water reuse of wastewater from a poultry processsing plantinfohouse.p2ric.org/ref/18/17511.pdf ·...

22
WATER REUSE OF WASTEWATER FROM A POULTRY PROCESSING PLANT J.B.Andelman* and J.D.Clise** INTRODUCTION A wastewater treatment and reclamation system has been constructed at the Sterling Processing Company i n Oakland, Maryland. processes approximately 50,000 birds per day in an eight hour operation, utilizing approximately 350,000 gallons per day of treated well-water. Be- cause of the lack of additional water of acceptable quality, the wastewater reclamation system was constructed with the intention of mixing the renovated water on a 50/50 basis with well water, ultimately increasing the quantity of water needed for an increase in production capability. This plant slaughters and The objectives of the study reported here are to determine 1) the ability and reliability of the water reclamation system to deliver water, mixed with the well water source, that is safe for use in processing poultry; 2) if the pro- cessed poultry have any constituents harmful to human health as a result of exposure to this mixture of renovated and well water; and 3) t o recommend monitoring procedures and parameters needed to insure the safety of the system and the protection of human health. This project is important as a demonstration of the technical and economic feasibility in the food industry of moving towards the national goal of limit- ing discharges into navigable waters. Water re-use is an important strategy sumption or exposure, it is mandatory that the health of the consumer be pro- tected. If this project can successfully demonstrate that the renovation process can deliver a safe and potable water, and that the poultry processed with the water similarly pose no threat to human health, this will constitute an important step in our overall effort towards reducing emissions to the nat- ion’s waterways. in achieving this goal. However, i n such re-use of water involving human con- / APPROACH An i n i t i a l s t u d y of the feasibility of reclaiming poultry processing wastewater for reuse at the Sterling plant was reported by Clise (1). The reclamation *Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania Mary land **Maryland State Department of Health and Mental Hygiene, Baltimore,

Upload: ledang

Post on 06-Sep-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

I .

WATER REUSE OF WASTEWATER FROM A POULTRY PROCESSING PLANT

J.B.Andelman* and J . D . C l i s e * *

INTRODUCTION

A wastewater t r ea tmen t and r ec l ama t ion system has been cons t ruc t ed a t t h e S t e r l i n g Processing Company i n Oakland, Maryland. processes approximately 50,000 b i r d s per day i n an e i g h t hour o p e r a t i o n , u t i l i z i n g approximately 350,000 g a l l o n s per day of t r e a t e d w e l l - w a t e r . Be- cause of t h e l a c k of a d d i t i o n a l water of accep tab le q u a l i t y , t h e wastewater r ec l ama t ion system w a s cons t ruc t ed wi th t h e i n t e n t i o n of mixing t h e renovated water on a 50/50 b a s i s w i th w e l l water , u l t i m a t e l y i n c r e a s i n g t h e q u a n t i t y of water needed f o r an i n c r e a s e i n product ion c a p a b i l i t y .

This p l a n t s l a u g h t e r s and

The o b j e c t i v e s of t h e s tudy r epor t ed h e r e are t o determine 1) t h e a b i l i t y and r e l i a b i l i t y of t h e water reclamation system t o d e l i v e r water, mixed wi th t h e w e l l water sou rce , t h a t is s a f e f o r u se i n processing p o u l t r y ; 2) i f t h e pro- cessed p o u l t r y have any c o n s t i t u e n t s harmful t o human h e a l t h as a r e s u l t of exposure t o t h i s mixture of renovated and w e l l water; and 3) t o recommend monitoring procedures and parameters needed t o i n s u r e t h e s a f e t y of t h e system and t h e p r o t e c t i o n of human h e a l t h .

This p r o j e c t i s important as a demonstrat ion of t h e t e c h n i c a l and economic f e a s i b i l i t y i n t h e food i n d u s t r y of moving towards t h e n a t i o n a l g o a l of l i m i t - ing d i scha rges i n t o nav igab le waters. Water re-use i s an important s t r a t e g y

sumption o r exposure, i t is mandatory t h a t t h e h e a l t h of t h e consumer be pro- t e c t e d . I f t h i s p r o j e c t can s u c c e s s f u l l y demonstrate t h a t t h e r enova t ion p rocess can d e l i v e r a s a f e and p o t a b l e water, and t h a t t h e p o u l t r y processed wi th t h e water s i m i l a r l y pose no t h r e a t t o human h e a l t h , t h i s w i l l c o n s t i t u t e a n important s t e p i n our o v e r a l l e f f o r t towards reducing emissions t o t h e na t - i o n ’ s waterways.

i n achieving t h i s g o a l . However, i n such re-use of water involving human con- /

APPROACH

An i n i t i a l s tudy of t h e f e a s i b i l i t y of reclaiming p o u l t r y processing wastewater f o r r e u s e a t t h e S t e r l i n g p l a n t w a s r e p o r t e d by Clise ( 1 ) . The reclamation

*Graduate School of P u b l i c Heal th , Un ive r s i ty of P i t t s b u r g h , P i t t s b u r g h , Pennsylvania

Mary land **Maryland S t a t e Department of Heal th and Mental Hygiene, Baltimore,

I

system cons i s t ed of ae ra t ed lagoons, followed by mic ros t r a in ing , f l occu la - t i o n and sed imenta t ion , and f i l t r a t i o n , w i t h two s t a g e s of c h l o r i n a t i o n . The schematic of t h e system i s shown i n F igure 1. The i n i t i a l s tudy showed t h a t t h e reclaimed water m e t U.S. P u b l i c Heal th Service 1962 Drinking Water Standards f o r chemical, mic rob io log ica l and phys ica l c o n s t i t u e n t s wi thout a c t u a l r e c y c l e through t h e p o u l t r y processing p l a n t . Never the less , t h e r e w a s concern t h a t wi th a c t u a l r e u s e t h e r e w a s t h e p o s s i b i l i t y t h a t unmeasured con- s t i t u e n t s , such as pathogenic microorganisms, heavy metals, p e s t i c i d e s and t o x i c organic chemicals, might b u i l d up i n r e c y c l e and be absorbed by t h e car- cas ses i n t h e process ing p l a n t .

An a d d i t i o n a l p r o j e c t was proposed by t h e Maryland S t a t e Department of Heal th and Mental Hygiene and funded by t h e E .P .A . , t h e purpose of which w a s t o modi- fy and opt imize t h e rec lamat ion system, t o determine t h e c a p a b i l i t y and reli- a b i l i t y of t h e system f o r d e l i v e r i n g water s a t i s f a c t o r y f o r process ing p o u l t r y , and t o evaluate t h e exposure of t h e processed ca rcas ses t o c o n s t i t u e n t s t h a t could b e harmful t o human h e a l t h . The r o l e of t h e Graduate School of Pub l i c Heal th , Univers i ty of P i t t s b u r g h , w a s t o des ign , o rgan ize , and supe rv i se t h e sampling and a n a l y t i c a l p a r t of t h e s tudy , as w e l l as eva lua te t h e r e s u l t s from t h e p o i n t s of view of both t h e q u a l i t y of t h e renovated water and t h e pro- cessed pou l t ry poss ib ly a f f e c t e d by i t . Three phases were planned i n t h i s s tudy , t h e f i r s t two of which have been completdd. Phase 1 involved t h e opera- t i o n of t h e rec lamat ion p l a n t w i t h a new sand f i l t e r , and measurement of those c h a r a c t e r i s t i c s p e r t i n e n t t o opt imiz ing t h e process . Phase 2 involved a s tudy of a wide range of phys i ca l , chemical and microbio logica l c o n s t i t u e n t s , both a t va r ious p o i n t s i n t h e reclamation system, as w e l l as i n processed ca rcas ses exposed t o renovated water, bu t wi thout a c t u a l r ecyc le through t h e p l a n t . Phase 3 w a s t o involve r e c y c l e of t h e renovated water i n t o t h e process ing p l a n t by mixing on an average 50/50 b a s i s w i th w e l l water, t h e mixture then t o undergo a d d i t i o n a l f u l l - s c a l e convent ional t rea tment . The carcasses were aga in t o b e measured, as w a s t h e renovated water, and comparisons made of t h e levels of contaminants w i t h those i n normal p l a n t ope ra t ion u t i l i z i n g w e l l water only i n Phase 2.

P r i o r t o proceeding t o Phase 3 , an eva lua t ion w a s made of t h e Phase 2 r e s u l t s by a committee c o n s i s t i n g of r e p r e s e n t a t i v e s of t h e E.P.A., t h e Maryland Heal th Department, t h e process ing p l a n t , t h e U.S. Department of Agr i cu l tu re , and t h e Graduate School of P u b l i c Heal th . The l e v e l of contaminants i n t h e t r e a t e d wastewater and processed carcasses w e r e considered as t o t h e i r poss i - b l e h e a l t h s i g n i f i c a n c e . A similar eva lua t ion w a s t o be made fo l lowing Phase 3 s o as t o determine t h e s a f e t y of proceeding t o continuous ope ra t ion wi th reclaimed wastewater. F i n a l l y , recommendations were t o be made as t o t h e need f o r continuous monitor ing of t h e system.

This paper r e p o r t s p r i m a r i l y t h e p r i n c i p a l r e s u l t s of t h e Phase 2 s tudy and some a d d i t i o n a l measurements ob ta ined subsequent ly . Phase 3 , t h e a c t u a l re- cyc le of t h e renovated water i n t o t h e process ing p l a n t f o r a t r i a l three-month per iod , has no t been i n s t i t u t e d , even though t h e above Committee, c o n s t i t u t e d f o r t h e purpose, recommended t h a t t h e r e w a s no s i g n i f i c a n t r i s k i n s o doing. Some of t h e background and reasons f o r t h i s de lay w i l l be d iscussed subsequent- 1 Y *

F I G U R E 1. WATER SAMPLING P O I N T S AND CONNECTIONS FOR PHASE 2 AND PHASE 3 STUDIES

WASTEWATER TREATMENT' AND WATER RECLAIMING FACI L IT1 ES

SAMPLE IDENTIFICATION

TO R I V E R

COLLECTION BAS I N

I CHLORINE CONTACT CHAMBER

A SCREENED RAW WASTEWATER

c SECOND LAGOON EFFLUENT

D MICROSTRAINED EFFLUENT

x SED. BASIN EFFLUENT

E RENOVATED WASTEWATER

y UNTREATED WELL WATER

TREATED WELL WATER

TREATED MIXTURE (50/50) OF =, WELL AND RENOVATED WATER * 1

J FLOCCULATION- SEDIMENTATION B A S I N

Df ]

LAGOON 1

CHLORINATOR

CONNECTED I N I N PHASE 2 ONLY . -

< WELL POULTRY NORMAL MIXING WATER TREATMENT BASIN { I PLANT I Z orZM

PROCESS1 NG

391

NATURE OF STUDY

Following t h e op t imiza t ion of t h e o p e r a t i o n of t h e water renovat ion system (Phase l), t h e two-month s tudy of Phase 2 w a s performed. This involved seven separate days of sampling, approximately once a week i n t h e Spring of 1976. Two pre l iminary sampling t r i p s were conducted t o opt imize samp- l i n g a t t h e s i t e . On each of t hese days va r ious water and wastewater sam- p l e s w e r e c o l l e c t e d . I n a d d i t i o n , twenty-five carcasses w e r e c o l l e c t e d f o r a n a l y s i s from t h e p l a n t c h i l l e r system. F i n a l l y , a s m a l l "experimental" c h i l l e r w a s s e t up t o s imula t e t h e p l a n t c h i l l e r . Twenty-five carcasses were taken from t h e p l a n t , p r i o r t o exposure t o t h e p l a n t c h i l l e r , and placed i n t h e experimental c h i l l e r i n such a way and f o r such a per iod as t o simu- l a t e t h e p l a n t c h i l l e r . However, t h e experimental c h i l l e r w a s f i l l e d wi th renovated water. The purpose w a s t o ana lyze and compare t h e p o s s i b l e bui ld- up of contaminants i n ca rcas ses exposed t o t h e p l a n t c h i l l e r us ing normal, t r e a t e d w e l l - w a t e r , ve r sus those exposed t o t h e experimental c h i l l e r us ing renovated water. I t must be emphasized t h a t a t no t i m e during Phase 2 w a s renovated water ever used i n t h e process ing p l a n t .

F igure 1 shows t h e schematic of t h e wastewater renovat ion system, t h e con- nec t ions f o r Phases 2 and 3 , and t h e p o s s i b l e sample p o i n t s t o be u t i l i z e d i n t h e s tudy . The a c t u a l Phase 2 sampling p o i n t s and t h e number of samples taken on a t y p i c a l sampling day are shown i n Table 1.

Not a l l of t h e sampling p o i n t s w e r e s u b j e c t t o a l l t h e ana lyses . The types of ana lyses t h a t w e r e t o be performed are shown i n Tables 2 and 3 . Table 2 l i s ts t h e Category I ana lyses . A s shown t h e r e , Categor ies I a , b, and c w e r e t o be performed only on water samples, whi le I d w a s t o be done on ca rcas s samples as w e l l . I n f a c t , some Ia and I b ana lyses were performed on carcas- ses,

Table 3 shows t h e Category I1 and I11 ana lyses . A s noted there, a l l of t h e s e ana lyses w e r e t o be done on both water and ca rcas s samples. A l l were per- formed, w i th t h e except ion of t h e halogenated methanes of Category 111. These w e r e done subsequent t o Phase 2 , and w i l l b e r e p o r t e d here .

Although ana lyses of v i r u s e s were no t contemplated o r i g i n a l l y i n t h i s s tudy , t h e d e c i s i o n w a s made t o a t tempt t o measure an av ian v i r u s and use i t as an i n d i c a t o r o r s e n t i n e l of t h e behavior of o the r v i r u s e s i n t h e water renova- t i o n system. S ince i t was r epor t ed t h a t t h e chicken f l o c k s were r o u t i n e l y inocu la t ed wi th a t t e n u a t e d Newcastle Disease v i r u s (NDV), i t w a s decided t o develop t h e methodology and sample t h e water and ca rcas ses f o r i t . The re- s u l t s of t h i s i n v e s t i g a t i o n w i l l be r epor t ed . I n a d d i t i o n , some l abora to ry die-off s t u d i e s w e r e performed using lagoon water spiked wi th NDV.

F i n a l l y , and subsequent t o Phase 2 , t o t a l o rgan ic carbon measurements (TOC) were performed on t h e renovated water, t h e normally t r e a t e d w e l l water, and t h a t taken a t o t h e r s e l e c t e d sampling p o i n t s . I n a d d i t i o n , a few samples of t h e t r e a t e d w e l l and renovated water were analyzed by gas-chromatography- mass spectrometry (GC-MS) f o r some s p e c i f i c o rgan ic s , o t h e r than those shown i n Table 3 .

392

I

Table 1. PHASE 2 SU?O4ARY OF TYPES OF SAMPLES TYPICALLY TAKEN FOR ANALYSIS EACH WEEK

I Water Samples

Location

A - Raw Llaste

E - Renovated Water

Z - Trea ted Well SJater

PC - P l a n t C h i l l e r

EC - Experimental Chi]-ler

Maximum Number p e r day

2

2

2

2

2

Birds (Carcass Samples)

PB - P l a n t C h i l l e r Birds 5"

EB - Exp. C h i l l e r Birds 5"

*50 c a r c a s s e s were taken f o r a n a l y s i s each sampling day, 25 PB and 25 EB.

I n each case washings from 5 c a r c a s s e s w e r e composited o r o the rwise com-

bined t o become a s i n g l e c a r c a s s sample. Hence, 25 c a r c a s s e s reduced t o

5 samples.

Note - Occasionai ly water samples were taken a t o t h e r sample p o i n t s shown

i n Figure 1 o r x i t h i n t h e lagoons.

393

Table 2 . WATER RE-USE PROJECT

I a

Types of Analyses t o be Performed

Category I Analyses

These ana lyses re la te p r i m a r i l y t o w a s t e t rea tment e f f i c i e n c y and none w i l l be performed on ca rcas ses

BOD5 Suspended s o l i d s

Grease T o t a l s o l i d s

Organic. n i t r o g e n A l k a l i n i t y

Ammonia n i t r o g e n

I b and c - These ana lyses re la te t o waste t rea tment e f f i c i e n c y and p o t a b l e water q u a l i t y ; none w i l l be performed on carcasses

I b

T u r b i d i t y

Color

- I C -

CCE (carbon chloroform e x t r a c t )

T o t a l Dissolved s o l i d s

Res idua l c h l o r i n e ( t o t a l )

Residual c h l o r i n e ( f r e e )

I d - These ana lyses re la te t o waste t rea tment e f f i c i e n c y and water q u a l i t y . They w i l l be measured f o r water and carcass samples.

T o t a l p l a t e count Feca l co l i fo rm

T o t a l co l i fo rm PH

394

Table 3 . WATER RE-USE PROJECT

Types of Analyses t o be Performed

Category I1 Analyses These ana lyses w i l l be performed on water and

carcass samples

Salmonel la (enumeration)

Drug r e s i d u a l

Category I11 Analyses

carcass samples These chemical ana lyses w i l l be performed on water and

Arsenic

Barium

Cadmium

C a1 cium

Chlor ide

Chromium

Copper

Cy a n i de

F luo r ide

Halogenated methanes

H a r dne s s

I r o n

L e ad

Magnesium

Manganese

Mercury

MBAS

Nitrate

Pot ass ium

Selenium

Si lver

Sodium

S u l f a t e

Zinc

P e s t i c i d e s

395

METHODOLOGY

Except where noted below, a l l a n a l y t i c a l methodology i s c o n s i s t e n t w i th t h a t s p e c i f i e d by the E.P.A. o r Standard Methods f o r t h e Examination of Water and Wastewater (14th E d i t i o n ) . A l l necessary p recau t ions f o r t r ans - p o r t i n g t h e samples, such as r e f r i g e r a t i o n o r t h e a d d i t i o n of chemical p r e s e r v a t i v e s , w e r e taken.

The experimental c h i l l e r using renovated (E) water was operated on a batch b a s i s . That i s , i t w a s f i l l e d wi th renovated water and plant-made i c e w a s added t o b r ing the temperature i n i t i a l l y t o about 55OF. c a s s e s w e r e t hen lowered i n t o t h e b a t h w i t h i n t h e drum and r o t a t i o n begun. Add i t iona l i c e t o ma in ta in 55’F w a s added. Approximately 15 minutes l a t e r more i c e w a s added t o reduce t h e b a t h temperature t o about 34’F, and c h i l - l i n g continued f o r another 10 minutes.

The 25 car-

The ca rcas ses w e r e removed by handl ing w i t h c l e a n p l a s t i c g loves , and both p l a n t and experimental c h i l l e r carcasses w e r e t r e a t e d i n t h e same fash ion . They w e r e p l aced , a f t e r d r a i n i n g , i n e i t h e r c l e a n o r p r e - s t e r i l i z e d (by au toc lav ing ) p l a s t i c bags and c a r r i e d t o t h e l a b o r a t o r y t ra i ler . 1500 m l of e i t h e r d i s t i l l e d o r d i s t i l l e d and s t e r i l e water w a s added t o each such bag, which w a s t hen shaken f o r one minute and t h e water con ten t s poured f o r a n a l y s i s .

Salmonellae w e r e i s o l a t e d from t h e water and p o u l t r y samples using membrane f i l t r a t i o n techniques modified from t h e r e c e n t l i t e r a t u r e . Q u a n t i t a t i o n of salmonel lae was attempted employing 15 d i l u t i o n tubes t o determine t h e most p robab le number (MPN) index of organisms. Subsequent t o t h e Phase 2 s tudy our r e sea rch on media s e l e c t i v e f o r salmonel lae developed t o t h e p o i n t of being a b l e t o q u a n t i f y by t h i s technique. I n t h e Phase 2 r e s u l t s , however, only t h e i r q u a l i t a t i v e presence o r absence are r e p o r t e d .

A d i s c a s say method modified from t h e procedure of Huber e t a l . ( 2 ) w a s em- ployed t o d e t e c t r e s i d u a l drugs i n t h e w a t e r and carcass samples. The f i r s t method used i n t h i s l a b o r a t o r y e m loyed B a c i l l u s s u b t i l i s (Difco spore suspension con ta in ing approximately 10’’ spores/ml) as t h e tes t organism and seed agar ( a n t i b i o t i c medium No. 1) as t h e test s u b s t r a t e . This proced- u r e w a s f u r t h e r modified according t o t h e method of Read e t a l . (3) i n order t o d e t e c t b a c i t r a c i n and t o enhance t h e s e n s i t i v i t y of d e t e c t i n g s u l f a drugs and a n t i b i o t i c s i n the w a t e r and carcass samples. B a c i l l u s cereus and Muel- ler-Hinton agar w e r e t hus employed as t h e test organism and t h e t es t sub- strate, r e s p e c t i v e l y .

Primary ch ick embryo c e l l c u l t u r e s were used wi th a plaque a s say t o d e t e c t t h e presence of a v i a n v i r u s e s i n t h e water and carcass samples, which were f i r s t f i l t e r e d through 0.45 micron pore-s ize membrane f i l t e r s . Following i n o c u l a t i o n of t h e c e l l monolayers w i th t h e f i l t e r e d samples and v a r i o u s in - cuba t ion procedures , plaques were counted and t h e plaque-forming u n i t s p e r m l (PFU/ml) determined. I n o rde r t o d e t e c t t h e p o s s i b l e presence of such v i r u s e s i n t h e c a r c a s s e s , t i s s u e e x t r a c t s w e r e prepared from s p l e e n s , lungs and l ivers , processed and analyzed f o r t h e presence of a v i a n v i r u s e s , such as NDV, capable of hemagglutinating chicken r e d blood c e l l s .

396

RESULTS

Most of t h e i n d i v i d u a l a n a l y t i c a l r e s u l t s w i l l n o t be p re sen ted . Rather , f o r t h e purpose of t h i s paper and wherever p o s s i b l e , r e s u l t s w i l l be sum- marized or p re sen ted i n s t a t i s t i c a l f a sh ion .

Mic rob io log ica l and Drug Residual

Ne i the r salmonel lae nor any o t h e r En te robac te r i aceae were ever i s o l a t e d i n t h e c h l o r i n a t e d renovated (E) o r w e l l water ( Z ) . The carcasses exposed t o and t h e water from t h e experimental c h i l l e r , us ing t h e renovated w a t e r , w e r e s i m i l a r l y n e g a t i v e i n t h i s r e s p e c t . Salmonellae w a s i s o l a t e d i n r a w waste- water (A). However, t h e a e r a t e d lagoon and r enova t ion system w a s complete- l y e f f i c i e n t i n d i s i n f e c t i n g t h i s bacterium.

A l l s amples t e s t e d f o r drug r e s i d u a l using both B a c i l l u s s u b t i l i s and B a c i l l u s ce reus w e r e nega t ive . Thus, t h i s test has no t d e t e c t e d any a n t i - b i o t i c drug i n e i t h e r t h e w a t e r o r c a r c a s s samples.

S i m i l a r l y , a v i a n v i r u s e s , i nc lud ing NDV, have n o t been d e t e c t e d e i t h e r i n t h e water o r carcass samples, nor i n t i s s u e e x t r a c t s from chickens processed a t t h e S t e r l i n g p l a n t . Only p re l imina ry r e s u l t s of t h e NDV l a b o r a t o r y die- o f f experiments using lagoon water can be r e p o r t e d a t t h i s t i m e . These sam- p l e s , spiked wi th NDV, were s t u d i e d f o r up t o seven days a t two temperatures , i n t h e l i g h t and dark. A t 25OC die- o f f w a s complete ( i n d i c a t e d by t h e absence of plaque-forming u n i t s i n t h e a s say ) a f t e r 3 days. A t 7 O C , however, t h e die-off w a s ve ry slow, less than a f a c t o r of 10 i n one week. These experiments are con t inu ing , p a r t i c u l a r l y t o e l u c i d a t e t h e p o s s i b l e r o l e of p a r t i c u l a t e matter i n t h e lagoons i n v i r u s s u r v i v a l .

There w a s no appa ren t e f f e c t of l i g h t .

The renovated water (E) w a s analyzed f o r b a c t e r i a on e i g h t days during and j u s t p r i o r t o t h e Phase 2 p e r i o d , 19 samples being taken. On s i x of t h e e i g h t days t h e t o t a l and f e c a l co l i fo rm r e s u l t s were less than 2 organisms p e r 100 m l . On A p r i l 5 and 1 2 f o u r E samples w e r e analyzed. The r epor t ed t o t a l co l i fo rm ranged from 15 t o > 240 organisms pe r 100 m l , and t h e f e c a l co l i fo rm from 9 t o > 240. However, t h e r e i s a s t r o n g l i k e l i h o o d t h a t t h e s e E sample r e s u l t s w e r e confused w i t h those of EC, t h e experimental c h i l l e r water. The r e s u l t s f o r t h e l a t t e r f o r t hose two weeks were r e p o r t - ed as n e g a t i v e f o r co l i fo rm and f e c a l co l i fo rm, a h igh ly u n l i k e l y r e s u l t compared t o a l l o t h e r EC and PC co l i fo rm a n a l y s e s , which w e r e >240.

The t o t a l b a c t e r i a l p l a t e count ana lyses on t h e samples desc r ibed above i n d i c a t e d a maximum v a l u e of 25 organisms pe r m l f o r t h e Z samples and 15 f o r E , except f o r t h e f o u r samples which are be l i eved t o be i n c o r r e c t . For t h e s e l a t te r f o u r , t h e v a l u e s ranged from 1 t o 2,000. A r easonab le maximum t o t a l p l a t e count f o r municipal w a t e r is 500 pe r m l .

I n view of t h e h igh p r o b a b i l i t y t h a t t h e inadequate b a c t e r i a l q u a l i t y of t h e fou r E samples w a s due t o sample r e p o r t i n g e r r o r , and t h a t no E samples have y i e l d e d any e n t e r i c pathogens, i t i s concluded t h a t t h e renovated water i s

397

of e x c e l l e n t b a c t e r i a l q u a l i t y . It should a l s o be noted as w e l l t h a t i n a c t u a l r e c y c l e the E water w i l l r e c e i v e a d d i t i o n a l t r ea tmen t , i nc lud ing c h l o r i n a t i o n , a f t e r being mixed 50/50 wi th t h e u n t r e a t e d w e l l w a t e r .

I no rgan ic Chemical Water Qua l i ty

A summary of t he r e s u l t s f o r s e v e r a l macro c o n s t i t u e n t s and water q u a l i t y c h a r a c t e r i s t i c s f o r Z and E i s presented i n Table 4 . Other than pH, a l k a l i - n i t y , and n i t r a t e , t h e mean concen t r a t ions of a l l t h e s e parameters were high- er i n t h e renovated water, E , t han i n t h e t r e a t e d w e l l water, Z . However, t h e s e concen t r a t ions i n E are n o t hazardous, and only one maximum v a l u e shown, 252 mg/l f o r s u l f a t e , i s a t t h e c r i t e r i o n l e v e l , which has only been a second- a r y s t anda rd . This s u l f a t e bui ldup i s n o t of concern, bu t could be reduced, s i n c e i t i s p r i m a r i l y due t o t h e alum coagulant .

I t should be noted t h a t some of t h e d i f f e r e n c e s i n t h e mean concen t r a t ions of chemicals i n Z and E are n o t s t a t i s t i c a l l y d i f f e r e n t when t h e v a r i a b i l i t y of t h e r e s u l t s are considered. Thus, co lo r cannot be considered t o be statis- t i c a l l y d i f f e r e n t i n t h e Z and E water. 5uil.d-up of d i s so lved macro c o n s t i t u e n t s i n t h e renovated w a t e r . This i s not unrupected and, a t t h e l e v e l s encountered, does n o t pose a h e a l t h hazard.

However, t h e r e is unquestionably a

A t t e n t i o n should be c a l l e d , however, t o t h e low a l k a l i n i t y i n E , and t h e low pH va lues . On some days t h e pH w a s as low as 3.3 due t o t h e l a r g e doses of c h l o r i n e . The E water w i l l be mixed w i t h u n t r e a t e d Z i n Phase 3 , which w i l l m i t i g a t e t h i s problem. However, t o avoid c o r r o s i o n i n t h e system, soda a sh o r c a u s t i c soda has been added t o raise the pH and a l k a l i n i t y when r e q u i r e d .

Table 5 p r e s e n t s a comparison f o r Z and E f o r c e r t a i n measurements r e l a t e d t o waste t r ea tmen t parameters . The t o t a l s o l i d s i n E are obviously h ighe r t han i n Z , b u t t h i s i s due t o t h e d i s so lved s o l i d s a l r eady d i scussed . The o rgan ic n i t r o g e n v a l u e s f o r E r e f l e c t i t s h ighe r o rgan ic c o n t e n t .

Of some i n t e r e s t and p o s s i b l e concern among t h e c o n s t i t u e n t s r e p o r t e d i n Table 5 i s t h e r e l a t i v e l y high average concen t r a t ion of ammonia n i t r o g e n i n t h e renovated water. It probably r e s u l t s from b i o l o g i c a l d e n i t r i f i c a t i o n re- a c t i o n s i n t h e lagoons, a l though some concen t r a t ions measured i n t h e r a w waste are comparably high. The p r i n c i p a l concern i s t h a t t h e ammonia reacts wi th t h e c h l o r i n e d i s i n f e c t a n t t o form chloramines, which are less e f f e c t i v e d i s - i n f e c t i n g agen t s . However, because of t h i s ve ry r e a c t i o n , u n l e s s t h e samples are analyzed immediately, i t i s u n l i k e l y t h a t w i th t h e p r a c t i c e of breakpoint c h l o r i n a t i o n t h e ammonia should have been d e t e c t e d . t h e ammonia concen t r a t ions i n E decreased cons ide rab ly . It should be empha- s i z e d t h a t t h e e x c e l l e n t b a c t e r i a l q u a l i t y of E water i n d i c a t e s t h a t d i s i n - f e c t i o n has n o t been a f f e c t e d . Also t h e presence of t h e s e concen t r a t ions of ammonia i s n o t known t o be a h e a l t h hazard. F i n a l l y , i t i s noteworthy t h a t ammonia i s sometimes added i n municipal water t r ea tmen t p l a n t s i n o rde r t o react wi th c h l o r i n e and form longer- l ived chloramines.

Subsequent t o Phase 2

A summary of t h e r e s u l t s f o r t h e trace c o n s t i t u e n t s i n Z and E waters i s shown i n Table 6. It should be emphasized t h a t t h e concen t r a t ion u n i t s h e r e are micrograms p e r l i t e r . A l l of t h e maximum concen t r a t ions were w e l l below

398

T a b l e 4 . PHASE 2 - WATER QUALITY CHARACTERISTICS AND MACRO CONSTITUENT CONCENTRATIONS*

Turb id i ty (JTU)

Color ( u n i t s )

PH e

A l k a l i n i t y

Chlorine Res .

Surf actants (MBAS)

Na'

K+ ce Ca

c1-

NO; --

s04

HCO;(est)

Ion To ta l

Dissolved So l ids

(in mg/l , except where noted)

1962 PHS Treated Well Water ( Z ) C r i t e r i o n Renovated Water (E)

- - Value Max

6 0.9 0.5 1.7 5 35 1.6 1.7 2.7

- U - X - N N - X - a - Max - -

6 3.0 1.6 5 15 36 3.7 3.3 1 0

12 7.0 0.2 7.2 - 30 5.8 1.4 6.9

12 107 1 5 130 15 35.3 37 140

- 6.0 52 1.7 1.3 - - - -

14 <0.01 - - 0.5 1 3 Q. 04 0.02 0.08

14 7.4 3.4 12.5 - 14 30.2 12.5 47.7

16 2.9 3.6 8.7 - 15 14.7 2.3 17.4

16 53.7 5.8 64.9 16 40.1 4.8 49.4 -

16 2.4 0.3 2.9 15 2.95 0.3 3.4 -

12 11.6 1.0 13.4 250 12 88.5 16.8 121

8 4.0 0.6 4.9 45 8 3.5 1.5 6.2

8 9.6 3.6 13.5 250 8 150 85.6 252

12 143 33.8 194 500 16 389 66 492

*Occasionally extreme values (beyond 2a) discarded

Table 5

PHASE 2 - CERTAIfl IJATEK CHARACTERISTICS RELATED PRIX.ARILY TO WASTE TREATMENT EFFICIENCY ( i n mg/l)

Trea ted Yell Water (2) -I_-__--- -

Max - 0 - x - N -

T o - c a l s o l i d s 12 165 33 234

Suspended s o l i d s 12 10.4 8.1 26

BOD 12 5.3 4.3 18

Grease 12 5.2 6.1 23

O r g a n i c 4

Ammonia-N

8 0,013 0.008 0.030

8 0.017 0.013 0.040

Dlssolvcd Oxygen 12 8.1 0.6 9.4

Renovated Water (E) -

Max -- U - - N - X

13 418 72 501

14 16.8 19.7 70

14 3.4 2.2 7.0

13 5.1 4.8 18.2

10 1.7 1.5 5.0

10 19.0 4.4 23.0

14 9.3 1.4 11.7

Table 6. PIUSZ 2 - TRACE CHEMICAL CONCENTRATIONS* (ug / l )

PHS 1962 Treat:ed Well Water (Z) - C r i t e r i o n Renovated Water (E)

Value - X U -." N -

c u 16 41.4 11.2

F 14 58 33

Fe 16 19.2 7. a

Mn 16 1.8 1.0

Pb 16 2 1 . 2 16.7

Zn 12 25.2 3.8

- Max

57 1000 14 38.8 12.9 56

13 1000 14 151 54 2 30

31 300 14 57.1 24.3 98

3 50 1s 2.6 1.0 4

50 50 15 23.8 13.9 50

33 5000 12 27.2 6.9 38

I_

0 - X - N - Max.

*Occasionally extreme values (beyond 2a) w e r e d i scarded

400

I

t h e PHS c r i t e r i o n v a l u e s , except f o r l ead i n both E and Z samples. These were not s i g n i f i c a n t l y d i f f e r e n t f o r t h e two waters, and t h e high concen- t r a t i o n s i n each case were j u s t about: a t t h e c r i t e r i o n va lue . Only i n t h e case of i r o n and f l u o r i d e were t h e concen t r a t ions s i g n i f i c a n t l y h ighe r f o r E compared t o Z . However, i t is judged t h a t f o r none of t h e s e s i x trace elements were t h e r e any hazards i n t h e renovated w a t e r .

Although not shown i n Table 6 , a l l t h e measurements f o r s i l v e r , a r s e n i c , cadmium, chromium, and selenium were nega t ive (below t h e s e n s i t i v i t y l e v e l s ) . Abvut ha l f of t h e E samples w e r e p o s i t i v e f o r cyanide a t concen t r a t ions up t o 1 2 Qg/l , bu t w e l l below t h e h e a l t h c r i t e r i o n v a l u e of 200 p g / l . I t i s d i f i i c u l t : t o imagine any o x i d i z a b l e cyanide being p r e s e n t i n E because of t h e l a r g e q u a n t i t i e s of added c h l o r i n e . However, t h e a n a l y s i s w a s f o r t o t a l cyanide, s o t h a t t h e measurement may have d e t e c t e d such harmless combined complexes as those involving i r o n , o f t e n used as an ant i -caking agen t , such as i n road sal t . Seve ra l water samples were p o s i t i v e f o r mercury. These occurred i n t h r e e of t h e e i g h t weeks, two of which w e r e analyzed on t h e same day. It: is l i k e l y t h a t i n t h e l a t t e r cases t h e r e w a s contamination o r analy- tical e r r o r , perhaps as a r e s u l t of t h e mercury p r e s e r v a t i v e added t o t h e n i - t r a t e sampling b o t t l e . On two subsequent weeks when t h i s p o s s i b i l i t y w a s re- moved, only one o u t of s i x E samples were p o s i t i v e (0.6 u g / l ) , and no Z sam- p l e s . I n c o n t r a s t , dur ing t h e previous two weeks E , Z and a l l o t h e r samples were p o s i t i v e and much h ighe r . For t h e samples of t h e f i r s t fou r weeks none of t h e E o r Z samples w e r e a t concen t r a t ions higher t han 0 .2 p g / l , t h e l e v e l of s e n s i t i v i t y of t h e method. I n view of t h e f a c t t h a t t h e h i g h e s t E sample w a s 1 . 7 p g / l , even though i t w a s probably an erroneous reading due t o con- taminat ion, and t h e f a c t t h a t t h e c r i t e r i o n v a l u e i s 2 p g / l , i t may be con- cluded t h a t t h e r e is no observed h e a l t h hazard from mercury i n t h e renovated water.

Carcass Chemical Analyses

The r e s u l t s of t h e chemical ana lyses of t h e washings from t h e carcass samples PB, from t h e p l a n t c h i l l e r , and EB, from t h e experimental ch i l le r , w i l l be summarized h e r e , b u t n o t t a b u l a t e d . Most of t h e chemical s p e c i e s analyzed i n w a t e r , as shown i n Tables 4 , 5, and 6 , w e r e a l s o analyzed i n t h e carcass wash- i n g s . Among t h e macro c o n s t i t u e n t s only t h e mean n i t r a t e concen t r a t ions were s t a t i s t i c a l l y s i g n i f i c a n t l y higher a t 0.38 mg/l i n t h e EB samples compared t o 0.06 i n PB. The r eason f o r t h i s d i f f e r e n c e i s no t known, s i n c e t h e Z and E waters are no t s i g n i f i c a n t l y d i f f e r e n t i n n i t r a t e c o n c e n t r a t i o n s , as shown i n Table 4 . It i s very u n l i k e l y t h a t t h i s poses any kind of a h e a l t h hazard. Taking t h e mean v a l u e of 0.38 mg/l of n i t r a t e i n t h e EB samples , and assuming t h a t t h i s a l l came from t h e carcasses, s i n c e 1 . 5 l i ters of d i s t i l l e d water w a s used t o e l u t e t h e c a r c a s s e s , t h i s would be equa l t o 1.5x0.38, o r 0.57 mg n i t r a t e p e r c a r c a s s . This is n o t a q u a n t i t y of concern i n t h e p e r s p e c t i v e , f o r example, of t he c u r r e n t primary d r ink ing w a t e r r e g u l a t i o n , which permits an average d a i l y a d u l t i n g e s t i o n of about 90 mg n i t r a t e .

The mean v a l u e s of a l l t h e waste c h a r a c t e r i s t i c and trace element measurements were t h e same, w i t h i n s t a t i s t i ca l confidence, f o r t h e PB and EB samples i n Phase 2 , w i th t h e except ion of m o i i i a n i t rogen . mg/l, wh i l e t h a t of PB WES 0.09.

The mean EB v a l u e w a s 1.1 This r e s u l t is most probably a t t r i b u t e d t o

401

t h e high ammonia con ten t of t h e renovated water, bu t cannot be considered t o be a h e a l t h hazard.

Organic Water Qua l i ty

A v a r i e t y of measurements of g ross o rgan ic parameters and s p e c i f i c organic chemicals have been performed during and subsequent t o Phase 2 . These in - c lude BOD5, o rgan ic n i t r o g e n , and CCE (carbon chloroform e x t r a c t ) , as Cate- gory I ana lyses , shown i n Table 2 ; halogenated methanes, MBAS ( s u r f a c t a n t s ) , and p e s t i c i d e s , as Category I11 a n a l y s e s , Table 3 ; t o t a l o rgan ic carbon (TOC); and s p e c i f i c o rgan ic s e x t r a c t e d w i t h methylene c h l o r i d e and i d e n t i f i e d by gas chromatography-mass spectrometry (GC-MS) . A comparison of t h e mean r e s u l t s f o r t h e s u r f a c t a n t s , shown i n Table 4 , i n - d i c a t e s s i g n i f i c a n t l y higher concen t r a t ions i n t h e renovated water, E , com- pared t o t h e t r e a t e d w e l l water, Z . However, both t h e mean concen t r a t ion of 0.04 mg/l and t h e maximum of 0.08 are w e l l below t h e 0.5 mg/l 1962 PHS c r i t e r i o n va lue .

The BOD5 summary v a l u e s are shown i n Table 5, i n d i c a t i n g a somewhat lower mean v a l u e f o r t h e E compared w i t h t h e Z water, a l though t h e d i f f e r e n c e i s no t s t a t i s t i c a l l y s i g n i f i c a n t . I n c o n t r a s t , t h e average f o r t h e o rgan ic n i t r o - gen, de f ined as t h e o r g a n i c a l l y bound n i t r o g e n i n t h e nega t ive - th ree oxida- t i o n s t a t e , is higher i n t h e E water a t 1 . 7 mg/l than t h a t of Z , 0.013. It also-shows cons ide rab le v a r i a t i o n . It most probably c o n s i s t s of p r o t e i n mat- e r ia l and i t s breakdown p roduc t s , such as amino a c i d s , from t h e chickens.

Analyses w e r e performed f o r n i n e p e s t i c i d e s , samples being c o l l e c t e d on t h r e e separate days i n a three-week pe r iod . These ana lyses were d i scon t inued when a l l samples from t h e second and t h i r d days were nega t ive . The r e s u l t s are summarized i n Table 7 . No p o s i t i v e v a l u e s w e r e ob ta ined f o r t h e E o r Z sari-

p l e s , only f o r A , t h e r a w waste, and PB and PC, t h e c a r c a s s e s and c h i l l e r water i n t h e p l a n t . The t o t a l number of E samples analyzed w a s n i n e .

A summary of t h e t o t a l o rgan ic carbon (TOC) ana lyses of s a m p l e s taken on f i v e success ive weeks i n November and December, 1976 is shown i n Table 8. Each in - d i v i d u a l TOC v a l u e i s a r e s u l t of a t least two measurements on t h e same sample, t h e TOC being t h e d i f f e r e n c e between t h e t o t a l carbon and t h e i n o r g a n i c carbon ana lyses . were 10 , 8, 6 and 4 , r e s p e c t i v e l y . Two samples each w e r e measured a t each of t h e o t h e r sampling p o i n t s . These r e s u l t s show t h a t t h e r e w a s a cons ide rab le r e d u c t i o n i n TOC through t h e lagoon and then t h e r enova t ion system. Although t h e mean v a l u e f o r t h e renovated water, E , w a s about 5 mg/l h ighe r t han t h a t f o r Z , t h e t r e a t e d w e l l water, they each showed cons ide rab le v a r i a b i l i t y , as i n d i c a t e d by t h e i r r e s p e c t i v e ranges and s t anda rd d e v i a t i o n s .

The t o t a l number of samples f o r Z , E , X , and C shown i n Table 8

Several carbon chloroform e x t r a c t (CCE) measurements were made, bo th during Phase 2 and a t o t h e r t i m e s , t h e r e s u l t s being shown i n Table 9. These measure- ments were done by t h e newer m i n i a t u r i z e d two-day sampling technique ( 4 ) , f o r which a s t anda rd had been proposed of 0.7 mg/l compared t o t h e 0.2 v a l u e f o r t h e o l d e r technique i n t h e 1962 PHS s t anda rds . I n f a c t , i t w a s shown i n a com- p a r i s o n of t h e two techniques t h a t t h e newer method measures about 6.7 t i m e s

402

Table 7. P e s t i c i d e s hqalyzed and Found (ug / l )

S e n s i t i v i t y C r i t e r i o n * P o s i t i v e P e s t i c i d 2 L i m i t Value Values

Chlordane 0.2-1 3** - Endrin 0.1 0.2 0.1 (A. PB)

Heptachlor 0.06 0.1** 0.09-0.4 (A, PB, PC)

Hep t. Epoxide 0.1-0.2 0.1** - Lindane 0.06 4 0.04-0.14 (A, PR, PC)

Methoxychlor 0.5-1 100 - Toxaphene 3-6 5 - 2,4-D 0.05-1 100 - 2,4,5-T 0.5-1 10 -

*E.P.A. Na t iona l In t e r im Primary Drinking Water Regs., except Cor:

**Proposed as above, but not adopted

Table 8. T o t a l Organic Carbon (TOC) Analyses of a Few

Samples i n F a l l 1976 a t t h e S t e r l i n g P l a n t

Sample Point

Z - t r e a t e d w e l l water

E f f l u e n t s from:

L1 - lagoon 1

C' - lagoon 2

C - lagoon 2 ( ch lo r ina t ed )

D - m i c r o s t r a i n e r

X - sedimentat ion bas in

E - renovated water

Concentrat ions - m g / l Mean Stand. Dev. Ranpe

14.5 7 .O 6 - 26

50.5 2.2 49 - 52

35.0 1.0 34 - 36

38.8 4.9 35 - 45

39.8 7.4 35 - 4 5

22.4 3.2 19 - 29

20.0 5 . 1 15 - 31

403

Table 9. Carbon Chloroform Extract Concentrations (CCE)

at the Sterling Renovation System

1976 Week Sampled CCE - mp/l

Untreated Well

31 8 0.58

Renovated Water

3/15a 0.96

3/29

4/19

1.2

1.5

5/17 0.18

61 14 0.36

71 12 0.22

712 6 0.58 0.61

111 15 0.52

Renovated Water - Mean 0.68

Standard Dev. 0.45

a - stored water

404

as much CCE as t h e o l d e r one ( 4 ) . The r e s u l t s i n Table 9 i n d i c a t e consid- e r a b l e v a r i a b i l i t y i n t h e CCE va lues i n the renovated water, E , bu t t h e s e va lues ove r l ap wi th and on t h e average are no t very d i f f e r e n t from t h e s i n g l e measurement of t h e un t r ea t ed w e l l water.

On f o u r success ive weeks i n November and December, 1976 v o l a t i l e halogenated methanes w e r e measured, e s s e n t i a l l y using t h e technique of Bellar and Lichtenberg ( 5 ) . The only o rgan ic found by t h i s technique i n t h e renovated water, E , w a s chloroform, t h e maximum concen t r a t ion being 3 micrograms per l i t e r . I n some of t h e t r e a t e d w e l l w a t e r s amples , Z , chloroform w a s measured a t concen t r a t ions of less than one microgram p e r l i t e r , and one showed traces of carbon t e t r a c h l o r i d e and dibromochloromethane. For r e f e r e n c e , t h e mean chloroform concen t r a t ion i n f i n i s h e d U.S. p u b l i c water s u p p l i e s w a s r epor t ed t o be 2 1 micrograms pe r l i t e r i n t h e Na t iona l Organics Reconnaissance Sur- vey ( 6 ) .

F i n a l l y , samples of E and Z water c o l l e c t e d on two s e p a r a t e days subsequent t o Phase 2 were e x t r a c t e d by methylene c h l o r i d e , concent ra ted by evapora t ion and analyzed by GC-MS f o r s p e c i f i c organics . Three g e n e r a l types of compounds were i d e n t i f i e d by t h i s technique. A t t h e moment, t h e ana lyses have no t y e t been confirmed wi th s tandards . I n t h e renovated water, E , t h e fol lowing nor- m a l f a t t y a c i d s were i d e n t i f i e d : C-10, -11, -12, -14, -15, -16, and -18; i n t h e t r e a t e d w e l l water, C-12 , -14, -16, and -18. None of t hese con ta in chlor- i n e atoms. f i e d , bu t only t h e former i n t h e t r e a t e d w e l l water. Both of t h e s e compounds are used as p l a s t i c i z e r s and have been widely found i n a v a r i e t y inc luding po tab le munic ipa l s u p p l i e s ( 7 ) .

I n t h e renovated w a t e r d i o c t y l and d i b u t y l p h t a l a t e were i d e n t i -

of waters,

The most unusual s e t of compounds t h a t w a s found i n a l l of t h e E and Z sam- p l e s , analyzed by GC-MS, c o n s i s t s of f i v e o rgan ic s t h a t appear t o be halo- genated o r hydrohalogenated d e r i v a t i v e s of cyclohexene. They are: 3-chloro- cyclohexene, 2-chlorocyclohexanol, 1,2-dichlorocyclohexane, l-bromo-2-chloro- cyclohexane, and 2-bromocyclohexanol. Only one U.S. company manufactures cyclohexene, t h e presumptive pa ren t compound, i n any s i g n i f i c a n t q u a n t i t y , and i t has very s p e c i a l i z e d uses . I n view of t h i s and t h e f a c t t h a t such uses are u n l i k e l y i n t h e v i c i n i t y of t h e S t e r l i n g p l a n t , i t is a l s o h ighly u n l i k e l y t h a t i t is a contaminant e i t h e r of t h e ground water source o r from t h e pou l t ry p l a n t ope ra t ion . Recent evidence developed elsewhere seems t o i n d i c a t e t h a t i t , o r t h e halogenated d e r i v a t i v e s , are probably contaminants of t h e c h l o r i n e used f o r d i s i n f e c t i o n . Some of t h e s e compounds have r e c e n t l y been found i n two municipal water s u p p l i e s , probably from t h e c h l o r i n e used i n t h e treat- m e n t p rocess ( This s i t u a t i o n i s being i n v e s t i g a t e d .

DISCUSSION

The focus of t h i s d i scuss ion w i l l be whether t h e q u a l i t y of t h e renovated water, E , i s s u f f i c i e n t t o j u s t i f y i t s r e u s e i n process ing p o u l t r y a t t h e S te r - l i n g p l a n t , wi thout r i s k i n g t h e h e a l t h of t h e consumers. It should be empha- s i z e d i n t h i s d i scuss ion t h a t , p r i o r t o a c t u a l u se i n t h e p l a n t , t h e reno- va ted water w i l l be mixed 50/50 w i t h t h e un t r ea t ed w e l l water, then r e c e i v e t h e normal water t rea tment t h a t is c u r r e n t l y u t i l i z e d f o r i t . This c o n s i s t s

405

of p r e c h l o r i n a t i o n i n t h e mixing b a s i n , a l u m - l i m e f l o c c u l a t i o n , w i th f i n a l pH adjustment t o p r e c i p i t a t e i r o n , s e t t l i n g , and f i l t r a t i o n through two sand f i l t e r s . Add i t iona l c h l o r i n e i s introduced i n t o t h e main s e r v i c e l i n e leading t o t h e processing p l a n t f o r r e s i d u a l c o n t r o l .

The p r i n c i p a l o p e r a t i o n i n t h e processing p l a n t t h a t exposes t h e carcas- ses t o water i s t h e c h i l l e r , which precedes t h e i c i n g and packaging of t h e processed m e a t . Each carcass can t a k e up as much as 10 pe r cen t of i t s weight i n water i n t h i s o p e r a t i o n . The c h i l l e r i s a cont inuous, counter- c u r r e n t system which i t s e l f r a p i d l y accumulates contaminants i n t h e course of a day ' s o p e r a t i o n (8) . The e v a l u a t i o n of t h e renovated water, E , s t u d i e d i n Phase 2 , should be done i n t h e p e r s p e c t i v e of t h e f u r t h e r t reatment i t w i l l r e c e i v e i n a c t u a l r e u s e , as w e l l as t h e intended u s e of t h a t water. I n t h a t u se t h e most important water exposure of t h e p o u l t r y being processed i n t h e c h i l l e r ope ra t ion .

The mic rob io log ica l q u a l i t y of t h e renovated water, E , s t u d i e d i n Phase 2 i s e x c e l l e n t . No pathogenic b a c t e r i a were de tec t ed i n t h a t water. Aside from some confusion, probably from mis l abe l ing of s a m p l e s , a l l t h e col i form and f e c a l col i form concen t r a t ions were below the l e v e l of d e t e c t i o n . The t o t a l p l a t e counts w e r e a l s o low. Avian v i r u s e s w e r e a l s o no t d e t e c t e d i n t h e renovated water. i n t h e a e r a t e d lagoons and t h e n a t u r e of t h e d i s i n f e c t i o n processes subsequent t o them, which invo lve two s t a g e s of c h l o r i n a t i o n , t h i s e x c e l l e n t microbiolo- g i c a l - q u a l i t y i s t o be expected. With a c t u a l r e c y c l e i n t o t h e p l a n t , t h i s h igh q u a l i t y and t h e a d d i t i o n a l t r ea tmen t , i nc lud ing d i s i n f e c t i o n , would in - s u r e , w i th a high degree of c e r t a i n t y , t h a t t h e r e would be no danger from pathogenic organisms i n t h e r e u s e of t h i s renovated water.

I n view of t h e approximately two-week's d e t e n t i o n t i m e

The ino rgan ic water q u a l i t y of t h e renovated water s t u d i e d i n Phase 2 i s a l s o q u i t e good. A s would be expected, s e v e r a l of t h e major c a t i o n s and anions are s i g n i f i c a n t l y higher i n t h e renovated water than t h e normally t r e a t e d w e l l water. Such build-ups are common, s i n c e t y p i c a l waste and water t reat- ment processes are no t designed f o r , nor capable of removing s i g n i f i c a n t q u a n t i t i e s of t h e s e materials. The concen t r a t ions of t h e s e c o n s t i t u e n t s i n t h e renovated water, shown i n Table 4 , do no t c o n s t i t u t e a h e a l t h hazard i n water r euse .

The trace elements and waste parameters shown i n Tables 5 and 6 are a l s o no t a t l e v e l s t h a t are of concern, were t h e renovated water a c t u a l l y reused as contemplated. The trace elements are no t s i g n i f i c a n t l y d i f f e r e n t f o r t h e renovated and normally t r e a t e d w e l l water, w i th t h e excep t ion of cyanide, f l u o r i d e , and i r o n . A l l of t h e s e are, n e v e r t h e l e s s w e l l below c r i t e r i o n lev- els i n t h e renovated water. One can j u s t i f i a b l y conclude, t h e r e f o r e , t h a t , as wi th t h e microorganisms, t h e ino rgan ic c o n s t i t u e n t s of t h e renovated water do not pose a r i s k t o human h e a l t h i n t h e a c t u a l planned r e c y c l e system. conclusion i s r e i n f o r c e d by t h e comparison of t h e ana lyses of t h e carcasses processed normally i n t h e p l a n t c h i l l e r and those exposed t o renovated water i n t h e "experimental ' ' c h i l l e r . Among a l l t h e macro and trace ino rgan ic con- s t i t u e n t s , only ammonia and n i t r a t e were higher i n t h e c a r c a s s e s processed wi th renovated water, bu t n o t a t concen t r a t ions t h a t would c o n s t i t u t e a h e a l t h hazard.

This

406

The o rgan ic chemical q u a l i t y of t h e renovated water a t t h e S t e r l i n g p l a n t remains perhaps t h e g r e a t e s t area of p o s s i b l e concern, as i t does f o r t h e municipal water supply systems of t h e U.S . , p r i n c i p a l l y because of t h e re- cen t advances i n our a b i l i t y t o i d e n t i f y and q u a n t i f y t r a c e o rgan ic chemi- cals a t ve ry low concen t r a t ions . been i d e n t i f i e d and some q u a n t i f i e d i n t h i s s tudy. A s noted p rev ious ly , p e s t i c i d e s w e r e n o t found i n e i t h e r t h e renovated or t r e a t e d w e l l w a t e r . S u r f a c t a n t s i n t h e former w e r e w e l l below c r i t e r i o n l e v e l s . Seve ra l f a t t y a c i d s were found i n t h e renovated water, b u t a l s o i n t h e t r e a t e d w e l l water. I n any event , t h e s e c o n s t i t u t e no human hazard. The maximum c o n c e n t r a t i o n of t h e only halogenated methane found i n t h e renovated water, chloroform, w a s t h r e e micrograms pe r l i t e r , w e l l below t h e approximate median v a l u e of 20 found i n t h e E . P . A . Nat iona l Organic Reconnaissance Survey of U.S. pub- l i c water s u p p l i e s ( 6 ) . Two p h t h a l a t e s were found i n t h e renovated water, and one of t h e s e i n t h e t r e a t e d w e l l water. A s noted pe rv ious ly , both of t h e s e , widely used as p l a s t i c i z e r s , have been found i n p o t a b l e U.S. munici- p a l water s u p p l i e s , as w e l l as many n a t u r a l waters.

S e v e r a l s p e c i f i c o rgan ic chemicals have

The unusual halogenated and hydrohalogenated d e r i v a t i v e s of cyclohexene, found i n both t h e renovated and t r e a t e d w e l l water, i n a l l p r o b a b i l i t y are

f i n i s h e d municipal water s u p p l i e s and are u n r e l a t e d t o t h e r enova t ion sys- t e m . That i s , i t is q u i t e l i k e l y t h a t changing t o a d i f f e r e n t sou rce of c h l o r i n e w i l l e l i m i n a t e t h e i r presence.

contaminants of t h e c h l o r i n e used i n d i s i n f e c t i o n . They have been found i n

It is a r easonab le judgment t h e r e f o r e , t h a t t h e s p e c i f i c a l l y i d e n t i f i e d o rgan ic chemicals a r i s i n g from t h i s waste r enova t ion process do no t con- s t i t u t e a human hazard were t h i s water t o be used as contemplated i n f u l l r e c y c l e . One might n e v e r t h e l e s s ra ise t h e q u e s t i o n of t h e p o s s i b l e h e a l t h hazard from o rgan ic s n o t y e t i d e n t i f i e d . It i s u n l i k e l y t h a t , i n terms of t h e r e u s e of t h i s water f o r p rocess ing p o u l t r y , such o rgan ic s would be hazardous, s i n c e they a r i se p r i m a r i l y and o r i g i n a l l y from t h e p o u l t r y wastes and are l i k e l y t o be only n a t u r a l materials and t h e i r deg rada t ion p roduc t s . A p o s s i b l e q u e s t i o n concerns t h e r e a c t i o n of c h l o r i n e wi th t h e s e materials t o form hazardous by-products. This concern i s d i f f i c u l t t o addres s . It should be pointed o u t , however, t h a t c h l o r i n a t i o n i s p r a c t i c e d i n c e r t a i n food p rocess ing , and has probably n o t been a s s o c i a t e d wi th any ill e f f e c t s i n humans.

The measured g r o s s o rgan ic parameters , namely BOD, CCE, TOC, and o rgan ic n i t r o g e n , are a l s o of i n t e r e s t as i n d i c a t o r s of s p e c i f i c o rgan ic c o n s t i t u e n t s . The higher o rgan ic n i t r o g e n i n t h e renovated water most probably r e f l e c t s t h e proteinaceous material and i ts breakdown products from t h e p o u l t r y , b u t only those c o n s t i t u e n t s t h a t are n o t r e a d i l y biodegradable , s i n c e t h e BOD v a l u e s f o r t h e renovated and t r e a t e d w e l l waters were q u i t e comparable. The mean BOD v a l u e of 3.4 mg/l f o r t h e renovated water i s no t u n t y p i c a l of many r a w s u r f a c e waters t h a t are used f o r municipal water s u p p l i e s , such as Minneapolis and S t . Cloud ( 9 ) .

The mean TOC v a l u e s f o r t he renovated ani? z rea t ed w e l l wa te r , 20 and 1 4 mg/l , r e s p e c t i v e l y , are perhaps somewhat id&, b u t n o t unusuaily s o . The s t a t e w i d e average €or t h e major Minnesota r i v e r s i s 20 mg/l , w i t h several

407

l a r g e munic ipa l s u p p l i e s u t i l i z i n g them as r a w water s u p p l i e s ( 9 ) . S i m i l a r - l y , most of t h e l a r g e r r ivers t h e r e have concen t r a t ions of 15 t o 30 mg/l. I n a s tudy of 80 munic ipa l water supply systems of t h e U.S., non -vo la t i l e TOC concen t r a t ions a s h igh as 1 9 mg/l were measured i n t h e r a w water and 1 2 mg/l i n t h e f i n i s h e d water ( 6 ) . About 98 per c e n t of t h e l a t te r w e r e less than 5 mg/l. This i n d i c a t e s t h a t , i n terms of a f i n i s h e d water supply , t h e renovated w a t e r TOC v a l u e s are undoubtedly high. w i th t h e r a w w e l l water and then f u l l scale t r ea tmen t , t h e f i n a l mix tu re should no t be s i g n i f i c a n t l y d i f f e r e n t i n TOC than t h e c u r r e n t l y used t r e a t e d w e l l water.

However, a f t e r mixing 50/50

The CCE measurements of t h e f i n i s h e d water show cons ide rab le v a r i a b i l i t y . However, t i m e v a r i a t i o n s , s e a s o n a l o r o therwise , are a l s o common i n f i n i s h e d munic ipa l water s u p p l i e s ( 4 ) . S i m i l a r l y , concen t r a t ions of 1 .0 mg/l of CCE are n o t uncommon i n f i n i s h e d water s u p p l i e s , and concen t r a t ions cons iderably h igher than t h i s have been fourid i n rivers. The average concen t r a t ion of 0.7 mg/l f o r t h e renovated w a t e r system had been r e c e n t l y proposed as a cr i ter- i o n v a l u e f o r p u b l i c water s u p p l i e s .

One can reasonably conclude t h a t t h e o rgan ic water con ten t of bo th t h e treat- ed w e l l water and t h e renovated water i s somewhat h igh . Never the less , no s p e c i f i c o rgan ic s i n t h e renovated water have been found a t high enough con- c e n t r a t i o n s f o r t h e renovated water t o be cons idered a s i g n i f i c a n t r i s k t o human h e a l t h . A t t h e same t i m e , t h e most l i k e l y non-hazardous n a t u r e of any incrementa l o rgan ic mater ia l no t y e t i d e n t i f i e d i n t h e renovated water is such as t o r e i n f o r c e t h a t judgment.

An e v a l u a t i o n of many of t h e s e r e s u l t s w a s performed immediately fol lowing t h e completion of Phase 2 by a committee c o n s t i t u t e d t o do s o and make a recommendation about proceeding t o Phase 3 , a three-month t r i a l pe r iod of f u l l r e c y c l i n g through t h e p l a n t and w a t e r r euse . That committee d i d no t a t t h e t i m e have access t o some measurements of o rgan ic water q u a l i t y which were done subsequent t o Phase 2 , i nc lud ing most of t h e CCE ana lyses , and a l l of t h e TOC and spec i f ' i c o rgan ic s , o t h e r than p e s t i c i d e s . The committee recom- mended t h a t t h e r e w a s no s i g n i f i c a n t r i s k i n proceeding t o Phase 3 . W e con- c lude t h a t t h e a d d i t i o n a l d a t a on o rgan ic chemical q u a l i t y should n o t modify t h a t judgment.

Never the less , t h e f i n a l d e c i s i o n t o proceed t o Phase 3 w a s n o t and has n o t been made as of t h i s w r i t i n g . The de lay a r o s e because of t h e requirement of t h e Department of A g r i c u l t u r e t h a t t h e water t o be reused i n t h e p l a n t be des igna ted as po tab le . There are d i f f e r i n g opin ions as t o whether i t cculd be so regarded. The concerns c e n t e r around two areas. F i r s t , i s t h e chemical and mic rob io log ica l q u a l i t y of t h e renovated water s u f f i c i e n t t o meet c r i t e r i a of p o t a b i l i t y ? I n terms of meeting c o n s t i t u e n t l i m i t s spec i - f i e d i n d r ink ing water s t anda rds o r r e g u l a t i o n s , t h e answer i s yes . The g r o s s o rgan ic load i s h igh , bu t no t much more so than t h e normally t r e a t e d w e l l water . t h e l e g a l l y au tho r i zed agency, t h e S t a t e of Maryland.

Never the less , a c e r t i f i c a t i o n of p o t a b i l i t y has been made by

408

The second area of concern r e l a t e d t o p o t a b i l i t y is t h e n a t u r e of t h e r a w water source. A long-standing concept, as s t a t e d i n t h e 1962 P u b l i c Heal th S e r v i c e Drinking Water Standards ( l o ) , i s t h e fol lowing:

"The water supply should be obtained from t h e most d e s i r a b l e sou rce which i s f e a s i b l e , and e f f o r t should be made t o p reven t or c o n t r o l p o l l u t i o n of t h e source. I f t h e sou rce i s n o t adequately p r o t e c t e d by n a t u r a l means, t h e supply s h a l l be adequately p r o t e c t e d by t r ea tmen t . I '

I n terns of t h e intended g o a l of t h i s water r enova t ion system, namely t h e augmentation of t h e l i m i t e d non-community w e l l water sou rce f o r t h e Ster- l i n g p l a n t , o t h e r p o s s i b l e a v a i l a b l e sou rces should be considered, using t h e above concept. The l o c a l community, Oakland, w i l l no t and cannot pi-m-ide clddi t ional water t o t h e S t e r l i n g p l a n t . The only o t h e r p o s s i b l e s o a c e i s t h e L i t t l e Youghiogheny River, o f t e n n o t more than a s m a l l c r eek , p o l l u t e d immediately upstream by r a w , municipal sewage from Oakland. I t i s thus apparent t h a t i n terms of t h e concept of most d e s i r a b l e f e a s i b l e sour"e, t h e r enova t ion system meets t h a t c r i t e r i o n . I t must a l s o be empha- s i z e d t h a t t h e renovated water, s t u d i e d i n Phase 2 , w i l l r e c e i v e t h e addi- t i o n a l f u l l - s c a l e , normal water t r ea tmen t during t h e Phase 3 t r i a l per iod of r euse . I n t h i s s ense i t may a l s o be regarded as a r a w water sou rce , and certainly a most d e s i r a b l e one.

Nevertheless , one can and perhaps should p u t a s i d e t h i s l e g a l q u e s t i o n of pocabj Z i t . ; 2nd consider t h e fol lowing ques t ion . I f t h i s renovated water w e r e t o be recycled i n t o t h e p l a n t as desc r ibed and used as in t ended , would t h e r e be any s i g n i f i c a n t , d i s c e r n i b l e r i s k t o t h e consumers of t h e chickens processed t h e r e ? I t i s our considered judgment a f t e r weighing a l l t h e re- s u l t s of t h i s s tudy and t h a t which preceded i t , t h a t t h e Phase 3 t r i a l per iod of f u l l r e c y c l e and r e u s e should proceed, and t h a t t h e p u b l i c h e a l t h w i l l n o t be jeopardized i n so doing. I n view of t h e urgent need t o conserve our water r e s o u r c e s , l i m i t w a s t e d i s c h a r g e s , and improve water q u a l i t y , t h e n a t i o n w i l l have t o proceed t o s e l e c t i v e reuse of wastewater. Such a p r o j e c t as t h i s i s a u s e f u l s t e p i n t h a t d i r e c t i o n .

ACKNOWLEDGEMENTS

This s tudy i s a j o i n t e f f o r t by t h e Maryland S ta te Department of Heal th and Mental Hygiene (MHD), t h e S t e r l i n g Processing Company, and t h e Graduate School of P u b l i c Heal th , Un ive r s i ty of P i t t s b u r g h (GSPH). The s tudy i s being funded by t h e E.P.A. under two g r a n t s , one t o GSPH and t h e o t h e r t o MHD. The au tho r s g r a t e f u l l y acknowledge t h i s support and t h e t e c h n i c a l guidance and encourage- ment of t h e two E.P.A. p r o j e c t o f f i c e r s , Herbert Pahren and Jack Witherow. We are also pleased t o acknowledge t h e e n t h u s i a s t i c cooperat ion and p a r t i c i - p a t i o n of M r . Gilman S y l v e s t e r , t h e manager of t h e S t e r l i n g Processing Corpora- t i o n , and h i s s t a f f ; a l s o , Dan McGrail who has been ope ra t ing t h e water reno- v a t i o n system, and Edward S . Hopkins, who s u p e r v i s e s i t s ope ra t ion .

Many ana lyses w e i e performed by t h e CmLerland l a b o r a t o r y of MHD, and s e v e r a l by the Analytical . S e r v i c e s Laboratory cf t h e NUS Corporation i n P i t t s b u r g h .

409

D r s . John Armstrong and Robert Yee, f a c u l t y members of t h e Microbiology Department of GSPH, have been p a r t i c u l a r l y h e l p f u l i n advis ing on t h e mic rob io log ica l ana lyses , as has D r . I a i n Campbell of t h e L i f e Sciences Div is ion of t h e Univers i ty of P i t t s b u r g h on t h e trace organic ana lyses . Seve ra l s t a f f members a t GSPH w e r e f u l l y involved i n t h i s p r o j e c t , most no tab ly Teresa Lester, who had t h e p r i n c i p a l r e s p o n s i b i l i t y f o r a l l as- p e c t s of t h e mic rob io log ica l ana lyses .

REFERENCES

1.

2 .

3.

4.

5.

6.

7 .

8.

9.

10.

Cl ise , J . D . , Pou l t ry Process ing Wastewater Treatment and Reuse, Environmental P r o t e c t i o n Technology Series, EPA-660/2-74-060, U.S. Environmental P r o t e c t i o n Agency, Washington, D . C . , March, 1974.

Huber, W.G. , Car lson, M.B. , and M.H. Lepper, " P e n i c i l l i n and Anti- mic rob ia l Residues i n Domestic Animals a t S laugh te r , " J . Amer. V e t . Med. ASSOC., 2, 1590-1595 (1969).

Read, R.B.,Bradshaw, J . G . , Swar tzent ruber , A.A., and A.R. B r a z i s , "Detect ion of S u l f a Drugs and A n t i b i o t i c s i n Milk," Applied Micro., 2 1 , 806-808 (1971).

Buelow, R.W., C a r s w e l l , J . K . , and J . M . Symons, "An Improved Method f o r Determining Organics by Act iva ted Carbon Absorpt ion and Solvent Ex t rac t ion - P a r t 1, 'I J . Amer. Water Works ASSOC., - 65, 57-72 (1973).

Bellar, T. and J .J . Lichtenberg, "Determining V o l a t i l e Organics a t Microgram-per-l i tre Levels by G a s Chromatography," J . Amer. Water Works ASSOC., 66, 739-744 (1974).

Symons, J . M . , Bellar, T.A. , C a r s w e l l , J . K . , DeMarco, J . , Kropp, K.L. , Robeck, G.G. , Seeger , D . R . , Slocum, C . J . , Smith, B.L., and A.A. Stevens,

Nat iona l Organics Reconnaissance Survey f o r Halogenated Organics," J . h e r . Water Works ASSOC., 67, 634-647 (1975). 1 1

Shackelford, W.M. and L.H. Kei th , Frequency of Organic Compounds 1dent i . f ied i n Water, Environmental Monitoring S e r i e s , EPA-600/4-76-062, U.S. Environmental P r o t e c t i o n Agency, Washington, D . C . , December 1976.

Hamza, A . , Saad, S . , and J . Witherow, "Water Reuse i n P o u l t r y Pro- cess ing: Case Study i n Egypt," THESE PROCEEDINGS.

Maier, W . J . and H.L. McConnell, "Carbon Measurements i n Water Qual i ty Monitoring," J . Water P o l l u t i o n Cont ro l Feder . , 46, 623-633 (1974).

U.S. P u b l i c Heal th Se rv ice , Drinking Water Standards , 1962, U.S. Department of Heal th , Education and Welfare , Washington, D . C .

41 0