h e water

so lub le f r a c t i o n o f o i l - w a t e r m ix tu res has been repor ted t o con ta in a' number

o f organic and ino rgan ic compounds. One est imate i n d i c a t e s t h a t the

concen t ra t i on o f hydrocarbons i n urban sewer systems ranges between 1 and

24 mg/l, w i t h most o f t h e o i l (about 85%) associated w i t h suspended p a r t i c u -

l a t e s i n t h e r u n o f f (9 ) . A breakdown o f t h e water so lub le f r a c t i o n b y organ ic and inorgan ic compounds i s shown i n Table 73.

upon 1 abora tory s imu la t i on o f sewer d isposal cond i t i ons ; ac tua l concent ra t ions w i l l be dependent upon sewer load ing , d i l u t i o n , and o t h e r fac to rs .

compounds found are s i m i l a r f o r bo th experiments.

concent ra t ions o f compounds found i n the water phase were g e n e r a l l y l e s s i n

the second experiment, probably r e f 1 e c t i n g d i f f e r e n c e s i n exper imental

cond i t i ons , e.g., t h e o i l / w a t e r r a t i o s , t h e i n t e n s i t y o f mix ing, and the

presence o f p a r t i c u l a t e s . The t o t a l o rgan ic concen t ra t i on was l e s s than 20 mg/l and the compounds i d e n t i f i e d i n c l u d e phenol, naphthalene, and toluene.

None o f the h ighe r mo lecu la r weight PNA compounds were detected a t l e v e l s

g r e a t e r than the d e t e c t i o n l i m i t s o f about 0.01 ppm ( 9 ) .

elements shown i n Table 73 suggest t h a t d ischarge i n t o sewers served by

secondary t reatment p l a n t s would r e s u l t i n l i t t l e o r no adverse impact.

i s p r i m a r i l y because the concen t ra t i on 1 eve1 s o f o rgan ics i n s a n i t a r y sewers

are w e l l below those suggested as being harmful t o publ ic ly-owned t reatment

The presence o f t r a c e meta ls such as

These concent ra t ions a r e based

The

However, t h e number and

Fur ther , t h e concen t ra t i on l e v e l s o f the water-sol ub le o rgan ics and

Th is

139

Page 156: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 73. COMPOSITION OF AQUEOUS PHASE OF OIL-WATER MIXTURES

Con tam i n ant

Composite O i 1 Exper imgnt 1 Exper imgnt 2

mg/l mg/l

Organic s Vol a t i 1 e s

1,1,1-Trichloroethane Trichloroethylene Tetrachloroethylene Benzene To1 uene

Semi vol a t i 1 es Phenol 2.4.6-Trichlomphenol N - N i trosodiphenyl amine Naphtha1 ene Phenan threne/An thracene Pyrene Benzo( a) pyrene Pesticide 4,4' -DDE PCB (Arochlor 1260)

Inorganics Arsenic Barium Cadmiurn Cobalt Chromium Copper Iron Lead Magnesium Manganese Nickel Sel eni um Si 1 ver Zinc

1,500 2,000

6 70 70

2,800

11 40

120 440 150 60

< l o 90 34

8 61 1 1 8

34 21 0

1,090 21 0

14 4

<1.0 <o. 1

730

<1 <1 <1 <1 <1

11.0 2.0 1.0 1.4

<o. 01 <o. 01 <o. 01 0.5

<o. 1

<O. 03 0.01 0.02

<o. 00 <o. 01 <o. 01

2 <o. 02 1.6 0.01

<o. 01 <o. 02 <o . 001 0.3

<1 <1 <1 <1 2

1.2 <o. 01 <o. 01 <o. 002 <o. 01 <o. 01 <o. 01 <o. 01 <o. 01

<O. 05 0.003 0.001

<O. 003 <o. 01 <o. 01 0.5

<o. 02 0.5 0.2

<o. 01 <o. 02 <o. 001 0.9

aBasis: bBasis:

Source: GCA Corporation ( 9 )

200 ml composite o i l , 20 g s o i l , and 200 ml d i s t i l l e d water. 100 ml composite o i l and 1000 ml d i s t i l l e d water.

140

Page 157: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

works (POTW) opera t i on ( 2 7 ) . l e v e l s do n o t appear t o be o f ma jo r concern.

concern i n POTW-treated sewer systems appear t o be those associated w i t h p a r t i c u l a t e s . A1 though pr imary t reatment measures such as sedimentat ion

r e p o r t e d l y reduce p a r t i c u l a t e l oad ings by 50%, t h e reduc t i on i n p a r t i c u l a t e s

associated w i t h t h e o i l i n f l u e n t i s unknown (9) .

I n a d d i t i o n , water-phase ino rgan ic concen t ra t i on

The contaminant l oad ings o f

With respect t o impacts on populat ion, recen t data i n d i c a t e t h a t o n l y 25% o f t he urban popu la t i on i s served by combined sewer systems us ing e f f e c t i v e

pr imary and secondary t rea tmen t p lan ts . The remaining 75% o f t he urban

popu la t i on i s served by storm sewer systems o r l i v e i n unsewered areas (9). I n general , storm water discharged from storm sewer systems w i l l n o t r e c e i v e any treatment whatsoever.

contaminants shown i n Table 73 exceed the EPA suggested concen t ra t i on goa ls

f o r stream discharge (e.g., 5.0 u g / l f o r phenol), storm sewer d isposal o f used

o i l represents a p r a c t i c e which i s p o t e n t i a l l y harmful t o t h e ’ l a r g e urban

popu la t i on l i v i n g i n areas which are downstream o f storm wa te r discharge

p o i n t s (9).

Because t h e concen t ra t i on o f some o f t h e

LANDF ILL DISPOSAL

The major problem o f dumping waste o i l s i n t o l a n d f i l l s i s contaminat ion

o f groundwater suppl ies. Th is contaminat ion u s u a l l y occurs when r e f u s e

1 eachate from the 1 and f i 11 penetrates groundwater sources i n deep sandstone o r shal low aqu i fe rs . The p o t e n t i a l harm i s g r e a t e r f o r used o i l than w i t h unused

o i l because the former con ta ins hazardous contaminants which may m ig ra te t o

ground water along w i t h t h e o i l component. Such concerns can be avoided b y

d isposing o f t he waste o i l i n RCRA-permitted f a c i l i t i e s .

HEALTH AND SAFETY INFORMATION I -

USED OIL

As discussed above, used o i l t y p i c a l l y c o n t a i n s a number o f t o x i c a n t s i n

concentrat ions w e l l above those necessary t o cause s u b s t a n t i a l ham. These

c o n s t i t u e n t s , i n c l u d i n g lead, t r i c h l o r o e t h y l e n e , t e t r a c h l o r o e t h y l e n e , 1,1,1 - t r i c h l oroethane, naphtha1 ene, benzene, and to1 uene, have been measured i n used

141

Page 158: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

o i l s in large quantit ies. 10' t o 10 higher than any health-based s t a n d a r d (36). (Additional constituents found i n used o i l s are shown i n Table 7 4 ) . small percentage of the o i l ' s toxicants would need t o migrate from the waste

In general, they are present a t levels ranging from 7

Consequently, only a

TABLE 74. TOXIC CONSTITUTENTS FOUND IN USED OIL

Arsenic' Naphtha1 ene

Barium 1 Benzene

Beryl i um 1 Cactni um

1

1 Carbon tetrachloride

Chromi um ( total

Cyan i de

Dibromochloromethane

F1 uoroanthene

Lead

Mercury

Nickel ' Ni trobenzene

Phenol

PCBs ( polyhhlorinated bi phenyi s )

Pol yn ucl e ur a roma t i c hydrocarbons ( several

Sel eni um

2,3,7,8-.jetrac hl orodi berano- p- d i ox i n

1 Tetrachl oroethyl ene

To1 uene

1,1,1 -Trichl oroethane

Trichloroethylene

'Indicates compounds tha t the U.S. EPA' s Carcinogen Assessment Group ( C A G ) has determined t o have evidence of carcinogenicity. carcinogenicity varies. For some of these chemicals, there i s human evidence (epidemiological data) while fo r others only experimental animal evidence i s avail able.

The manufacture, processing, dis t r ibut ion in commerce, and use of PCB' s i s prohibited by TSCA, unless specif ical ly authorized by PCB regulations under 40 CFR Part 701. PCB ' s have been demonstrated to have developmental and reproductive e f fec ts , and oncogenic potential i n animal studies. EPA has found no evidence t o suggest t h a t PCB's would n o t have similar e f fec ts and oncogenic potential in humans.

The weight of evidence fo r

*PCB's:

Source: U.S. Environmental Protection Agency (36)

142

Page 159: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

o i l and escape i n t o the environment t o pose a hazard t o human h e a l t h and the environment. The h e a l t h and s a f e t y i ssues o f some o f t h e major t o x i c a n t s i n

used o i l a re reviewed below.

Lead

Lead i s a chron ic poison which can be absorbed by i n h a l a t i o n o r through

s k i n contact .

from very small amounts ( 3 7 ) . I n i t i a l symptoms o f l e a d poisoning i n c l u d e fa t i gue , aching bones and muscles, headaches, and abdominal pains. Continued

exposure over an extended pe r iod o f t i m e a f f e c t s t h e c e n t r a l nervous system

r e s u l t i n g i n severe headaches, convuls ions, coma, and, poss ib ly , death ( 3 8 ) . Other impacts o f l e a d poisoning i n c l ude hemolysis o f r e d b lood c e l l s and

l e s i o n s o f t h e male gonads and b lood vessels. k idneys can be damaged when exposed t o s u f f i c i e n t q u a n t i t i e s o f lead.

genic e f f e c t s i n animals have a l so been repo r ted ( 3 7 ) .

conta ined i n References 39 and 40. These r e p o r t s i n d i c a t e t h a t environmental

l e a d exposure i s a ma jo r h e a l t h problem i n t h i s country . I n p a r t i c u l a r , EPA

found t h a t a small b u t s i g n i f i c a n t p o r t i o n o f the urban a d u l t popu la t i on and

up t o 25% o f t h e c h i l d r e n i n urban areas a r e overexposed t o lead. The e f f e c t s

o f l e a d are seen a t t h e s u b c e l l u l a r l e v e l o f o r g a n e l l a r s t r u c t u r e s and

processes as w e l l as t h e o v e r a l l l e v e l o f general f u n c t i o n i n g t h a t encompasses

a l l systems o f t h e body (39). I n a d d i t i o n t o i t s l e a d phasedown ru les , EPA c u r r e n t l y i s reassessing the

Nat ional Ambient A i r Q u a l i t y Standard f o r l e a d based on t h e h e a l t h and we l fa re

i n f o r m a t i o n t h a t has become a v a i l a b l e s ince the l a s t r e v i s i o n o f t h e standard

(41). The Occupational Safe ty and Heal th A d n i n i s t r a t i o n (OSHA) i s a1 so rev iewing and recons ider ing i t s r e g u l a t i o n s on occupat ional exposure t o l e a d due t o quest ions regard ing s i g n i f i c a n t r i s k , f e a s i b i l i t y , and c o s t - e f f e c t i v e -

ness o f t h e standard i n c e r t a i n i n d u s t r i e s ( 4 2 ) .

Lead t h a t i s absorbed through t h e s k i n r e s u l t s i n t o x i c e f f e c t s

I n a d d i t i o n , t h e l i v e r and

Terato-

Extens ive d iscuss ions o f t h e b i o l o g i c a l e f f e c t s o f l e a d exposure are

B a r i m

I n general , t h e i n s o l ub le compounds o f bar ium are nontox ic whereas t h e

so lub le, i on i zed barium compounds are h i g h l y t o x i c when inges ted o r g i ven

143

Page 160: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

orally. d i s t ress and muscular paralysis ( 11). i o n , bladder contraction, and increased voluntary muscle tension ( 3 8 ) .

The inhalation of barium compounds can lead t o bar i tosis - a benign respi ratory aff 1 i c t i on. and barium carbonate can cause local i r r i t a t i o n t o the eyes, nose, throat, and skin.

The effects of barium ingestion include severe gastrointestinal Other e f fec ts are muscul ar constric-

A1 kal i ne barium compounds such as bar i u m hydroxi de

C h romi um

I n general, a l l chromium compounds are considered poisonous, w i t h the hexavalent form being more hazardous than t r iva len t chromium ( 3 7 ) . compounds normally enter the body by ingestion, inhalation, or through the skin.

Controlled experiments w i t h animals indicate that hexavalent chromium compounds are very toxic (11). Acute exposures, for example, t o chromium- laden d u s t and fumes can cause coughing, headache, fever, and loss of weight ( 3 8 ) . Nasal t issues , kidneys, and l u n g s can also be affected. Skin and l u n g hypersensitivity have also been reported ( 4 3 ) . In addition, long-term expo- sure to h i g h concentrations can cause cancer of the respiratory t r a c t ( 3 7 ) .

These

Cadmium

Cadmium compounds are extremely poisonous materials. When ingested or inhaled, these compounds produce both acute and chronic e f fec ts i n humans. general, ingestion i s less dangerous than inhalation because cadmium can be rapidly eliminated from the body by vomi t ing (11).

However, when inhaled, the cadmium compounds can be very toxic. exposure to cadmium fumes or d u s t can cause irritation o f the upper respi ratory t r a c t fol 1 owed by coughi ng, chest pains , sweating and chi 11 s ( 3 8 1. Additional and prolonged exposure can cause pulmonary and renal e f fec ts and, sometimes, death (11, 3 8 ) .

In

In i t ia l

l ,l ,l-Trichloroethane

l,l ,l-Trichloroethane has been shown t o produce adverse e f fec ts i n the

144

Page 161: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

central nervous system, pulmonary system, heart, kidney, and l i ve r of animals (36). Results of a National Cancer Ins t i t u t e ( N C I ) carcinogenesis bioassay have indicated that this compound is not carcinogenic t o humans (38). How- ever, oral administration of l , l , l - t r ichloroethane d i d produce a variety of neoplasms. h i g h incidence of premature deaths was observed i n the i n i t i a l study (36).

A t the present time, NCI i s retesting this compound since a h i g h

Trichloroethylene

Trichloroethylene is a potential human carcinogen (36). In i t i a l exposure to this compound's vapor can cause i r r i t a t i o n of the eyes, nose, and throat. Acute exposure can cause some l ive r and kidney damage. the control nervous system exhibiting such symptoms as headaches, nausea, dizziness, fatigue, and intoxication (38). a l s o been reported (36).

(38).

I t can a l s o depress

Unconsciousness and death have

Repeated and prolonged exposure w i t h the l i q u i d can lead t o dermatitis

Tetrachloroethylene

Tetrachloroethylene is also a potential human carcinogen. While i n i t i a l contact to this compound can cause a dry, scaly, and fissured dermatitis, acute exposure can resu l t i n central nervous system depression, hepatic injury, and anesthetic death (38). function (36).

assays. I t i s chronically toxic to dogs, causing kidney and l i ve r damage, and to rats and mice, causing toxic nephropathy (36).

I t can also lead to impaired l i ve r

Tetrachloroehtylene has a1 so been identified as a mutagen i n bacterial

Benzene

Human exposure t o benzene is primarily through i n h a l a t i o n of the vapor or through s k i n absorption. A relationship between benzene exposure and leukemia has been suggested by several case reports as well as an epidemiological case control study (44).

Benzene has been proved to be carcinogenic in ra ts .

Acute exposure to benzene resul ts i n the depression o f the central

Page 162: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

I

nervous system, headache, d izz iness, convuls ions, and coma (38). I n acute

poisoning, benzene ac ts as a n a r c o t i c . damage t o the b lood forming t i s s u e s and changes i n the body organs i n c l u d i n g

the lymph nodes (37). humans and, sometimes, death. Death g e n e r a l l y occurs from l a r g e acute

overexposure (38 1.

example, i n 1977, OSHA proposed an emergency temporary standard o f 1 ppm i n the a i r f o r an 8-hour t ime-weighted average w i t h a maximum 5-ppm l e v e l f o r 15

minutes.

weighted average.

U.S. Supreme Court i n 1980 and t h e OSHA r e g u l a t i o n has r e v e r t e d t o the 10-ppm

standard. OSHA has s ince announced i t s i n t e n t t o undertake an expedi ted

rulemaking on benzene i n response t o the p o t e n t i a l s i g n i f i c a n c e o f t he r i s k

presented by occupat ional exposure t o benzene.

Chromic po i son ing i s cha rac te r i zed by

Benzene can a l s o induce chromosomal abe r ra t i ons i n

Worker exposure has been considered e x t e n s i v e l y by OSHA and others. For

Th is compares t o an e a r l i e r standard o f 10 ppm f o r an 8-hour t ime-

However, t he temporary 1-ppm standard was over turned by the

To1 uene

Considerable i n f o r m a t i o n i s a v a i l a b l e on the h e a l t h e f f e c t s o f to luene

due t o i n h a l a t i o n exposure. exposures o f humans as w e l l as r e p o r t s o f occupat ional i n c i d e n t s and v o l u n t a r y

abuse, such as "g lue s n i f f i n g . " Dose-response r e l a t i o n s h i p s f o r s i n g l e sho r t -

term exposures i n d i c a t e m i l d impairment a t l e v e l s o f 100 t o 200 ppm and se r ious impairment a t l e v e l s o f several thousand ppm.

i n h a l a t i o n exposure i s l e s s we1 1 def ined, as a re data on o r a l exposure.

Recently, EPA noted an I t a l i a n study i n v o l v i n g o r a l i n g e s t i o n a t a s i n g l e dose

l e v e l i n one r a t species t h a t appeared t o show a grea te r inc idence o f tumors

i n v o l v i n g a number o f organ s i t e s (45). Although s k i n damage can occur due t o

This i n fo rma t ion i s i n the form o f c o n t r o l l e d

I n f o r m a t i o n on ch ron ic

dermal exposure, as i s the case w i t h many solven

l i k e l y except i n gross exposure i n c i d e n t s .

A recen t h e a l t h assessment study on to luene

exposure t o to luene i s f a r below any l e v e l assoc

d e l e t e r i o u s h e a l t h e f f e c t s and t h a t t he evidence

t h a t to luene i s carc inogenic , mutagenic, o r t e r a

s , ser ious e f f e c t s are n o t

concluded t h a t pub1 i c

a ted w i t h non-carcinogenic

a t hand does n o t i n d i c a t e

ogenic. Based on t h i s study

and o the r in format ion, EPA has r e c e n t l y determined t h a t ambient a i r

concentrat ions of to luene have n o t been found t o pose a s i g n i f i c a n t r i s k t o

Page 163: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

I

pub1 i c h e a l t h and t h a t i t i s n o t necessary t o regu la te to1 uene under t h e Clean

A i r Ac t on t h e bas i s o f i t s d i r e c t h e a l t h e f f e c t s (45 ) .

Benzo ( a ) pyrene

Benzo(a)pyrene i s cons idered an a c t i v e carcinogen (37). It i s a l s o

suspected t o be a mutagenic and te ra togen ic agent i n mice. For example, 50 t o

100 ppm doses admin is tered f o r 122 t o 197 days have produced stomach tumors i n

mice (35). A s i n g l e o r a l dosage o f 100 mg produced mammary tumors. Lung

cancer was a l s o observed when the mice were exposed t o benzo(a)pyrene and SO2; SO2, by i t s e l f , d i d n o t produce any carcinomas i n t h e mice. I n add i t i on , s k i n

cancers have been induced i n a v a r i e t y o f animals i n j e c t e d w i t h low l e v e l s o f

benzo(a)pyrene (38).

Po lych lo r i na ted Biphenyls

Po lych lo r i na ted b ipheny ls (PCBs) have been i d e n t i f i e d as be ing bo th

carc inogenic and t o x i c (37). General ly, the t o x i c e f f e c t s w i l l .depend upon the degree o f c h l o r i n a t i o n , i .e., the h ighe r the degree o f c h l o r i n e

s u b s t i t u t i o n , the s t ronger and dangerous t h e e f f e c t s .

damage. con ta in ing low l e v e l s o f PCBs (37) .

been repo r ted i n r a t s and mice. Studies o f acc identa l o r a l i n g e s t i o n show t h a t PCBs are embryot ic, causing s t i l l b i r t h and increased eye d ischarge i n

c h i l d r e n born t o women exposed t o PCBs d u r i n g pregnancy (38).

Exposure t o PCBs can cause acne r e s p i r a t o r y t r a c t i r r i t a t i o n , and l i v e r

Sk in l e s i o n s have a l s o developed among workers exposed t o a i r I n add i t i on , carc inogen ic responses have

Nitrosamines .-

Ni t rosamines are suspected human and known animal carcinogens. Evidence

o f a causal r e l a t i o n s h i p o f n i t rosamines t o human cancer i s supported by t h e

f o l l o w i n g f a c t s : a l l mamnals s tud ied are suscep t ib le t o carcinoma i n d u c t i o n by

a t l e a s t one n i t rosamine; n i t rosamines are e f f e c t i v e carcinogens by

i n h a l a t i o n , i nges t i on , and dermal contac t ; n i t rosamines can be formed -- i n v i v o i n mammals through the i n t e r a c t i o n o f n i t rosamine precursors, ( s p e c i f i c a l l y ,

i n j e s t e d secondary amines and n i t r i t e s (11) .

1 tt7

Page 164: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

a

Nitrosamines a r e carc inogenic and mutagenic i n a wide range o f animal

species, w i t h tumors a f f e c t i n g a l l v i t a l organs. For example, mal ignant tu -

mors o f t he l i v e r and k idney have been repo r ted i n r a t s and guinea p i g s ( 3 8 ) .

From a s a f e t y s tandpo in t , t h e contaminants i n used o i l i n d i c a t e t h a t i t

must be handled and d i s t r i b u t e d i n a somewhat d i f f e r e n t manner than convent ional v i r g i n o i l s . Safety i ssues i n c l u d e f l a m n a b i l i t y and f i r e s ,

t o x i c i t y (eye contact , s k i n contact , and i n h a l a t i o n ) , storage and hand1 i n g

precaut ions, f i r s t a i d and emergency procedures, and procedures f o r deal i n g

w i t h leaks, s p i l l s , and waste disposal . Sa fe ty i n f o r m a t i o n r e l a t i n g t o some

o f the above issues a r e summarized i n Table 75.

UNUSED WASTE OIL

As discussed p rev ious l y , crude o r r e f i n e d o i l s a r e a ma jo r component o f

unused waste o i l s . Since t h e o i l s c o n t a i n several t o x i c m a t e r i a l s , t h e i r

d ischarge t o sur face water poses a s i g n i f i c a n t t h r e a t t o the environment.

example, i t has been repo r ted t h a t f l o a t i n g o i l y l a y e r s can cause (11): For

0 I n a b i l i t y o f ducts t o swim o r d i v e f o r food i n the presence o f t he o i l

0 Loss o f i n s u l a t i n g a b i l i t y o f f ea the rs contaminated w i t h o i l and

f i lms

subsequent l o s s o f normal body temperature and death

Reduced v i a b i l i t y o f duck eggs due t o o i l -soaked p lumage

preening o f o i l - c o a t e d feathers.

0

0 Pneumonia and g a s t r o - i n t e s t i n a l i r r i t a t i o n s i n waterfowl f o l l o w i n g

Harmful e f f e c t s t o aqua t i c organisms a l s o occur; these i n c l u d e i n h i b i t i o n o f

marsh grasses t o reproduce, b locked chemoreception i n f i s h l a rvae , abnormal

development o f h e r r i n g larvae, and k i l l i n g o f organisms such as shrimp and

wh i te m u l l e t (11).

o i l i n sur face water. They are a1 so dependent upon t h e o i l ' s wa te r -so lub le

hydrocarbon con ten t s ince aromatic compounds a r e g e n e r a l l y more t o x i c a t l ow

concen t ra t i ons than t h e o t h e r components i n unused waste o i l s . As shown i n

Table 76, t h r e e carcinogens (e.g., benzene, benda lan th racene , and benzo(a1-

These impacts t o the environment occur a t ve ry l ow concen t ra t i ons o f used

148

Page 165: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 75. PHYSICAL CHARACTERISTICS OF SPECIFIC CONTAMINANTS FOUND IN USED OILS

Component F1 ash Igni t ion F1 ammabil i t y AWQCLa DWSb TLV;

Formula Point , OF Temperature, OF Limits, Vol % ppm PPm m g / m

Metals Arsenic Bari um Cadm i um Chromium Lead Zinc

As Ba Cd Cr Pb Zn

Chlorinated Sol vents Dichlorodifluoromethane C C12F2 Tr ich loro t r i f l uoroethane C C1 F

Trichl oroethyl ene C ;H$1 33

c2c14 Tetrachl oroethyl ene

l , l , l -Trichloroethane C ~ H i?l3

Other Organic s Ben zen e To1 uene Xyl ene Benzo( alpyrene Naphtha1 ene PCBs

-- 347 -- -- --

1 , 652*

nonfl amnabl e nonfl ammabl e

essen t i a1 1 y nonfl amnabl e

--

--

1,044 9 97 867

97 4 -- --

0.05 0.05 0.5 0.001 1 0.5 0.01 0.01 0.05 0.05 0.05 0.1 0.05 0.05 0.15 5 5 5

- - - - 4,950 - - - - 7,600

0.027 0.075 535 18.4 1 1,900

0.008 0.02 670

aAmbient Water Qua l i ty Cr i t e r i a Limit. bDr inking Water Standards. ‘Thresh01 d Limit Val ue.

Page 166: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

I

TABLE 76. WATER SOLUBLE COMPONENTS OF CRUDE AND REFINED OILS a'b

Compound C1 ass Crude No. 2 Fuel Bunker C

Benzene

Indans

Naphtha1 enes

Tetra1 i n s

B i phenyl s

Ani1 i nes

Qui no1 i n e s

Indo l es

Ben zo t h i o phe s

Phenol s

Phthal i d e s

Benzaldehydes

Aromati k ketones

ttt

t+

ttt

tt

t

-

- t

ttt

+++ tt

ttt

tt

t

+t

- tt

t

ttt

t

t

tt

t

t

- +t

ttt

t

+tt

at++ = High re1 a t i v e concen t ra t i on ++ = Low r e l a t i v e concen t ra t i on t = Trace amounts

given, t h e l e v e l s f o r phenols and naphthalenes i n Bunker C f u e l o i l a re repor ted t o bo th be about 1 ppm. Thus, i t seems l i k e l y t h a t substances w i t h r e l a t i v e concen t ra t i ons o f (+++I have absol Ute concen t ra t i ons i n t h e ppm, as opposed t o the ppb range.

= Not detected bil though no absol Ute concen t ra t i ons ( i .e., ppm) f o r these substances a r e

Source: U.S. Environmental P r o t e c t i o n Agency (11)

pyrene) are present i n crude o i l ' s aromatic o r water-sol ub le f r a c t i o n . f o re , unless an o i l product has been r e f i n e d w i t h processes t h a t remove t h e

aromat ic hydrocarbons (e.g., s o l v e n t washing), i t can be assumed t h a t the r e f i n e d product w i l l c o n t a i n carcinogens s i m i l a r t o those found i n the pa ren t

crude. In f a c t , s ince most r e f i n i n g processes e n r i c h r a t h e r than d im in i sh

There-

150

Page 167: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

the aromatic content of refined products re la t ive to the crude o i l s from which they are derived, i t i s l ike ly t h a t the carcinogenic hydrocarbon content of most refined products i s a t l eas t as high a s t h a t of crude o i l s . the level of benzene found in motor gasolines averages 1.2% in the United States compared to crude o i l ' s 0.03 to 0.25% (by volume) ( 4 6 ) .

As discussed previously, the above substances are harmful whether ingested from surface water or ground water, and thus, aquatic organisms as well as humans could be adversely affected by consuming oi l - ta inted surface water o r ground water. l ike ly i t will interfere with biological functions. The probable mechanism whereby hydrocarbons exert this interference i s through cel l membrane disruption and incorporation. The relat ive react ivi ty and , hence, toxici ty of the classes of hydrocarbons found i n crude oi l increases from paraffins, t o naphthenes, to olefins, t o aromatics. Consequently, o i l s containing a predominance of aromatic compounds a re generally more toxic t h a n those containing mostly paraffinic or naphthenic hydrocarbons (11).

determining the e f fec ts of used oi l in ground water. carbons are water soluble, they may e i the r never reach ground water o r will n o t mix w i t h i t suff ic ient ly t o pose a threat to humans t h a t use i t . water solubi l i ty of hydrocarbons a1 so increases from paraffins, t o naphthenes, t o aromatics. Benzene, for example, has a solubi l i ty of 0.07% i n d i s t i l l e d water, compared t o abou t 0.04% for the alkane (pentane) of equivalent molec- ular weight ( 4 7 ) . toxic, b u t i s also the most l ike ly t o migrate into ground water. The toxico- logical e f f ec t s of two re-refined oil products are sumnarized in Table 77.

For example,

In general, the more reactive a compound, the more

The solubi l i ty of hydrocarbons in o i l i s also a s ignif icant factor i n Unless these hydro-

The

T h u s , the aromatic portion of oi l tends n o t only t o be more

' A A L E 77. SUMMARY QF T O X I C ' ~ I C A L E F F E C T ' , OF R E F I N E D O I L PROD1 -

Product Effects

Di s t i 1 1 atesa Gastro-intestinal irr i tat ion

Pulmonary necrosis

Skin irr i tat ion

Pneumonia ( i n children)

Lubricating o i l s Skin Cancer

'Including diesel fuel and kerosene.

Source: U.S . Environmental Protection Agency (11)

151

Page 168: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

I

SECTION 5 REGULATORY BACKGROUND

The used oil market has experienced many fluctuations over the l a s t 25 years which can be par t ia l ly a t t r ibuted to various federal and s t a t e regulations pertaining t o the disposal, re-refining, b u r n i n g , and other uses for used o i l . t h a t have enhanced or hampered the used oil col lect ion, disposal, o r reuse markets.

T h i s section provides an overview of the federal regulations

HAZARDOUS WASTE CLASSIFICATION

As shown i n Table 78, the disposal of waste o i l has long been a concern t o federal regulators including the U.S. Congress. The f i r s t guidelines and regulations for the management of hazardous wastes were proposed by EPA i n December 1978. A t t h a t time, the Agency proposed t o c lass i fy waste lubricating oil and waste hydraulic and cutting o i l s as hazardous waste on the basis of t h e i r toxicity. I t also proposed t o regulate used hazardous lubricating, hydraulic, transfonner, transmission, and cutting o i l s t ha t were incinerated o r disposed under section 3001 of RCRA. Furthermore, any used oi l that exhibited the charac te r i s t ics of hazardous waste such a s corrosivi ty , extraction procedure ( E P ) toxici ty , react ivi ty , o r igni t a b i l i t y would be considered hazardous and subject to Subt i t le C of RCRA. a1 so incl uded management standards appl icable to generators and transporters of hazardous waste as well as performance, operating, and design s t anda rds for t reat ing, storing, and disposing of a l l used o i l s .

These i n i t i a l s e t of proposed regulations were aimed a t protecting human health and the environment from the improper management and uses of used o i l . However, the large percentage of commentors who were opposed to the above proposals influenced E P A t o defer the used oi l issue until fur ther studies could be done. Their primary argument against the proposed rules was t h a t most used o i l (excluding DIYers-generated) was reused and was, therefore, n o t a waste. They also indicated tha t such a designation would have serious impacts on the reuse or recycling industry.

The final rules for many of the regulations proposed i n 1978 were issued i n May 1980. Under these rules, used oi l would be subject to the hazardous

The proposed rules

152

Page 169: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 78. CHRONOLOGY OF LEGISLATIONS AND REGULATIONS CLASSIFYING USED OIL AS HAZARDOUS WASTE

Date Act ion

December 1978

May 1980

October 1980

January 1981

1984

Nov em be r 1 98 5

November 1986

EPA proposes gu ide l ines and regu la t i ons f o r management o f hazardous waste i n c l uding used o i l .

EPA issues f i n a l ru les sub jec t ing used o i l t o hazardous waste regu la t i ons buy o n l y i f the o i l e x h i b i t s hazardous waste character- i s t i c s and i f i t were no t recyc led o r reused.

Congress, through the Used O i l Recycl ing Act, asks EPA t o make a determinat ion on the hazardous na ture o f used o i l .

EPA submits f i n d i n g s t o Congress s t a t i n g t h a t i t in tends t o c l a s s i f y both unused waste o i l and used o i l as a hazardous waste.

Through the Hazardous and S o l i d Waste Amendments t o RCRA, Congress asks EPA t o e s t a b l i s h gu ide l ines on used o i l .

EPA proposes t o c l a s s i f y used o i l (exc lud ing unused waste o i l ) as a hazardous waste.

EPA decides n o t t o 1 i s t used o i l as a hazardous waste under RCRA.

waste regu la t i ons o n l y i f i t exh ib i ted one o r more c h a r a c t e r i s t i c s o f

hazardous waste and i f i t were n o t recyc led o r reused. Because r e l a t i v e l y l i t t l e used o i l meets bo th o f these cond i t ions , most used o i l was no t brought

under the con t ro l o f the federa l hazardous waste program ( 2 ) .

asked t o make a determinat ion as t o the hazardous natupe o f used o i l and t o

e s t a b l i s h performance gu ide l ines and standards f o r t he p r o t e c t i o n o f pub1 i c

h e a l t h and the environment from used o i l recyc l ing , as long as these

gu ide l i nes d i d no t discourage t h e recovery o r recyc l i ng o f used o i l (8). submitted i t s f i n d i n g s t o U.S. Congress i n January 1981, s t a t i n g t h a t i t again

When the Used O i l Recycl ing Act was passed i n October 1980, EPA was again

EPA

153

Page 170: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

in tended t o c l a s s i f y bo th unused waste o i l and used o i l as a hazardous waste

under s e c t i o n 3001 o f RCRA. (11) The Agency based i t s d e c i s i o n on t h e presence o f a number o f t o x i c substances such as benzene, naphthalene, and

phenols i n unused waste o i l as w e l l as o t h e r contaminants such as lead,

chromium, and cadmium r e s u l t i n g from us ing the v i r g i n o i l .

I n 1984, t h e Hazardous and S o l i d Waste Amendments t o RCRA were passed,

and EPA was again r e q u i r e d t o e s t a b l i s h g u i d e l i n e s regard ing used o i l .

However, t h i s time, they were asked t o develop r e g u l a t i o n s t h a t would p r o t e c t pub1 i c h e a l t h and the environment even i f these guide1 i n e s discouraged, i n

some cases, t h e recovery o r r e c y c l i n g o f used o i l (8) . EPA's f i n d i n g s were

re leased i n November 1985, which i n d i c a t e d t h a t t hey in tended t o c l a s s i f y used

o i l ( exc lud ing unused waste o i l ) as a hazardous waste under s e c t i o n 3001 o f

RCRA.

con ta ins a number of t o x i c a n t s , i n c l uding benzene, naphtha1 ene, 1 ead, and chromium, which have the p o t e n t i a l t o m ig ra te from used o i l and escape i n t o

t h e environment (36). EPA a1 so concl uded t h a t most used o i l s have several

water so lub le, b ioaccumulat ive components which cou ld pose a danger i f dumped

i n t o u n l i n e d o r inadequately-1 i ned 1 a n d f i l l s .

Under t h j s l a t e s t s e t o f proposed regu la t i ons , used o i l was de f i ned as a

petroleum-der ived o r s y n t h e t i c a l l y - d e r i v e d o i l t h a t has been used as a

l u b r i c a n t , as a h y d r a u l i c f l u i d , as a metal working f l u i d , o r as a t rans fo rmer

f l u i d . Thus, t h e d e f i n i t i o n i nc luded t ransmiss ion o i l s , c u t t i n g , g r i n d i n g ,

and machining f l u i d s , r o l l i n g , stamping, quenching, and tempering o i l s , o i l s

which became a d u l t e r a t e d subsequent t o use as w e l l as o i l s t h a t are contami-

nated as a r e s u l t o f such use. Processing res idues from the recyc l j f fg o f used o i l were a1 so con f igu red as used o i l according t o the proposal .

Th is 1985 proposal r e s u l t e d from s tud ies which i n d i c a t e d t h a t used o i l

.

Furthermore, m i x t u r e s o f used o i l and small q u a n t i t i e s o f another

hazardous waste were t o be regu la ted as hazardous waste under S u b t i t l e C o f RCRA. Th is p o l i c y was in tended t o prevent small q u a n t i t i e s o f hazardous waste

from being disposed o f by be ing mixed w i t h recyc led used o i l . Re-ref ined o i l s

were excluded from the proposed r e g u l a t i o n s along w i t h m ix tu res o f non-

hazardous wastewaters contaminated w i th ve ry small q u a n t i t i e s o f used o i l as we l l as i n d u s t r i a l wipers used t o c lean machinery o r equipment o r t he face and

hands o f t he user.

Th i s proposed l i s t i n g o f used o i l as a hazardous waste would have, upon

f i n a l promulgation, r e s u l t e d i n i t s c l a s s i f i c a t i o n as a hazardous substance

154

Page 171: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

under the Comprehensive Environmental Response Compensation and L i a b i l i ty Act

(CERCLA), a1 so known as Superfund. CERCLA requ i res immediate n o t i f i c a t i o n t o

the Nat ional Response Center whenever a hazardous substance has been re1 eased

i n a q u a n t i t y t h a t equals o r exceeds t h e repo r tab le q u a n t i t y (RQ) f o r t h a t substance. Normally, CERCLA ass igns an RQ o f one l b , un less ad jus ted by EPA.

Under t h e regu la t ions , EPA had proposed t o a d j u s t t h e s t a t u t o r y one-pound RQ

f o r used o i l t o 100 l b ( 3 6 ) . This t i m e again, EPA rece ived a l a r g e number o f comments on the proposed

regu la t ions . Most o f t h e comments c r i t i c i z e d t h e proposed l i s t i n g o f used o i l as a hazardous waste.

t h e l i s t i n g would n o t o n l y discourage used o i l r ecyc l i ng , b u t would u l t i m a t e l y

be env i ronmenta l l y counterproduc t ive because used o i l l e f t unrecyc led would be

disposed o f i n manners posing g r e a t e r r i s k than recyc l i ng .

managing combustion res idues as hazardous wastes) as w e l l as psycho1 og ica l

e f f e c t s such as p u b l i c r e l a t i o n s problems, etc., which may t r a n s l a t e i n t o economic e f f e c t s (e.g., t h e c o s t o f an aspha l t company h i r i n g a community

r e l a t i o n s specia l i s t t o a l l o w cont inued burn ing o f used o i l f u e l ) .

element o f d i s r u p t i o n cou ld a1 so r e s u l t f o r non-economic reasons, w i t h persons

o p t i n g ou t o f t h e recyc led o i l system t o avo id hand l ing a hazardous waste.

Thus, t h e c o s t s and st igma associated w i t h l i s t i n g recyc led o i l cou ld

s i g n i f i c a n t l y reduce the demand f o r used o i l f u e l .

able t o expand ( a t l e a s t i n t h e s h o r t term) t o t h e e x t e n t necessary t o absorb

a l l o f the used o i l d isp laced from burning. Generators would then have d i f f i c u l t y i n f i n d i n g recyc le rs w i l l i n g t o accept t h e i r used o i l , and, as a r e s u l t , commercial automot ive cen te rs would l i k e l y re fuse t o accept DIYer-

generated used o i l and s i g n i f i c a n t l y increase t h e p r i c e charged f o r o i l change

serv ices o f f e r e d t o the pub l i c . Reduced a v a i l a b i l i t y o f DIYer o i l c o l l e c t i o n

centers and h ighe r o i l change p r i c e f o r t h e p u b l i c would increase DIYer o i l

changes and would u l ti mate1 y 1 ead t o i n c reased uncontro l 1 ed d i sposal o f used o i l (48).

The u l t i m a t e t h r u s t o f t h e nega t i ve comments was t h a t

Th is d i s r u p t i o n can l e a d t o bo th d i r e c t economic e f f e c t s (e.g., cos ts o f

Some

Re- re f i n ing would n o t be

I n a d d i t i o n , increased d isposal cou ld r e s u l t from decreased use o f used o i l as f u e l b y i n d u s t r i a l burners, and g iven t h e na t ion ' s c u r r e n t l y 1 i m i t e d

r e - r e f i n i n g capac i t y (and the recent f a l l i n o i l p r i c e s ) , r e f u s a l o f indus-

t r i a l burners t o accept used o i l f ue l s would cause "backups" throughout

c o l l e c t i o n networks and u l t i m a t e l y cou ld l ead t o unsound d isposal ( b y

155

Page 172: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

generators l e f t without a recycling out le t ) (48). Bal anced against the environmental harm 1 i kely to be associated w i t h

l i s t i n g recycled oil i s the fac t t h a t EPA could regulate used o i l recycling w i t h o u t a l i s t ing . The quantity of used oi l i n question, absent the l i s t i n g , would most l ike ly be burned. Since b u r n i n g of used oil i s now pa r t i a l ly controlled under a combination of RCRA and Clean Air Act regulations (see bel ow), EPA reasoned t h a t 1 ist ing of used o i l as a hazardous waste was not necessary to promulgate additional rules for recycled o i l . Therefore, the Agency concl uded that 1 i s t i ng would discourage recycl i n g , and, since 1 i s t i ng i s not necessary to regulation, fur ther concluded t h a t l i s t i n g could pose a net detriment to the environment.

Finally, EPA's decision to not l i s t recycled oil a s a hazardous waste renders p a r t o f the R Q proposal moot, i .e . , recycled o i l will not i t s e l f become a 1 i sted CERCLA hazardous substance. However, hazardous substances present i n any used oi l which are e i ther not normally found i n refined petroleum fractions o r are present a t level s exceeding those normally found i n petroleum are subject to CERCLA.

RECYCLING USED O I L

Recently, EPA has also proposed to establish standards fo r used oil tha t i s recycled o r reused ( 2 ) . used oil which i s reused, following i t s original use, f o r any purpose. T h i s terminology, therefore, includes o i l which i s re-refined o r reprocessed. Furthermore, mixtures of recycled o i l and v i r g i n o i l would also be considered recycled o i l s ; however, mixtures of used o i l w i t h another hazardous waste would be c lass i f ied as hazardous waste under RCRA and, therefore, subject to the fu l l s e t of hazardous waste regulations i n 40 CFR Parts 260-268 and 270.

The proposed def ini t ion of recycled o i l i s any

These proposed regulations impose s t anda rds fo r generators and trans- porters of recycled o i l as well as owners and operators of used oi l recycling f a c i l i t i e s . The standards would incl ude tracking requirements when used oil i s shipped o f f s i t e for recycling and f a c i l i t y management requirements when used oil is stored pr ior t o recycling. The regulations would apply only when more than 1,000 kilogram (kg) (about 300 ga l ) o f recycled o i l per month are handled. exempt.

Operators t ha t generate o r handle l e s s than 1,000 kg would be

.156

Page 173: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

Under the EPA proposal , a l l used o i l r e c y c l i n g f a c i l i t i e s , (i.e., reprocessors, r e - r e f i n e r s , and b lenders o f waste o i l ) , would be deemed t o have

a RCRA permi t -by-ru le .

sampling p lans t o t e s t used o i l f o r c h l o r i n e con ten t and i g n i t a b i l i t y . producing f u e l from used o i l t o meet f u e l s p e c i f i c a t i o n standards would a l so

have t o t e s t f o r lead, arsenic , cabnium, and chromium l e v e l s as w e l l as

f l a s h p o i n t . I n add i t i on , several recordkeeping requirements would apply t o

r e c y c l e r s when t h e proposal i s f i n a l i z e d . Furthermore, f a c i l i t i e s where used

o i l i s s tored o r t r e a t e d i n a sur face impoundment o r t h a t handle hazardous wastes i n a d d i t i o n t o used o i l would n o t be q u a l i f i e d f o r an automat ic permi t .

F i n a l l y , road o i l i n g would a lso be t o t a l l y p r o h i b i t e d under these proposed regul a t ions.

A f i n a l r u l e on the complete s e t o f management standards has n o t y e t been

issued by EPA.

They would be requ i red t o e s t a b l i s h a n a l y s i s and

Those

BURNING USED OIL FOR ENERGY RECOVERY

I n general , used o i l w i t h l e s s than 1,000 ppm t o t a l halogens i s presumed

t o be non-hazardous and, thus, can be burned anywhere (i.e., i n r e s i d e n t i a l ,

commercial, i n d u s t r i a l , and u t i l i t y systems) w i t h o u t any fede ra l r e g u l a t o r y r e s t r i c t i o n s . However, i t i t con ta ins more than 1,000 ppm t o t a l halogens,

then the r u l e s on used o i l burn ing e s t a b l i s h a r e b u t t a b l e presumption t h a t the o i l has been mixed w i t h hazardous spent halogenated so l ven ts o r o t h e r

hazardous halogenated wastes and, t h e r e f o r e , i s a hazardous waste.

words, i f used o i l con ta ins more than 1,000 ppm t o t a l halogens, then EPA

considers i t as a hazardous waste, un less t h i s assumption i s rebut ted.

presumption may be rebu t ted by showing t h a t t h e o i l has n o t been mixed w i t h hazardous wastes such as by showing t h a t i t does n o t c o n t a i n s i g n i f i c a n t

l e v e l s o f ha1 ogenated c o n s t i t u t e n t s o r t h a t t he ha1 ogenated so l ven ts were a l ready p resen t i n the v i r g i n o i l such as i n metalworking o i l s . b l i thout t h i s

r e b u t t l e , used o i l w i l l be s u b j e c t t o the f u l l RCRA requirements when burned f o r energy recovery.

t h e m i x t u r e i s regu la ted as a hazardous waste f u e l i f i t e x h i b i t s any o f t he c h a r a c t e r i s t i c s o f hazardous waste such as EP t o x i c i t y and i g n i t a b i l i t y . I f

t h e r e s u l t a n t m i x t u r e no l onger e x h i b i t s a c h a r a c t e r i s t i c o f hazardous waste,

I n o t h e r

This

Thus, when used o i l has been mixed w i t h a c h a r a c t e r i s t i c hazardous waste,

157

Page 174: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

then i t i s regulated as used o i l . Used o i l t h a t meets the spec i f ica t im o f Table 79 can be burned i n any

energy recovery system subject t o analysis and recordkeeping requirements. However, i f i t exceeds any specification leve l , then the o i l i s termed "of f - specification used oi l fuel" which can be burned only in industrial and

TABLE 79. USED O I L FUEL SPECIFICATIONS

~

Consti tutent/P roperty A1 1 owabl e Level - -- -1-1_1-

Arsenic 5 ppm maximum

Cadm i um 2 ppm maximum

Ch romi um 10 ppm maximum

Lead

Flash p o i n t

100 ppm maximum

100 O F m i n i m u m

Total ha1 ogens 4,000 ppm maximum ~ ~~ ~ ~

Source: U.S. Environmental Protection Agency (8)

u t i l i t y boilers and in industrial furnaces. In other words, the b u r n i n g of off-specification fuel i n non-industrial boi lers i s prohibited by EPA. Non- indus t r i a l boilers include systems located i n the res ident ia l , commercial, and i n s t i t u t i o n a l sectors such as hospitals, school s , and apartment ands-ffice b u i l d i n g s . industrial f a c i l i t i e s are generally very small and do n o t achieve complete combustion of the toxic organic materials contained i n used oil (8) . addi t ion, they are generally n o t equipped w i t h emi ssion control apparatus, which further increases the risk of introducing hazardous components into the atmosphere .

The regulations on the b u r n i n g of hazardous waste fuel and off- specification used o i l i n non-industrial boilers are enforced by E P A through the use of admini s t r a t i ve control s and requi rements, such as n o t i f i ca t ion , cer t i f ica t ion , analytical testing of samples, receipt of identification number, and compliance w i t h manifest or invoice systems.

This policy was promulgated because most of the boi lers i n non-

In

In general,

158

Page 175: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

i n d i v i d u a l s producing used o i l f u e l meet ing the above EPA s p e c i f i c a t i o n s may market t h e f u e l t o any bu rne r o r t o another processor p rov ided they can

document the f u e l ' s s p e c i f i c a t i o n and i f they comply w i t h c e r t a i n record-

keeping prov is ions .

s p e c i f i c a t i o n s a r e a l lowed t o market the o f f - s p e c i f i c a t i o n f u e l o n l y t o owners and opera to rs o f u t i l i t y b o i l e r s and i n d u s t r i a l b o i l e r s and furnaces who have

compl ied w i t h t h e n o t i f i c a t i o n requirement and c e r t a i n o t h e r a d m i n i s t r a t i v e

requirements. i n v o i c e bear ing a n o t i c e t h a t the f u e l i s sub jec t t o EPA regu la t i ons . Burners o r processors who rece ive o n l y s p e c i f i c a t i o n f u e l a re n o t s u b j e c t t o any o f

the requirements o f t h i s r e g u l a t i o n ( 2 ) .

I n d i v i d u a l s producing f u e l t h a t does n o t meet t h e above

Shipments o f o f f - s p e c i f i c a t i o n f u e l must be accompanied b y an

STORAGE AND TRANSPORTATION CONSIDERATIONS

As t h e present t ime, o n l y used o i l t h a t e x h i b i t s one o f t h e charac ter -

i s t i c s o f hazardous waste, such as EP t o x i c i t y and i g n i t a b i l i t y , and i s be ing

disposed o f i s regu la ted w i t h respec t t o s torage cons idera t ions . Th is

i nc ludes s to rage b y i n i t i a l marketers (e.g., processors and b lenders) , s to rage

by subsequent marketers (e.g., d i s t r i b u t o r s ) , and s torage b y burners. Hazardous waste s torage b y o r d i n a r y generators whose waste i s des t i ned t o be burned f o r energy recovery b u t who do n o t market d i r e c t l y t o burners i s a lso sub jec t t o RCRA regu la t i ons . Thus, w i t h respec t t o marketers, bo th incoming

and outgoing hazardous waste f u e l s a re regulated.

storage standards prov ided by 40 CFR Par t s 262, 264, and 265. Under these

ru les , generators can s t o r e RCRA-characterized used o i l f o r a p e r i o d o f 90 days du r ing which t ime, they must dec ide on t h e f a t e o f t h e o i l . I n o t h e r

words, w i t h i n 90 days, the genera tors should s e l e c t t h e appropr ia te use/disposal technique and ob ta in t h e requ i red EPA permits. A f t e r 90 days,

EPA cons iders these f a c i l i t i e s ou t o f compliance and regards them as s to rage s i tes . Storage standards app l i cab le t o burners o f hazardous waste f u e l a re

covered by 40 CFR P a r t 266.

To date, EPA has proposed regu la t i ons f o r the s torage and t r a n s p o r t o f

recyc led o i l bu t , as y e t , has no t f i n a l i z e d them. Furthermore, EPA has n o t

imposed storage requirements on used o i l t o be used as f u e l because the Agency

wishes t o avo id t h e piecemeal r e g u l a t i o n o f general used o i l s torage which

I n general , t h e s torage o f a l l hazardous waste f u e l s i s sub jec t t o the

159

Page 176: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

would result i f the storage of used o i l for fuel use were regulated before other types of used o i l storage. Storage requirements for used o i l storage are expected t o be proposed i n the near future.

W i t h respect t o transportation controls, EPA tracks the movement of a l l hazardous waste fuels and off-specification used o i l fuel from the initial marketers (e.g., processors, blenders, d i stributors, or generators who market t o burners) through intermediaries (e.g., transporters and distributors) t o the industrial users who burn the fuel for energy recovery. T h i s tracking system allows EPA t o track a hazardous waste fuel or off-specification used o i l fuel from the p o i n t o f processing, blending, o r other treatment to the p o i n t of burning, thus making the prohibition on b u r n i n g i n non-industrial boilers enforceable. Equally impor tan t , the tracking document a1 erts persons who handle these materials t h a t they are receiving a hazardous waste or of f - specification used o i l .

hazardous waste fuel be accompanied by a manifest. marketers are subject t o the transportation ( a n d pre-transport) requirements of 40 CFR Part 262 and transporters are subject t o the requirements of 40 CFR Part 263 (36).

( e .g., processors, bl enders, d i stributors, and generators who market to burners) offering off-specification used o i l fuel for sale t o prepare and send an invoice t o the fuel buyer; however, i t i s not necessary t o have the invoice physically accompany each shipment. Transporters, thus, will no t have t o comply with any invoice requirement. In a d d i t i o n , i f an off-specification used o i l fuel goes from a processor or blender t o an intermediate distributor, the distributor must reinstitute a new invoice t o accompany any fuel i t sells t h a t i s produced from or otherwise contains the used o i l (unless the used oil fuel now meets the specification). This requirement i s consistent w i t h those found i n other parts of RCRA regulations whereby intermediate storage facil i t ies must reini t iate a manifest (36).

EPA tracks hazardous waste fuel by requiring t h a t a l l shipments of Hazardous waste fuel

With respect t o off-specification used o i l fuel, EPA requires marketers

LANDF ILLING CONSIDERATIONS

If a generator o r collector of used oil wishes t o dispose o f the waste into a landfill and i f the oil exhibits one o f the RCRA characteristics, then

160

Page 177: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

i t s d isposal would be sub jec t t o the f u l l s e t o f hazardous waste r e g u l a t i o n s i n 40 CFR Par ts 260-268 and 270. waste i s regu la ted i n d i v i d u a l l y by s t a t e s under RCRA, S u b t i t l e D. States may o r may n o t r e q u i r e some form o f permit .

regu la ted by the Federal Water P o l l u t i o n Contro l Ac t (FWPCA) amendnents t o t h e

Clean Water Act o f 1972. This a c t p rov ides an o i l sheen t e s t t o determine whether t h e discharge t o t h e r e c e i v i n g waters i s harmful t o t h e aqua t i c

environment. If a v i s i b l e sheen i s present on the sur face o f t h e p o l l u t e d water, then arrangements must be immediately made t o c lean up t h e a f f e c t e d

body, because o i l s p i l l s have been determined t o be ve ry harmful t o aquat ic

systems.

o i l ) i n t o any Un i ted Sta tes nav igab le waters, i n c l u d i n g a l l lakes, r i v e r s ,

shore l ine , o r U.S. t e r r i t o r i a l waters.

Otherwise, t h e d isposa l o f non-hazardous

I n general , contaminant leach ing o r r u n - o f f i n t o l o c a l waters i s

FWPCA g e n e r a l l y p r o h i b i t s any o i l d ischarge ( e i t h e r waste o r v i r g i n

FEDERAL EXCISE TAX

P r i o r t o 1965, l u b r i c a t i n g o i l made from crude o i l was taxed a t a r a t e o f $0.06/gal, w h i l e r e - r e f i n e d o r reprocessed o i l was no t s u b j e c t t o t h i s exc ise

tax. Th is $0.06/gal compe t i t i ve edge had the e f f e c t o f making r e - r e f i n e d o i l an a t t r a c t i v e s u b s t i t u t e f o r petroleum-der ived 1 u b r i c a t i n g o i l s , p a r t i c u l a r l y f o r a p p l i c a t i o n s such as non-highway use (49) .

The Excise Tax Reduction Act o f 1965, however, prov ided f o r an exemption

from the general exc ise tax on v i r g i n l u b r i c a t i n g o i l used i n o t h e r than highway motor veh ic les . (The general exc ise tax was normal ly refunded t o t h e u l t i m a t e user.) A d d i t i o n a l l y , t h e p r e v i o u s l y a l lowed exemption f o r b lends o f

r e - r e f i n e d and v i r g i n o i l was d i sa l l owed (49). Re-ref iners, f o r t h e purposes o f t he non-highway use exemption, were n o t cons idered "users" and had t o pay

t h e $0.06/gal tax on any new l u b e o i l s (e.g., b r i g h t s tock) t h a t they bought f o r b lending.

exemption when they purchased b r i g h t stock and o t h e r base o i l s f o r b lending.

For example, when r e - r e f i n e r s mixed 50% b r i g h t s tock wi"th r e - r e f i n e d o i l , t hey

had t o pay t h e $0.06/gal f o r t h e b r i g h t stock which, when mixed w i t h t h e re - r e f i n e d o i l , was taxed again when sold. c a r r i e d a t o t a l o f $0.09/gal exc ise tax. Th is tax discrepancy was t h e pr imary

reason f o r the demise o f t h e r e - r e f i n i n g i n d u s t r y du r ing the 1960s and 1970s;

It was f i n a l l y repealed by t h e passage o f t h e Used O i l Recyc l ing Act o f 1980.

Re- re f iners were thus exc l uded from the manufacturers '

A g a l l o n o f 50% blended o i l , thus,

161

Page 178: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

SECTION 6 ENERGY AND ECONOMI€ CONSIDERATIONS

The n a t i o n a l energy and economic impacts r e s u l t i n g from the c o l l e c t i o n ,

processing, and u t i l i z a t i o n o f waste o i l are r e l a t i v e l y small. As shown i n

Table 24 and discussed p r e v i o u s l y i n Sect ion 2 o f t h i s r e p o r t , approx imate ly

1.2 b i l l i o n g a l l o n s o f used o i l was generated i n 1983. Assuming an average

energy value o f 140,000 Btu/gal , t h e energy va lue o f t h i s used o i l i s

168 x lo1' Btu o r 0.17 Quad, which represents about 0.25% o f t o t a l U.S. energy

consumption.

F i g u r e 24 a l s o shows t h a t about one-hal f o f t h e t o t a l used o i l generated

i n t h e Uni ted States i s reclaimed f o r f u e l , another t h i r d i s disposed o f , and the remaining one-s i x th i s recycled, s p l i t between r e - r e f i n e d lube o i l and

o t h e r products. The two p r i n c i p a l commercial end products o f t h e used o i l

r ecyc le system are f u e l and lube o i l , w i t h f u e l being the l a r g e r o f t h e two, by fa r .

i m p l i c a t i o n s o f changes i n the used o i l management i n f r a s t r u c t u r e o r s h i f t s

between t h e product o u t p u t s can be s i g n i f i c a n t .

addressed below i n terms o f energy conserva t i on and petroleum displacement,

and used o i l management system economics.

Because o f t h e considerable energy va lues invo lved, t h e energy

These energy imp1 i c a t i o n s are

ENERGY CONSERVATION AND PETROLEUM DISPLACEMENT

F i g u r e 24 shows the r e l a t i v e s i z e o f t h e used o i l end products i n 1983. O f importance from an energy Conservat ion s tandpo in t i s t h e d isposal , w i t h

complete l o s s i n energy value, o f approx imate ly o n e - t h i r d o f t h e used o i l

generated. This loss i s p r i m a r i l y from DIYers and o t h e r d ispersed generators

o f used o i l such as l a r g e o f f - r o a d v e h i c l e s i n farming, mining, and construc-

t i o n operat ions. Obviously, any r e d u c t i o n due t o r e c y c l i n g o r reuse i n t h i s

category cou ld improve energy conservat ion.

t o produce new resources. I n many instances, t h e r e c y c l i n g o f wastes may n o t c o n t r i b u t e as much toward a s o l u t i o n t o environmental problems as w ide ly

supposed. It can run i n t o p r a c t i c a l problems o f t e n over looked by nonspecia-

1 i sts. Recycl i n g can a1 so c o n t r i b u t e s i g n i f i c a n t l y t o p o l l u t i on . Most

impor tant , r e c y c l i n g may use up more m a t e r i a l s than i t saves (50).

Recycl ing, however, i s n o t a f r e e a c t i v i t y . Recycl ing r e q u i r e s resources

162

Page 179: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

cr a n Z w

a Z cn cn w o 0 e

-

0-

Z 0 I- o Id -r -..J 0 o

-

v)

0 u) u) W 0 0 m a. W

a

o : I - - 3 I K

1 - / n

$2 n

, .

I

\

163

Page 180: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

W i t h respect to energy conservation of the reprocessed fuel , re-refined o i l , and the various end products i n the "other" category, the following analyses, conducted a t a preliminary leve l , and observations seem t o hold.

REPROCESSED FUEL

On an average, a gallon of reprocessed used oil has an energy content of 138,000 while a gallon of virgin No. 6 fuel o i l has a B t u content of 149,000. Accordingly, each gallon of used oil tha t i s reprocessed as fuel and not disposed of saves the following amount of energy ( t h i s analysis assumes a medium s ize processor consuming about 4% of the o i l ' s energy content ( 4 ) ) :

Factor Energy Content

Btu/Gal

Input: Used oi l -- 138,000 Btu/gal x 0.96 gal

Less: Waste lube drying 60,000 Btu/bbl x 1 bb1/42 gal x 0.96 gal

Less: Transportation, disposal , and storage -- assumed to be minor and offset t ing

= 132,500

= 1,370

0 - -

Total energy savings over disposal 131,130

T h i s savings of 131,130 B t u i s equivalent to 0.88 gal (131,130 B t u + 149,000 Btu/gal) of virgin No. 6 fuel o i l . Stated simply, one gallon of used oil tha t i s reprocessed f o r fuel use, rather than dumped o r discarded, will conserve approximately nine tenths of a gallon of No. 6 fuel o i l .

RE-REFINED LUBE OIL

Both v i r g i n and re-refined lube o i l s have intrinsic energy contents ranging between 137,657 and 142,800 Btu/gal o r , approximately, 140,000 Btu/gal on average (13, 51). In addition to this in t r in s i c Btu/gal value, an expendi-

ture/investment of energy i s involved i n the manufacture ( re-ref ining) of lube

Page 181: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

o i l , whether v i r g i n o r re - re f i ned . 80, which i l l u s t r a t e s t h a t r e - r e f i n i n g r e q u i r e s o n l y about o n e - t h i r d t h e

energy o f r e f i n i n g v i r g i n l u b e o i l from petroleum crudes.

o i l f o r v i r g i n l u b e o i l . Assuming an i n t r i n s i c energy va lue o f approx imate ly

140,000 B t u l g a l p l u s an energy ( r e f i n i n g - f r o m - c r u d e - o i l ) investment o f 78,084

Btu/gal , t h e t o t a l energy con ten t o f v i r g i n l u b e o i l i s 211,084 B tu /ga l .

These energy demands a r e shown i n Table

The o b j e c t i v e o f r e - r e f i n i n g used o i l i s t o s u b s t i t u t e r e - r e f i n e d l u b e

TABLE 80. PRIMARY ENERGY DEMANDS OF LUBE OIL REFINING VERSUS RE-REF I N ING, BTU/GAL

Energy Demand

Cm po n en t Ref i n i ng Re-Re f i n i ng

Fuel o i l 42,685

Steam 28,559

Power 5,271

Chemical s 1,569

Tota l 78,084

17,527

4,920

2,785

1,615

26,847

Source: Emmerson, H. R. (13)

I n comparison, t h e energy account ing f o r r e - r e f i n e d lube o i l c o n s i s t s o f

A shr inkage o r vo lumet r i c loss o f 16% f o r the BETC process o r s i m i l a r advanced technology; 15% conversion t o energy byproducts ( 5 1 1.

t h e f o l l o w i n g f a c t o r s :

0 t he 16% shr inkage c o n s i s t s o f 1% wastage p l u s

0 A r e - r e f i n i n g energy expendi ture/ investment o f 26,847 Btu/gal o f l u b e o i l output (13 ) .

0 Other energy i n p u t s f o r t r a n s p o r t a t i o n , a1 t e r n a t i v e d isposal , and storage which are a l l assumed t o be minor and o f f s e t t i n g .

Beginning w i t h a g a l l o n o f used o i l which cou ld be e i t h e r disposed o f o r

converted t o r e - r e f i n e d l u b e o i l , t he f o l l o w i n g energy conservat ion

c a l c u l a t i o n holds:

165

Page 182: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

Energy Value B tu/Gal

I npu t : Energy value o f d i sp laced v i r g i n l ube o i l - - 211,084 Btu/gal x 0.84 gal = 177,311

Less: Re- re f i n ing energy expendi ture/ investment- - -26,847 Btu/gal x 0.84 = -22,551

Plus: The energy value o f t he energe t i c byproducts -- 138,000 Btu/gal used o i l x 0.15 gal = 20,700

Less: Transpor tat ion, disposed, and storage-- assumed t o be minor and o f f s e t t i n g

To ta l energy savings over disposal 175,460

Simply stated, one g a l l o n o f used o i l t h a t i s r e - r e f i n e d f o r base l u b e

o i l product ion, r a t h e r than dumped o r discarded, w i l l conserve 175,460 Btu/gal

o f v i r g i n l u b e o i l made from petroleum crudes.

ENERGY CONSERVATION COMPARISON OF REPROCESSING VERSUS RE-REFINING

From an energy conservat ion s tandpo in t (i .e., n e g l e c t i n g economic,

environmental, i n s t i t u t i o n a l , s o c i a l , and o the r i ssues ) , t he r e - r e f i n i n g o f

used o i l t o rep lace v i r g i n l ube o i l conserves more energy than reprocess ing used o i l f o r f u e l . As shown below, the energy conservat ion advantage o f t he

r e - r e f i n i ng r o u t e i s approximately 44,000 Btu/gal o f used o i 1 :

Re-ref ined lube o i l energy savings over d isposal = 175,460 Btu/gal

131,130 B tu /ga l - Reprocessed f u e l energy savings over d isposal -

Re-ref i n i ng advantage - - 44,330 B tu /ga l

Thus, r e - r e f i n i n g conserves more energy than reprocessing.

166

Page 183: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

PE TROLE UM DI S PLACEMENT

If the minor energy expenditure (1 to 5%) t o refine crude o i l to No. 6 fuel oil i s neglected and the steam, power, and chemical energy resources used i n b o t h refining and re-refining operations are considered t o be derived ent i re ly from petroleum, the energy Conservation estimates of the previous subsections can be converted d i rec t ly i n t o barrel s of petroleum displaced. These estimates are shown below.

Reprocessed fuel--Compared t o disposal , used oil reprocessed for for fuel will conserve:

6 6 = 590 x 10 gal used oil x 131,130 Btu/gal used oil -i 5.8 x 10

= 13.4 million bbl crude o i l Btu/bbl crude

Re-refined lube oil--Compared t o disposal, used oi l re-refined t o displace v i r g i n lube oi l will conserve:

6 6 = 63 x 10 gal lube o i l x 175,460 Btulgal lube o i l c 5.8 x 10

= 1.9 million bbl crude o i l Btu/bbl crude

Disposal --Represents opportunities for 1 ost energy conservation. a l l the discarded or dumped used oil were converted t o lube o i l ( technical ly impossible, however), the additional energy t h a t could have been conserved would be on the order of:

= 406 x 10 gal used oil x 175,460 Btu/gal used oil -t- 5.8 x 10

= 12.3 million bbl crude oi l

If

6 6 Btu/bbl crude o i l

The above analysis, thus, indicates t h a t , regardless of the reuse or recycling techniques employed, reclaiming can conserve s ignif icant quantity of energy. re- refi ning than with reprocessing. However, on a aggregate basi s , the savings are higher f o r reprocessing because of the large volumes of used oil reprocessed.

The amount of energy saved i s much higher on a per gallon basis with

167

Page 184: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

S h i f t s i n Used Oil End Uses

S h i f t s i n the end uses of used o i l and the products of used oi l reclamation operations as a resu l t of changing times, regulations, and economics, can be analyzed w i t h respect to the i r impact on energy conservation u s i n g the same techniques described above. Only the resul ts will vary.

Other End Products

The "other end products'' category of Figure 24 consists of a variety of products and processing techniques t h a t are beyond the scope of this study. I t i s suffice to say tha t , from an energy conservation standpoint, the products i n this category span the range from road o i l i n g , which i s basically a disposal technique, t o recovered chemicals w i t h h i g h energy values. T h u s , this category should also resul t i n considerable energy savings.

USED OIL MANAGEMENT SYSTEM ECONOMICS

The objectives of this subsection are to present a simplified description of the economics tha t drive the used oi l management system and to provide some examples of the system economics. products of the used oil management system are reprocessed fuel and re-refined lube o i l . scenarios: current (July 1986) market conditions and, by way o f contrast , a s i tuat ion selected from 1983 to 1985. conditions w i t h those of a previous year demonstrates the impact of severe fluctuations i n crude o i l prices on the economics of used o i l recovery.

As shown above, the two primary end

The economics of these products are described below for two

This comparison of current market

CURRENT ECONOMICS OF REPROCESSED FUEL

Table 81 presents data about the current market conditions for u s i n g reprocessed used oi l as a fuel. I n general, the price of crude oil determines the cost of No. 6 fuel o i l , in to which the reprocessed fuel is blended prior to combustion as an energy source. Typically, reprocessed fuel s e l l s a t a 10% (or more) price discount i n order to provide an incentive t o purchase and to

cover the added capital and operating costs associated w i t h storing, blending,

168

Page 185: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 81. CURRENT MARKET ECONOMICS FOR REPROCESSING FUEL FROM USED OIL, JULY 1986

Component Price

Crude o i l , $/bbl 11. 0oa

No. 6 fuel o i l , $/gal 0.30

Reprocessed fuel (10% discount) , $/gal

Reprocessing cost (including shrinkage), $/gal

0. 27b

0.30'

Transportation cost, $/gal 0. lod

Raw used o i l s e l l i ng price, $/gal -0. 13e

aMarket price, East Coast, July 1986. bReflects estimated incentive to purchase reprocessed o i l over v i r g i n No. 6

'Small, medium, and large major processor purchase price (51). dVariously estimated to be i n the $0.10 t o $0.15/gal range. eCalculated from b,c, and d.

Coast (July 1986) of -$0.10 t o -$0.15. used o i l generator must pay t o have the used o i l removed.

fuel oil--10% discount.

Comparable t o the market price on the East Negative sign s igni f ies t h a t the

Source: Mueller Associates, Inc.

and processing the second fuel. T h u s , the cost of reprocessing the used o i l appears to be approximately $0.30/gal and the cost of collection approximately $O.lO/gal. follows:

The se l l ing price for raw used o i l can then be calculated as

Factor $/gal

0.27 - Input: Reprocessed fuel oi l selling price -

-0.30 - Less: Reprocessing cost -

-0.10

Raw used oi 1 se l l i n g price -0.13

- Less: Transportation cost -

169

Page 186: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

The negative value of the raw used oi l se l l ing price s ignif ies tha t the used o i l generator must pay t o have the used o i l taken away. Indeed, the $0.13/gal generator disposal cost , as presented, agrees with the current East Coast market costs of $0.10 t o $0.15/gal for used o i l . contrast t o previous years (1985 and e a r l i e r ) when generators were p a i d as much as $0.45/gal for used o i l . v i r g i n fuel prices were h i g h . However, the recent f a l l i n v i r g i n fuel prices has depressed used oi l prices t o a p o i n t where generators are now paying for used oi l pickups.

T h i s i s i n sharp

The price paid t o generators was h i g h because

C U R R E N T ECONOMICS OF RE-REFINED LUBE OIL

Table 82 presents the economic analysis, similar t o the prev ous table, for the re-refining route. refining i s calculated from the sel l ing price of the re-refined p-oduct and the cost of transporting the product. This cost of reused product a l s o re f lec ts the re-refining f a c i l i t y ' s capital and operating costs as well as special additives used i n formulating the lube o i l s for the marketplace. Table 81, the data of Table 82 indicate t h a t generators of used oil must pay t o have the used oi l removed from the i r premises.

However, i n contrast t o Table 81, the cost of re-

Like

-*,

INFLUENCE OF CRUDE OIL PRICE ON USED O I L ECONOMICS

Table 83 shows the influence of crude oi l price fluctuations from a stable 1983-1985 of about $27.00/barrel ( b b l ) t o a July 1986 price of $ l l .OO/bbl . The resul ts show dramatic changes on the price of raw used o i l ; i t switches the two scenarios from a revenue producer ( fo r the generator) t o an expense item ref lect ing removal a t a cost . In the case of disposal a t a cost , the scenario serves as a penalty to the generator and a disincentive to participate in the used o i l management system.

the re-refining industry. complicated than the reprocessing route n o t only w i t h respect to the used o i l I s processing b u t a1 so w i t h regard t o i t s upgrading by means of additives t o meet finished lube oil specifications.

The same economic pressures tha t are evident i n Table 83 also apply t o The re-refining of lube o i l , however, is more

170

Page 187: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 82. CURRENT MARKET ECONOMICS FOR RE-REFINING USED OIL, JULY 1986

Component Price

Crude o i l , $/bbl

No. 6 fuel o i l , $/gal

No. 4 fuel o i l , $/gal

Lube oi l ( f in i shed) , $/gal

Re-refined lube o i l (f inished, 10% discount), $/gal

Re-refining cost (including shrinkage), $/gal

Transportation cost , $/gal

Raw used o i l se l l ing price, $/gal

~ ~ ~~~~

11. 0oa

0. 30a

0.30a

3. 2!jb

2.93'

2.91d

0. l!je f -0.13

aMarket price, East Coast, July 1986. bMarket quotes, East Coast, July 1986. 'Reflects estimated incentive t o purchase re-refined lube o i l over v i r g i n lube

oil--discount 10% dSmall, medium, and large re-refining cost (51). eVariously estimated i n the $0.10 t o $0.15 range; however, there a re

f a r fewer re-refi n i ng plants t h a n reprocessing faci 1 i t i es , and the transportation costs can be expected t o be a t the high end of the range.

fCalculated from c,d, and e, and comparable to the July 1986 market quote on the East Coast of -$0.10 t o -$0.15; negative s ign s ign i f ies net cost t o the generator.

Source: Mueller Associates, Inc.

171

Page 188: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 83. INFLUENCE OF CRUDE OIL MARKET PRICE ON USED OIL REPROCESSING ECONOMICS

P r i c e

Component J u l y 1986 1983-1985

Crude o i l , $/bbl 11. 0oa 27. OOf

No. 6 f u e l o i l , $/gal 0. 30a 0. 70f

Reprocessed f u e l ( 10% d iscoun t ) , $/gal 0.27b 0.63b

Reprocessing c o s t ( i n c l udes shr inkage) , $/gal 0.30' 0.30'

T ranspor ta t ion cost , $/gal 0. l o d 0. l o d

Raw used o i l s e l l i n g p r i c e , $/gal -0. 13e 0. 23g

aMarket p r i c e , East Coast, J u l y 1986. bRef lec ts est imated i n c e n t i v e t o purchase reprocessed o i l over v i r g i n No. 6

'Small, medium, and l a r g e major processor purchase p r i c e (51). dVar ious ly est imated t o be i n t h e $0.10 t o $0.15/gal range. eCalcu lated from b,c, and d, and comparable t o the J u l y 1986 market p r i c e on

fMarket p r i c e l e v e l , East Coast, J u l y 1985. gCalcu lated f rom b,c, and d; p o s i t i v e number s i g n i f i e s a n e t revenue producer

f u e l o i 1 - - lo% d i scount.

t h e East Coast o f -$0.10 t o -$0.15; negat ive s i g n s i g n i f i e s t h a t t he used o i l generator must pay t o have the used o i l removed.

f o r t he generator.

Source: Muel 1 e r Associates, Inc .

172

Page 189: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

SUMMARY OF ENERGY AND ECONOMIC CONSIDERATIONS

S i g n i f i c a n t amounts o f n a t i o n a l energy resources a r e recovered from used

o i l p resen t l y wh i l e , a t t h e same time, s i g n i f i c a n t amounts o f p o t e n t i a l energy

resources a r e l o s t , p r i m a r i l y t o d isposal . Strong economic and r e g u l a t o r y

fo rces are a t p lay, w i t h t h e p r i c e o f crude o i l among t h e strongest.

general , t h e r e - r e f i n i n g o f used o i l t o rep lace v i r g i n l u b e o i l conserves more

energy than reprocessing used o i l f o r f u e l , b u t t h e economics may n o t be as favo rab le as evidenced by i n d u s t r y t rends.

I n

173

Page 190: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

SECTION 7 SUMMARY AND DISCUSSION

The general category o f waste o i l c o n s i s t s o f bo th used o i l and unused

waste o i l . Used o i l i s any o i l t h a t has been a d u l t e r a t e d subsequent t o use o r

t h a t becomes contaminated as a r e s u l t o f such use. The o i l can be e i t h e r

petroleum- o r s y n t h e t i c a l l y - d e r i v e d , and may be used as a

0 L u b r i c a n t (engine, t u r b i n e , o r gear);

1 u id ; 0 Hydrau l i c

0 Metal work quenching,

0 I n s u l a t i n g

ng f l u i d ( i n c l u d i n g c u t t i n g , g r i nd ing , r o l l i n g , stamping, and c o a t i n g o i l s ) ; and

f l u i d o r coo lan t .

There are many sources o f used o i l . (DIYers), used o i l i s generated a t automotive garages, s e r v i c e s t a t i o n s , t r u c k

and t a x i f l e e t s , m i l i t a r y i n s t a l l a t i o n s , and i n d u s t r i a l and manufactur ing

f a c i 1 i t i e s .

1,251.0 and 1,061.0 m i l l i o n gal , r e s p e c t i v e l y , i t i s est imated t h a t

approximately 700.0 m i l l i o n gal o f used automot ive o i l s and 500.0 m i l l i o n ga

o f used i n d u s t r i a l o i l s are generated each yea r (See F igu re 25). Approxi-

mately 66.3% o f t he t o t a l used o i l generated, o r about 800 m i l l i o n gal , i s

c u r r e n t l y managed and u t i l i z e d by c o l l e c t o r s , reprocessors, r e - r e f i n e r s , and

end-users. The remaining 33.7% o r 406 m i l l i o n gal i s o f t e n disposed uf o f f -

s i t e r a t h e r than accumulated a t a p o i n t o f c o l l e c t i o n . Th is l a t t e r category c o n s i s t s o f used o i 1 s generated by DIYers, a g r i c u l t u r a l and c o n s t r u c t i o n

machinery operators, and o the r small generators o f used i n d u s t r i a l o i l s who p r e f e r t o dump t h e i r o i l s i n t o s a n i t a r y sewers, l a n d f i l l s , and o t h e r unsafe

p rac t i ces .

m a j o r i t y (92.7% o r about 605,000 establ ishments) are small businesses

generat ing l e s s than 1,000 k g (300 g a l ) o f used oi l /month.

are operated i n p a r t by i n d i v i d u a l s who l a c k the techn ica l knowledge o r f i n a n c i a l resources necessary t o operate a used o i l management f a c i l i t y o f any

s o p h i s t i c a t i o n .

Besides the d o - i t - y o u r s e l f o i l changers

On t h e bas i s o f t he 1983 automotive and i n d u s t r i a l new o i l sa les o f

With respect t o the s i z e o f a t y p i c a l used o i l generator, t h e v a s t

These generators

Only 7.3% o f businesses generate more than 1,000 kg/month.

174

Page 191: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

tn t- o 3 a 0

n E L z w

z 0 I- o W -I -I 0 o

-

z 0 I- < fx w Z W c3

-

V v)

0 Q) v) W 0 0 0: n W 0:

a

A 0 N In

v) K w z LL W K

I W K

-

^j- Lrl c

Page 192: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

Unlike used o i l , unused waste oil i s any o i l t h a t becomes contaminated prior t o i t s intended use. are designated as o i l y waste include:

Examples of petroleum and synthetic compounds t h a t

0 Crude oil or virgin fuel oil t h a t is spilled on l a n d or water.

0 Oily sludge a t the bottom of oil storage tanks.

0 Oily wastes from refinery operations such as separator sludge. The sources of unused waste o i l generation are widely dispersed. any, d a t a are available on the quantities of oily waste generated i n the United States. The d a t a on unused waste oil reuse are also scarce. In general, the spil ls are landfilled while the oily wastewater i s heated in wastewater treatment plants. Oils generated by inadequate handling or formulation are either re-formulated, or sold for another use, o r disposed of .

Little, if

WASTE OIL CHARACTERISTICS

During service, the constituents present in virgin oil undergo physical and chemical changes and the oil i tself becomes contaminated from bo th internal and external sources. Some of the contaminants are already present in the refined crude while others are formed during o i l use. of contaminants usually present in used automotive and industrial oils are:

0 Trace metals, such as barium, chromium, and cadmium;

Among the types

0 Chlorinated solvents, such as trichloroethylene, tetrachloroethylene, and l,l,l-trichloroethane;

0 Polynuclear aromatic hydrocarbons, such as benzo(a)pyrene, phenanthrene, and 1,2-benzanthracene, w h i c h are potent carcinogens;

0 Polychlorinated biphenyls ( P C B s ) , which are carcinogenic, and other ha1 ogenated hydrocarbons, which are persistent toxics;

0 Nitrosamines or their precursors, which are potent carcinogens; and

0 Other aromatics such as benzene and naphthalene. These contaminants result from chemical action among the o i l constituents or from a breakdown of the additive packages. External or physical contamination of oil includes introduction of soot and lead compounds from engine blowby, d i r t , dust, and rust particles.

176

Page 193: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

In general, the quantities of contaminants in used oil depend upon the original detergents and dilutants added t o the virgin o i l . They will also be affected by used oi 1 storage, collection, transportation, and other management practices; these practices often result i n related wastes such as d i r t , a n t i - freeze, and other solvents being mixed w i t h the used o i l .

properties of used oil have been conducted t o date. All of these studies analyzed various used oil samples by standard tests t o characterize the contaminant levels. Some even used chromatographic and mass spectral analysis t o provide qualitative or semiquantitative da ta . from these studies are generally similar, others show significant variations i n the chemical and physical properties of used o i l . Table 84 sumnarizes the da ta contained i n the literature surveyed by this report.

the contaminant concentrations of used oil . techniques, sample size, sample source, and sample hand1 ing and storage techniques. conducted has a marked influence on used oil properties. In general, used o i l collected i n the last few years tends t o be more contaminated due t o hazardous waste disposal regulations and the resulting rapid rise i n disposal costs. A recent survey of used o i l samples reported the fo l lowing contaminant levels a t the statistical 90th percentile level (1):

0 Lead -- 1,200 ppm

Several comprehensive studies characterizing the chemical and physical

While some o f the results

Several reasons have been hypotesized t o explain the wide variations i n Among them are sampling

In addition, the time period during w h i c h these studies were

0 Chromium -- 35 ppm

0 l,l,l-Trichloroethane -- 3,500 ppm

0 Trichloroethylene -- 800 ppm

0 Tetrachloroethylene -- 1,600 ppm

0 Benzene -- 300 ppm

0 Toluene -- 4,500 ppm

0 Benzo(a)pyrene -- 16 ppm

0 Naphthalene -- 800 ppm

0 PCBs -- 50 ppm

177

Page 194: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 84. SUMMARY OF USED OIL PROPERTIES

Proper ty

Phys ica l P roper t i es Speci f i c g r a v i t y , O A P ~ V i scos i t y , cS t a t 100 F Bottom sediment & water, vo l . % Carbon residue, w t . % Ash, w t . % F lash p o i n t , OF Heat conten t , B t u / l b

Chemical Proper t ies , ppm Metal s

Arsenic Barium Cadmium Chromium Lead Zinc

Chl o r i nated,.Sol vents D i c h l o rod i f 1 uoromethane T r i c h l o r o t r i f l uoroethane 1, l ; l -Tr ich loroethane T r i ch lo roe thy lene Tet rach lo roe thy lene Tota l c h l o r i n e

Other Organics Benzene To1 uene Xylenes Benz(a1anthracene Benzo(a Ipyrene Naphtha1 ene PCB s

Concentrat ion Range

Low High

-

13 1 0 1.8 0.03

60 4,142

<.01 0 0 0 0 <.05

<1 <20 <1 <1 <1

<10

<1 <1 <1 <5 <1

110 0

80 513

99 4.4 3.8

525 23, (345

100 3,906

57 670

21 , 700 8,610

2,200

110,000 550,000

330,000 32,000

459,000

55 , 006 55 , 000

139,000 660 40 5

2,480 3,800

Among the metals, l e a d i s present i n very l a r g e concent ra t ions .

extremely h igh l e a d conten t i s a t t r i b u t e d c h i e f l y t a p i s t o n blowby i n engines

us ing leaded gasol ine . Small amounts o f l ead may a1 so be due t o ant iwear o r

extreme pressure add i t i ves . I n the fu tu re , t he l e v e l o f l e a d i n used o i l i s

p r o j e c t e d t o be r e l a t i v e l y lower because of EPA's gaso l ine l e a d phase-down

This

178

Page 195: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

standards promulgated on March 7 , 1985 ( 7 ) . These standards require that lead be reduced from the previous limit of 1.1 g/gal to 0.5 g/gal by July 1985, and to 0.1 g/gal by January 1986. resu l t i n a concomitant reduction i n the lead level of used o i l . Reductions exceeding 80% of current levels have been projected result ing i n lead concentrations of 67 to 248 ppm i n used o i l . Testimony provided recently by used oi 1 coll ectors to the Massachusetts Department of Environmental Qual i ty Engineering indicate t h a t lead levels had dropped t o between 300 and 500 ppm by the beginning of 1986 (53) .

quantit ies. They are derived from primarily two sources: additive package breakdown and a d d i t i o n of chlorine and bromine, as lead scavengers, t o leaded gasol i ne. management practices of generators and/or col lectors . mismanagement practice is the dumping of degreasing solvents into tanks used f o r s t o r i n g used automotive o i l s . In addition, the chlorine levels are very h igh . o i l with chlorinated solvents or the presence of metalworking o i l s i n s ign i f i - cant quantities. pressure additives comprising of chlorinated paraffinic compounds, which can resul t in organic chlorine levels of several percent i n unused v i r g i n o i l . However, these o i l s account for only a small segment of the industrial oi l market. Consequently, 1 i t t l e used o i l s are expected to contain total chlorine levels exceeding 1,000 ppm. chlorine and bromine additives will also be lower, thus, further reducing ha1 ogen 1 eve1 s.

used o i l (e.g. , lead, tetrachloroethylene, trichloroethylene, and toluene) are present i n levels ranging between 10 and 10 higher t h a n any health-based s t a n d a r d such as the Ambient Water Quality Cri ter ia and D r i n k i n g Water Standards. Consequently, only a small amount of these contaminants would need t o migrate from the waste o i l and escape i n t o the environment t o pose a substantial hazard t o human health and the environment.

This reduction of lead in gasoline should

Besides lead, chlorinated solvents are a l s o present i n s ignif icant

They may a1 so be i ndi rectly introduced through care1 ess or i gnorant One example of this

Such h i g h levels of chlorine concentration indicate mix ing of the used

The metalworking o i l s contain large amounts of extreme

In addition, as lead i s phased o u t of gasoline,

I n general, most of the studies show t h a t some of the consti tutents i n

2 7

179

Page 196: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

R E C Y C L I N G AND DISPOSAL

Of the t o t a l used oil generated i n the United States , approximately 48.9% About 5.2% (590.1 million g a l ) i s burned fo r energy recovery (see Figure 25).

or 62.7 mil 1 ion gal becomes new re-refi ned 1 ube o i l , somewhat l e s s than the amount used for road oi l ing (5.7% or 68.5 million ga l ) . million gal is used for non-fuel industrial applications such as f lotat ion o i l s and asphalt extenders while approximately 3.6% (44.0 million g a l ) i s recycled onsite. The remaining 33.7% or 405.9 million gal i s l o s t through di sposal i ncl u d i ng w i despread dumping on soi 1 and 1 andf i 11 i ng. of a l l dumping i s by DIYers and the other half i s by large off-road vehicle operators such as farmers, miners, and construction workers who dispose of the i r oils i n t o sewers, lagoons, or l andf i l l s .

Except for those consumed onsite, most used o i l requires some type of processing t o remove dir t , water, and other contaminants. two types of processing f a c i l i t i e s : Reprocessors use mild processing techniques to produce par t ia l ly cleaned fuel o i l . acid and caus t ic ) , b u t , i n general, these techniques do not remove a l l the contaminants from used o i l ; for example, lead, ash, and chlorine may s t i l l be present a f t e r sedimentation. o i l ' s viscosity and t o improve gravity se t t l ing . A t other times, d i s t i l l a t i o n may be used to evaporate the water and other l i g h t fuel f ract ions. general, the type and degree of treatment w i 11 depend upon the quality of used oil desired.

Another 2.9% or 34.9

About one-ha1 f

There are basically reprocessors and re-refiners.

Treatment ranges from sediment removal to the use of chemicals (e.g.,

Sometimes, heating i s involved to decrease the

In

While reprocessors employ simple operations to t r e a t used o i l , re- refiners use complex techniques. They employ such processes as vacuum d i s t i l l a t i on and solvent treatment followed by clay polishing or hydrotreatment to remove almost a l l of the contaminants from used o i l . The primary product of re-refining i s cleaned used o i l , to be s o l d as a base lube o i l . Byproducts from re-refineries, such as l i g h t ends, are usually burned for energy recovery.

the United States compared to about 12 to 16 re-refiners. re-refiners i n comnercial operation i s s ignif icant ly below the level t h a t

existed i n 1960 when approximately 150 re-refiners produced about 300 mil 1 ion

A t the present time, there are approximately 200 to 300 reprocessors i n T h i s estimate of

180

Page 197: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

gal o f r e - r e f i n e d o i l , o r a lmost 18% o f the U.S. l u b r i c a t i n g needs. Current -

ly , the re are fewer than 16 r e - r e f i n e r s producing l e s s than 63 m i l l i o n gal o f

r e - r e f i ned o i 1 . Several reasons have c o n t r i b u t e d t o t h i s decl i ne. These

i n c l ude:

0 Undercap i ta l i zed small businesses.

0 Lower crude o i l p r i ces .

0 Higher feedstock p r i c e s as a r e s u l t o f compet i t ion f rom o the r uses f o r used o i l .

0 S p e c i f i c a t i o n s f o r b i d d i n g use o f r e c y c l i n g ma te r ia l s .

0 E l i m i n a t i o n o f government f i n a n c i a l i ncen t i ves .

0 R e s t r i c t i v e l a b e l i n g requirements.

0 High c o s t o f environmental compliance.

A l l o f these f a c t o r s have combined t o r e s u l t i n a s i g n i f i c a n t dec l i ne o f t h e

r e - r e f i n i n g i ndus t r y . I l l i n o i s , Indiana, New York, Pennsylvania, and Texas.

The l a r g e r r e - r e f i n e r s a re l o c a t e d i n C a l i f o r n i a ,

ENVIRONMENTAL IMPACTS

Most c u r r e n t methods o f used o i l and unused waste o i l u t i l i z a t i o n and

d isposal c rea te r i s k s o f contaminant ing a i r , water, o r s o i l w i t h substances t h a t pose s u b s t a n t i a l hazards t o human, animal, and p l a n t l i f e . For example, used o i l s dumped i n t o sewers can f o u l connector sewers and t reatment p l a n t s

r e s u l t i n g i n increased maintenance cos ts and reduced t reatment e f f i c i e n c y .

Other impacts o f used o i l r e c y c l i n g and d isposal i nc lude t h e fo l l ow ing :

0 Used o i l a p p l i e d t o l a n d (e.g., as a road o i l , dus t suppressant, o r

It may a l so render t h e

when i n d i s c r i m i n a t e l y dumped) poses an env i ronmental hazard r e s u l t i n g f rom the d i r e c t re lease o f t h e o i l onto land, and through p e r c o l a t i o n and r u n - o f f i n t o ground and sur face waters. s o i l unproduct ive, depending upon the r a t e o f a p p l i c a t i o n and t h e c h a r a c t e r i s t i c s o f the s o i l surface.

0 Used o i l d isposed o f i n " insecure" l a n d f i l l s may leach through t h e bottom o f such l a n d f i l l s , and subsequently contaminate groundwater suppl ies.

0 Because o f the presence o f contaminants, u n c o n t r o l l e d burn ing o f c e r t a i n used o i l s , e i t h e r as a f u e l o r f o r t h e purpose o f thermal d isposal as i n i n c i n e r a t i o n , may r e s u l t i n s i g n i f i c a n t l e v e l s o f

181

Page 198: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

hazardous emissions t o the environment. This, i n turn, may expose humans, wi ldl i fe , and vegetation in the area t o these harmful substances. The environmental impacts of b u r n i n g used o i l , i n general, will depend upon the concentration of hazardous contaminants; burner design; emissions control equipment; stack height; and meterological conditions.

0 Re-ref i n i ng processes, whi 1 e producing re1 a t i vely cl ean products, generate several 1 iquid effluents and solid waste streams which require adequate miti gation techniques prior t o disposal.

The hazardous nature of used o i l i s primarily related t o the many contaminants i n used o i l which are known t o have carcinogenic, mutagenic, teratogenic, or other chronic or acutely toxic properties. For example, tetrachloroethylene has been identified as a possible human carcinogen. I t i s a mutagen i n bacterial assays; i t is a lso chronically toxic to dogs, causing kidney and l iver damage, and to humans, causing impaired l i ve r function. In mice and r a t s , tetrachloroethylene has caused toxic nephropathy. In addition, trichloroethylene h a s been identified as a potential human carcinogen. I t has been reported t o cause some l ive r and kidney damage. Further, l , l , l - t r i c h - loroethane has been shown, i n animal studies, t o produce adverse e f fec ts i n the central nervous system, pulmonary system, heart, kidney, and l i ve r ( 3 6 ) .

1 inked t o , reproductive e f fec ts i n . humans. Chronic occupational exposures to toluene have also resulted in neurological e f fec ts , such as impaired performance on t e s t s for i n t e l l ectual and psychomotor abi 1 i ty and muscul ar function. In addition, naphthalene i s a systemic poison which bioaccumulates i n the skin, l iver , brain, blood, muscle, and heart. I n particular, chronic exposure t o naphtha1 ene produces cataracts , hemolytic anemia, and kidney disease i n humans. Finally, lead i s a systemic toxicant, causing renal damage, cerebrovascular disease, heart fa i lure , electrocardiographic abnormal- i t i e s , impaired l i ve r function, impaired thyroid function, intest inal colic, and miscarriages and s t i l l births (36 ) . benz(a)anthracene, benzo(a)pyrene, and nitrosamines.

Used oi l also contains s ignif icant levels of arsenic, cadmium, and chromium. B o t h arsenic and cadmium have been categorized as potential human carcinogens. Hexavalent chromium also demonstrates evidence of carcinogenic potential. Arsenic, cadmium, and hexavalent chromium a1 so demonstrate muta- genic e f fec ts , and arsenic and cadmium further show teratogenic ac t iv i ty ( 3 6 ) .

Toluene is known to cause central nervous system dysfunction and has been

Other contaminants of concern are

182

Page 199: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

Furthermore, many contaminants i n used o i l a re mobile, p e r s i s t e n t , and bioaccumulat ive, and have the p o t e n t i a l f o r increased m i g r a t i o n i n hazardous

concentrat ions. Therefore, waste o i l s a r e capable o f causing s u b s t a n t i a l harm

i f n o t handled p roper l y . Improper use and management have repeatedly caused

many i n c i d e n t s o f s i g n i f i c a n t environmental consequences.

V i r t u a l l y a1 1 used o i 1 s are t e c h n i c a l l y r e c y c l eabl e, b u t t h e f e a s i b i 1 i ty

and desi r a b i 1 i ty o f r e c y c l i n g a re 1 i m i t e d by environmental hazards and

economic considerat ions. The environmental b a r r i e r s depend upon the method o f

r e c y c l i n g used.

generates a c i d s ludge which can be s a f e l y disposed o f on l y i n l a n d f i l l s

s u i t a b l e f o r hazardous wastes, and o n l y a f t e r n e u t r a l i z a t i o n o f t h e a c i d

content. The d isposal o f spent c l a y i s a l s o a concern, a l though i t i s n o t

expected t o be a major problem.

process do avo id the a c i d sludge problem.

e f f l u e n t f rom r e - r e f i n i n g operat ions a re r e l a t i v e l y minor because o f t h e

considerable wastewater t reatment and o the r environmental c o n t r o l f a c i 1 i t i e s i n s t a l l e d i n most r e - r e f i n e r i e s .

For example, t h e ac id -c lay process f o r r e - r e f i n i n g used o i l

Some v a r i a t i o n s o f t he t r a d i t i o n a l ac id -c lay I n general, a i r emissions and water

S i m i l a r impacts a re observed when used o i l i s combusted i n l a r g e o r small

b o i l e r systems. I n p a r t i c u l a r , i f i t i s burned w i t h o u t any pretreatment, then

s i g n i f i c a n t quant i t i e s o f elemental emissions a long w i t h o the r oxides and aromat ics would be re leased t o the atmosphere. However, i f the used o i l was

cleaned p r i o r t o combustion, then the l e v e l o f emissions would be reduced.

For example, s i g n i f i c a n t reduc t i ons i n n i t r o g e n and s u l f u r l e v e l s can be achieved by vacuum d i s t i l l a t i o n , which concentrates these elements i n t h e

bottoms, which can then be disposed o f o r used i n a s p h a l t i c products.

and o the r so l ven ts can a l s o be removed by d i s t i l l a t i o n .

can be accomplished by c e n t r i f u g a t i o n and s e t t l i n g . The major disadvantage o f

any m a t e r i a l cleanup opera t i on i s cos t . However, i f p rac t i ced , t he

environmental impacts o f us ing r e c y c l e d used o i l can be s i g n i f i c a n t l y reduced.

reducing emissions. For example, p a r t i c u l a t e emissions r e s u l t i n g f rom the ash

components can be removed from combustion f l u e gases by e l e c t r o s t a t i c

p r e c i p i t a t o r s , bag f i l t e r s , scrubbers, and o t h e r methods. These technologies

are expensive, b u t they can be j u s t i f i e d , e s p e c i a l l y when they a l l o w the use

o f a cheaper f u e l such as used o i l .

normal ly p rac t i ced , g i v i n g way t o d i l u t i o n w i t h v i r g i n o i l s t o minimize the

PNAs

Lead and ash removal

The use o f c o n t r o l s on combustion systems i s s t i l l another method o f

However, emission c o n t r o l s are n o t

183

Page 200: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

net ash content t o meet par t iculate emission standards. Further, scrubbing can be used t o reduce sulfur, bromine, and chlorine emissions. Similarly, hydrocarbon emissions can be reduced by combustion modifications.

t o be much less o f a problem i f the used o i l were processed prior to any use. In other words, although expensive, the processing of used o i l i s environmen- a l ly beneficial.

On the whole, the environmental impacts from used oil recycl ing appears

REGULATORY IMPACTS ---I-

Table 85 summarizes the various federal regulations applicable to different segments of the used oil industry. I n a d d i t i o n , EPA has t r i ed several times t o c lass i fy used o i l as a hazardous waste. Their rationale for proposing such a regulation was t h a t i t s implementation would force, a t a price, more energy recovery through fuel reprocessi ng and 1 ube o i 1 re-refi n i ng among the sources and channels under regulatory control. regulations appeared promising t o the re-refiner in t h a t they would be able t o obtain used oi l a t re la t ively lower prices, they would also have had some adverse e f fec ts since the cost o f complying w i t h the regulations would also encourage d i sposal options, i n some cases. For example, desi gnated col 1 ection centers, usually f i l l i n g stations or automotive service centers, were offered l i t t l e inducement t o par t ic ipate i n the collection/disposal programs other than the opportunity to sel l collected waste oi l t o reclaimers. Faced w i t h the necessity and cost (estimated to be as h i g h as $l.OO/gal for f a c i l i t i e s generating more than 1,000 k g / m o n t h ) of p r o v i d i n g secondary containment for t he i r oil collection tanks , some would have opted to withdraw from these programs. This would resu l t i n larger amounts of waste o i l being improperly disposed of and secondarily, in the loss of fuel energy, since many o i l reclaimers se l l the i r oi l for fuel t o e l ec t r i c power generating s ta t ions and similar instal la t ions.

generally disrupt existing collection and recycling networks and ultimately lead t o increased improper disposal o f used o i l . EPA's own analysis indicates t h a t , even i n the absence o f substantive controls on recycled o i l , the l i s t i n g of recycled o i l as hazardous waste could cause an additional 61-128 million gal/year of used o i l to be disposed of i n uncontrolled ways, an increase of

While these

I n other words, the l is t ing of used o i l as a hazardous waste w o u l d

184

Page 201: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

TABLE 85. SUMMARY OF FEDERAL REGULATIONS APPLICABLE TO USED OIL INDUSTRY

A c t i v i ty A p p l i c a b l e Federa l S t a t u t e s

Generators M i x i n g o f hazardous wastes w i t h used o i l i s p r o h i b i t e d .

C o l l e c t o r s , processors, O f f - s p e c i f i c a t i o n used o i l may be s o l d o n l y t o

s e l l i n g o f f - s p e c i f i c a t i o n used o i l must n o t i f y EPA.

and marketers i n d u s t r i a l and u t i l i t y burners; f a c i l i t i e s

Used o i l meet ing EPA s p e c i f i c a t i o n s a r e exempt f rom r e g u l a t i o n ; f a c i l i t i e s must s t i l l n o t i f y EPA.

Burners

Storage

Burn ing o f o f f - s p e c i f i c a t i o n used o i l i n non- i n d u s t r i a l s o i l e r s i s p r o h i b i t e d .

Burners o f o f f - s p e c i f i c a t i o n used o i l must n o t i f y EPA o f t h e i r a c t i v i t y as used o i l burners ( a one-t ime requ i rement ) ; i n f o r m s u p p l i e r s o f t h i s n o t i f i c a t i o n ; burn o f f -spec i f i c a t i o n used o i l i n an i n d u s t r i a l dev ice only ; and keep records o f i n v o i c e s .

Burners o f s p e c i f i c a t i o n used o i l a re n o t regu la ted .

Storage o f used o i l i s n o t r e g u l a t e d p e r se, un less i t i s mixed w i t h hazardous w a s E F e x h i b i t s one o f t h e c h a r a c t e r i s t i c s of hazardous waste. I n which case, used o i l s to rage i s r e g u l a t e d by RCRA.

approx imate ly 22-47% over base1 i n e c o n d i t i o n s (41-105 m i l l i o n g a l / y e a r ) . d i s r u p t i o n i s a t t r i b u t a b l e bo th t o d i r e c t economic e f f e c t s as w e l l as

p s y c h o l o g i c a l e f f e c t s , such as pub1 i c r e l a t i o n s problems, e tc . , which may

Th is

t r a n s l a t e i n t o economic e f f e c t s .

f o r non-economic reasons, w i t h persons o p t i n g o u t o f t h e r e c y c l e d o i l system

t o a v o i d h a n d l i n g a hazardous waste. Thus, EPA concludkd t h a t t h e c o s t s and

s t igma assoc ia ted w i t h l i s t i n g r e c y c l e d o i l c o u l d s i g n i f i c a n t l y reduce the

demand f o r used o i l f u e l . R e - r e f i n i n g would n o t be a b l e t o expand ( a t l e a s t

i n t h e s h o r t term) t o t h e e x t e n t necessary t o absorb a l l o f t h e used o i l

d i s p l a c e d f rom burn ing; i n f a c t , e x i s t i n g r e - r e f i n e r s a re c l o s i n g down

Some element o f d i s r u p t i o n c o u l d a l s o r e s u l t

185

Page 202: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

operations. w i l l i n g t o accept t he i r used o i l and, as a- resu l t , commercial auto centers would l ikely refuse t o accept DIYer generated used o i l and s ignif icant ly increase the price charged for o i l change services offered to the public. Reduced ava i lab i l i ty o f DIYer o i l collection centers and higher o i l change price for the public would increase DIYer oil changes and would ultimately lead to increased uncontrolled disposal o f used o i l .

would 1 i kely threaten ground and surface waters w i t h o i 1 contamination, thereby endangering d r i n k i n g water supplies and aquatic l i f e . Therefore, i n i t s l a t e s t attempt t o c lass i fy used o i l as a hazardous waste, EPA concluded t h a t such a 1 i s t ing would discourage recycl i n g or reuse.

Generators would then have d i f f icu l ty i n finding recylcers

The release of 61-128 million gal/year of used o i l i n t o the environment

ENERGY AND ECONOMIC CONSIDERATIONS

W i t h respect to cost considerations, i t appears that strong economic and

In general, the re-refining of used o i l t o replace v i r g i n lube o i l regulatory forces are a t play, w i t h the price of crude oil being the strongest. conserves more energy than the reprocessing route for making fuel from used o i l ; however, the economics may n o t be as favorable as evidenced by industry trends. Typically, reprocessing and re-refining are favorable a t h i g h crude o i l prices because the product can then be so ld a t re la t ively h i g h prices. However, a t low crude o i l prices, the prices of the refined v i r g i n products are also low, which i n most instances, are not suf f ic ien t t o cover the cost of reclaiming the used o i l .

I n other words, the choice between reclaiming used o i l and disposing i t depends upon the price of crude o i l . As crude oi l prices have dropped, so has the price of refined v i rg in fuel o i l . I n f ac t , prices of v i r g i n fuel o i l s have declined t o a level where, i n most cases, they are not suff ic ient to recover the cost of reprocessing or re-refining the used o i l . reclaimers who used to pay for t he i r used oil are now charging generators for t a k i n g i t of f the i r hands. A recent survey i n the Maryland, Washington, D.C. , and Virginia region shows tha t reclaimers are now charging $0.10 t o 0.30/gal for used oi l pickups compared to $0.02 t o 0.18/gal they used t o pay previously (53).

As a resu l t ,

136

Page 203: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

I

The net result i s t ha t many service s ta t ions and other col lectors of used o i l have stopped accepting oi l from DIYers and other small generators who, i n turn, will i l l ega l ly dump t h e i r o i l . In 1983, approximately 406 m i l l i o n gal were disposed of versus 605 million gal sent t o reclaimers. Today, i t i s possible tha t these quant i t ies are nearly equal. T h u s , EPA's e f f o r t s should concentrate on the recovery of currently disposed o i l , and the ident i f ica t ion of a1 ternatives to hand1 ing waste o i l .

refining saving more energy on a per gallon basis than reprocessing. However, on a aggregate basis, the savings are higher for reprocessing because o f the large volumes of used o i l reprocessed. Further, i f a l l the discarded used o i l were converted to lube o i l , the additional energy t h a t could be conserved would be approximately 12 million bbl of crude oil /year.

In general, any recovery option saves energy over disposal w i t h re-

187

Page 204: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

SECTION 8

REFERENCES

1. F r a n k l i n Associates Ltd. , Composition and Management - o f Used O i l

t nv i ronmenta l P r o t e c t i o n Agency, Washington, D.C., November 1985.

Federal Reg is te r , Vol. 50, No. 230, pp. 49212-49257, November 29, 1985.

Environmental Progress, Vol . 4, No. 1, pp. 61-68, February 1985.

Generated i n the Un i ted Stbtes, Report No. PB85-IBOZY/ , f o m

2.

3. Metz le r , Suzanne C. and C. J a r v i s , " E f f e c t s o f Waste O i l Contaminat ion",

--.___-

--

4. Temple, Barker & Sloane, Inc., Regulatory Impact Ana lys is -- o f Proposed Standards f o r the Management o f Used O i l , f o r U.S. tnv i ronmenta l P r o t e c t i o n Agency, TTs-n, D.C. , November 1985.

5. PEDCo Environmental , Inc. , Eva1 u a t i o n o f Heal t h and Environmental Prublems Associated w i t h the Use o f Waste O i l as a Dust Suppressant, F i n a T T r X m p o r t , f o r U.S. tnv i ronmenta l P r o t e c t i o n Agency, Washington, D.C. , February 1984.

6. Emerson, H.R., The Regu la t ion o f Used O i l U t i l i z a t i o n , f o r B a r t l e s v i l l e Energy Techno1 ogy Center , B a r t 1 e s v i 1 l e , Okl ahoma, A p r i l 1980.

7. Federal Reg is te r , Vol. 50, No. 45, pp. 9385-9399, March 7, 1985.

8. Federal Reg is te r , Vol . 50, No. 230, pp. 49164-49211, November 29, 1985. - --

9. GCA Corporat ion, The Fate o f Hazardous and Nonhazardous Waste i n Used O i l Disposal and Recycl ing, Report No. D U t F D 0 3 I S - 6 , f o r U.S. Department o f tnergy, v. , October 1983.

Technical Repor t No. N-135, U.S. Army Corps o f tng ineers, Champaign, I 1 1 i n o i s , September 1982.

10. Chicoine, L.C., e t al. , Reuse o f Waste O i l a t Army I n s t a l l a t i o n s ,

11. U.S. Environmental P r o t e c t i o n Agency, L i s t i n g o f Waste O i l as a Hazardous Waste (Repor t t o Congress), Washington, U . C . , January 1981.

12, Kirk-Othmer Encyclopedia o f Chemical Technology, Volume 9, T h i r d E d i t i o n , dohn Wiley & Sons, New York, New York, 1918.

13. Emerson, H. R., The Advantage o f Used O i l Re-Refining, f o r B a r t l e s v i l l e Energy Technology Center, B a r t l e s v i l l e , Okl ahoma, May 1980.

14. GCA Corporat ion, Waste Automotive L u b r i c a t i n g O i l as a Fue l , Report No. PB-241357, f o r U.S. tnv i ronmenta l P r o t e c t i o n Agency, Washington, D.C., September 1974.

Engineer ing, Vol. 35, No. 16, pp. 103-106, August 6, 1981. 15. Berk, David S., "Recyc l ing Systems Give Waste O i l New L i f e , " P l a n t

188

Page 205: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Br inkman, Dennis, W., "Waste Hydrocarbon Recycling," Chemical Engineering Progress, Vol. 82, No. 3, pp. 67-70, March 1986.

McBain, James A. , "Recent Factors Affecting the Oil Recycling Industry," Proceedings, Conference on Measurements and Standards f o r Recycled Oil -

Publication No. ational Bureau of S t andards, Gai thersburg, Kryland, September 14-lE:4b:2.

Chemical Engineering, Vol. 86, pp. 104-106, April 23, 1979.

Weinstein, K. D. , e t a l . , Enhanced Util ization o f Used Lubricating Oil Recycl ing Process By-products, Report No. CR)t/BC/lUUS9 - 19 , for U.S. Department of tnergy, Washington, D . C . , March 1982.

Personal Communication, Dr. S. C h i n , Argonne National Laboratory, Argonne, I l l i no i s .

Bhan, 0. K., e t a l . , "Hydrotreat Used Lube Oil ," Hydrocarbon Processing, Vol. 65, No. 4, pp. 67-68, April 1986.

Robert J . Bigda & Associates, The BERC Re-Refining Process: Comparison ¶ for of Hydrofinishing Versus Clay Contacting, Report No. BtRW1 - 18/11

BTrtlesville tnergy Research Center, Bart lesvi l le , Oklahoma, July 1978.

Chemical Engineering, Vol. 88, pp. 92-93, October 5, 1981.

Booth 111, George T. e t a l . , Used Lubricating Oil Re-Refining Demonstration P l a n t Data Acquisition - Topical Report I : tnvironmental Cons1 derations, Report No. DOt/BC]lOS62-5 , fo r U.S. Department of tnergy, Washington, D . C . , January 1983.

Chemical Engineering, Vol. 92, p. 9, June 24, 1985.

Recon Systems, Inc. and ETA Engineering, Inc., Used Oil Burned as a Fuel, for U.S. Environmental Protection Agency, Washington, D . C . , 1 Y 8 U .

Brinkman, Dennis, e t a l . , "The Fate of Hazardous Wastes i n Used Oil Recycling," Recycled Oil - IV, -ation No. 614 , National Bureau of Standards, G i i y l a n d , September 14-16, 1982.

Proceedings, Conference on Measurements and Standards fo r

Fennelly, Paul F . , e t a l . , Environmental Characterization of Disposal o f Waste Oils by Combustion i n Small C ommerci a1 Boi 1 ers , Project Summary for Report No. t P A - 6UU/X - - 84 150 , U.S. tnvironmental Protection Agency, Cincinnati, Ohio, November 1984.

U.S. Environmental Protection Agency, Compilation of Air Pollutant Emission Factors, Second Edition, Report No. A P - R , m a r c h Triangle Park, NorthCarolina, April 1973.

Hall, Robert E . , e t a l . , "Comparison of Air Pollutant Emissions from Vaporizing and Air Atomizing Waste Oil Heaters," Journal of the Air Pollution Control Association, Vol. 33, No. 7 , pp. 683 - 681 , July 1983.

189

Page 206: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

31. Recon Systems, Incorporated, Waste Oil Recycling and Disposal, Report No. PB-236148, fo r U.S. Envi ronmeni Protection Agency, Washington, D . C . , August 1974.

32. Freestone, F.J., Runoff of Oils from Rural Roads Treated t o Suppress Dust, for U.S. Environmental Protection Agency, Washington, D.C. , 191 2.

33. Yates, John J . , e t a l . , Used Oil Recycling i n I l l i n o i s : Report No. 78/34, for the State of I11 inois, Ins t i tu te of Natural Resources, Chicago, I l l i n o i s , October 1978.

Data Book,

34. Bider, W . L. , e t a l . , Evaluation of the Use of Waste Oil as a Dust Suppressant, for U.S. knvironmental Protection Agency, Washington, D.C. , . . September 1983.

35. F r a n k l i n Associates, Ltd . and PEDCo Environmental, Inc., Evaluation of Health and Environmental Problems Associated w i t h the Use o f Waste O i l as a u s t Suppressant, (*aft Report) fo r U.S. tnvironmental Protection- Agency, Washington, D.C. , November 1983.

36. Federal Register, Vol. 50, No. 230, pp. 49258-49270, November 29, 1985.

37. Cleland, J . G . , and G. L . Kingsbury, Multimedia Environmental Goals or , for the U . S . Environmental Assessment, Volume 11, t P A bUU// / / 136b

Environmental Protection Agency, Washington, D.C. , November 1977. - . .

38. S i t t i g , Marshall, Handbook of Toxic and Hazardous Chemical, Noyes Publications, Park Ridge, New Jersey, 1981.

39. U.S. Environmental Protection Agency, Air Quality Cri ter ia for Lead, Second Review Draft , EPA-600/8-83-028B, Washington, D . C . , September 1984.

40. National Academy o f Sciences, Lead i n the Human Environment, Committee on Lead i n the Human Environment, Washington, D.C., 1980.

41. Federal Register, Vol. 49, No. 102, p. 22021, May 24, 1984.

42. Federal Register, Vol . 49, No. 205, p. 41846, October 22, 1984.

43. National Research Council, Prudent Practices for Handling Hazardous Chemicals i n Laboratories, National Academic Press, Washington, D.C., 1981.

44. U.S. Department of Health and Human Services. Third A n n u a l Report on Carcinogens, Public Health Services, Washington, D . C . , December 1982.

45. Federal Register, Vol. 49, No. 103, p. 22195, May 25, 1984.

46. Mueller Associates, Inc., Analysis of Benzene Emissions from Vehicles and Vehicle Refueling, for American Petroleum Ins t i tu te , Washington, D.C. , march 1984.

47. Perry, Robert H . and Cecil H. C h i l t o n , ed., Chemical Engineers Handbook, F i f t h Edition, McGraw-Hill Book Company, New York, New York, 1 Y / J .

190

Page 207: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

48. Federal Reg is te r , Vol. 51, No. 223, pp. 41900-41904, November 19, 1986.

49. Environmental q u a l i t y Systems, Incorporated, Waste O i 1 Recovery P rac t i ces Sta te of the A r t , 1972, f o r U.S. Environmental P r o t e c t i o n Agency, kashington, D.C., December 1972.

50. Baumol, W i l l i a m J., "On Recyc l ing as a Most Environmental Issue," Journal o f Environmental Economics and Management, Vol . 4, pp. 83-87, 1977.

51. Teknekron, Incorporated, A Technical and Economic Study o f Waste O i l Recovery. Par ts 4, 5, and 6. tnergy Consumption i n Waste O i l Recovery,

f i e l d T e s t o f Re-Refined Lube O i l Q u a l i t y , A R eview o f Re-Ref in ing kconomics, t o r U.S. tnv i ronmenta l P r o t e c t i o n Agency, Washington, D . C . , October 1975.

52. Brinkman, Dennis, W., e t a l . , Environmental, Resource Conservation, and Economic Aspects o f Used O i l Recyc l ing, Report No. UUt/BtrC/RI - 80/11, B a r t l e s v i l l e tnergy Technology Center, B a r t l e s v i l l e , Oklahoma, A p r i l 1981.

53. The Washington Post, October 10, 1986.

191

Page 208: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

APPEND1 X

Page 209: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

B I BLIOGRAPHY

1. Cotton, F. O., Waste L u b r i c a t i n g O i l : An Annotated Review, 1982 Revi s i on , Report No. U U t / B t f C / l C - 8 U 4 , f o r U.S. Department of tnergy, Washington, D.C., October 1982.

2. New Mexico S t a t e U n i v e r s i t y (D.B. Wi lson), Hyd ro t rea t i ng f o r Re-ref ined L u b r i c a t i n g O i l , Report No. DOE/BC/10332-1, t o r B a r t e s v i l l e tnergy Technology Center, B a r t l e s v i l l e , Oklahoma, A p r i l 1983.

3. Brinkman, D.W., K.D. Weinstein, and S.R. C r a f t , " U t i l i z a t i o n o f By- Products f rom Used O i l Re - re f i n ing " , Energy Progress, Vol. 3, No. 1, pp. 44, March 1983.

4. Brinkman. D.W.. M. G o t t l i e b . and K. Koelbel . "Used Motor O i l Poses Environmental Problem", O i l - & Gas Journa l , Vol. 1982.

, p. 163, August 9,

5. Booth O i l Co. (George Booth, 111), Used L u b r i c a t i n g O i l R e - r e f i n i n g Demonstration P l a n t Data Acqu is i t i on : I . Booth U i 1 Lo. t n v i ronmental Considerat ions, Report No. DUt/BC/lU562 - 1 , t o r Ba r tesv i 1 l e tnergy Technology Center, B a r t l e s v i l l e , Oklahoma, November 1982.

6. Lakewood O i l Service, Used L u b r i c a t i n g O i 1 Re- re f i n ing Demonstration Plan Data Acqu is i t i on : I . 'Lakewood O i l Serv ice tnv i ronmenta l Considerat ions, Repor t No. DUt/BC/lU658 - 1 , f o r Ba r tesv i 11 e tnergy I echnol ogy Center, B a r t l e s v i l l e , Oklahoma, October 1383.

7 . GCA Corporat ion, The Fate o f Hazardous and Non-hazardous Wastes i n Used O i l Disposal and Recyc l ing, Report No. U O t / B C / l O 3 / 5 - b , f o r B a r t e s v i l l e Energy Technology Center, B a r t l e s v i l l e , Oklahoma, October 1983.

Recycl ing, vo l . 3, No. 1, p. 16, f o r B a r t e s v i l l e Energy Technology Center, B a r t l e s v i l l e , Oklahoma, March 1984.

8. Brinkman, D.W., "Used O i l Recyc l ing: S ta te o f the A r t , " Resource

9. Brinkman, D. W., P. Fennel ly , and N. Surprenant, "The Fate o f Hazardous Wastes i n Used a i l Recycl ing," NBS Specia l P u b l i c a t i o n 674, Proceedings: Conference on Measurements and Standards f o r Recycled O i l - I V Y J u l y 1984.

10. Bhan, O.K., W-P T a i , and D.W. Brinkman, Hydro f i n insh ing o f Re- re f ined Used L u b r i c a t i n g O i l , Report No. DOE/BC/ l g y - Technology Center, B a r t l e s v i l l e , Oklahoma, January 1985.

11. Brinkman, D.W. , "Used 011: Resource o r P o l l u t a n t ? " - - Technology Review, vo l . 88, No. 5, p. 46, J u l y 1985.

12. Brinkman, D.W. and M.L. Whisman, Recovery o f Naval D i s t i l l a t e Fuel f rom Reclaimed Product6, Vol. 1: Technical Discussion, Vol. 2: L i t e r a t u r e Review, Report No. UUt/BC/10823-6 , f o r Ba r tesv i 11 e tne rgy Techno1 ogy Center, B a r t l e s v i l l e , Oklahoma, June 1984.

193

Page 210: Waste Oil: Technology, Economics, and Environmental ...infohouse.p2ric.org/ref/16/15368.pdf · DOE/EV/l0450-H2 Dist. Category UC-92b, 95e, 96 Waste Oil: Technology, Economics, and

13. Becker, D.A., S.M. Hsu, S. Weeks, and D.W. Brinkman, L u b r i c a t i n g O i l Basestock Data and Ana lys is : Based on t h e ASTM-NBS B a X o X C o n s i e n c y

Report No. D E m m K m Z r t e s v i 1 leEnergy@TeTKoTov---- ITenter , B a r t l e s v i 11 e , Oklahoma, October 1983.

Hydrocarbon Processing, Vol . , No. 4, p. 67, A p r i l 1986.

Waste Marine D iese l Fuel," SAE Paper 851233, presented May 1985.

14. Bhan, I.K., W-P T a i , and D.W. Brinkman, "Hydro t rea t Used Lub O i l , "

15. Wells, J.W. and D.W. Brinkman, "Recovery o f Naval D i s t i l l a t e Fuel f rom

16. Brinkman, D.W. , "Waste Hydrocarbons Recycling," Chemical Engineer ing

17. Bhan, O.K., W-P Tai, and D.W. Brinkman, " C a t a l y t i c Ungrading o f Used

Progress , Vol . L u b r i c a t i n g O i l s , " Fuel Science and Technology I n t e r n a t i o n a l , Vol. 4 , No. 3, p.( 303, 1986.

, No. 3, p. 67, March 1986.

194