wave function summation of bloch electron.docx

Upload: alokesh1982

Post on 11-Feb-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/23/2019 wave function summation of bloch electron.docx

    1/14

    Tight binding

    From Wikipedia, the free encyclopedia

    Jump to:navigation,search

    Electronic structuremethods

    Valence bond theory

    Generalized valence bond

    Modern valence bond

    Molecular orbital theory

    HartreeFock method

    MllerPlesset perturbation theory

    Configuration interaction

    Coupled cluster

    Multi-configurational self-consistent field

    Quantum chemistry composite methods

    Quantum Monte Carlo

    Linear combination of atomic orbitals

    Electronic band structure

    Nearly free electron model

    Tight binding

    Muffin-tin approximation

    Density functional theory

    kp perturbation theory

    Empty Lattice Approximation

    Book

    v t

    https://en.wikipedia.org/wiki/Tight_binding#mw-navigationhttps://en.wikipedia.org/wiki/Tight_binding#mw-navigationhttps://en.wikipedia.org/wiki/Tight_binding#mw-navigationhttps://en.wikipedia.org/wiki/Tight_binding#p-searchhttps://en.wikipedia.org/wiki/Tight_binding#p-searchhttps://en.wikipedia.org/wiki/Tight_binding#p-searchhttps://en.wikipedia.org/wiki/Electron_configurationhttps://en.wikipedia.org/wiki/Electron_configurationhttps://en.wikipedia.org/wiki/Valence_bond_theoryhttps://en.wikipedia.org/wiki/Generalized_valence_bondhttps://en.wikipedia.org/wiki/Generalized_valence_bondhttps://en.wikipedia.org/wiki/Modern_valence_bond_theoryhttps://en.wikipedia.org/wiki/Modern_valence_bond_theoryhttps://en.wikipedia.org/wiki/Molecular_orbital_theoryhttps://en.wikipedia.org/wiki/Hartree%E2%80%93Fock_methodhttps://en.wikipedia.org/wiki/Hartree%E2%80%93Fock_methodhttps://en.wikipedia.org/wiki/Hartree%E2%80%93Fock_methodhttps://en.wikipedia.org/wiki/Hartree%E2%80%93Fock_methodhttps://en.wikipedia.org/wiki/M%C3%B8ller%E2%80%93Plesset_perturbation_theoryhttps://en.wikipedia.org/wiki/M%C3%B8ller%E2%80%93Plesset_perturbation_theoryhttps://en.wikipedia.org/wiki/M%C3%B8ller%E2%80%93Plesset_perturbation_theoryhttps://en.wikipedia.org/wiki/M%C3%B8ller%E2%80%93Plesset_perturbation_theoryhttps://en.wikipedia.org/wiki/Configuration_interactionhttps://en.wikipedia.org/wiki/Configuration_interactionhttps://en.wikipedia.org/wiki/Coupled_clusterhttps://en.wikipedia.org/wiki/Coupled_clusterhttps://en.wikipedia.org/wiki/Multi-configurational_self-consistent_fieldhttps://en.wikipedia.org/wiki/Multi-configurational_self-consistent_fieldhttps://en.wikipedia.org/wiki/Quantum_chemistry_composite_methodshttps://en.wikipedia.org/wiki/Quantum_chemistry_composite_methodshttps://en.wikipedia.org/wiki/Quantum_Monte_Carlohttps://en.wikipedia.org/wiki/Quantum_Monte_Carlohttps://en.wikipedia.org/wiki/Linear_combination_of_atomic_orbitalshttps://en.wikipedia.org/wiki/Linear_combination_of_atomic_orbitalshttps://en.wikipedia.org/wiki/Electronic_band_structurehttps://en.wikipedia.org/wiki/Nearly_free_electron_modelhttps://en.wikipedia.org/wiki/Nearly_free_electron_modelhttps://en.wikipedia.org/wiki/Muffin-tin_approximationhttps://en.wikipedia.org/wiki/Muffin-tin_approximationhttps://en.wikipedia.org/wiki/Density_functional_theoryhttps://en.wikipedia.org/wiki/Density_functional_theoryhttps://en.wikipedia.org/wiki/K%C2%B7p_perturbation_theoryhttps://en.wikipedia.org/wiki/K%C2%B7p_perturbation_theoryhttps://en.wikipedia.org/wiki/Empty_Lattice_Approximationhttps://en.wikipedia.org/wiki/Empty_Lattice_Approximationhttps://en.wikipedia.org/wiki/Book:Electronic_structure_methodshttps://en.wikipedia.org/wiki/Template:Electronic_structure_methodshttps://en.wikipedia.org/wiki/Template:Electronic_structure_methodshttps://en.wikipedia.org/wiki/Template_talk:Electronic_structure_methodshttps://en.wikipedia.org/wiki/Template_talk:Electronic_structure_methodshttps://en.wikipedia.org/wiki/Template_talk:Electronic_structure_methodshttps://en.wikipedia.org/wiki/Template:Electronic_structure_methodshttps://en.wikipedia.org/wiki/Book:Electronic_structure_methodshttps://en.wikipedia.org/wiki/Empty_Lattice_Approximationhttps://en.wikipedia.org/wiki/K%C2%B7p_perturbation_theoryhttps://en.wikipedia.org/wiki/Density_functional_theoryhttps://en.wikipedia.org/wiki/Muffin-tin_approximationhttps://en.wikipedia.org/wiki/Nearly_free_electron_modelhttps://en.wikipedia.org/wiki/Electronic_band_structurehttps://en.wikipedia.org/wiki/Linear_combination_of_atomic_orbitalshttps://en.wikipedia.org/wiki/Quantum_Monte_Carlohttps://en.wikipedia.org/wiki/Quantum_chemistry_composite_methodshttps://en.wikipedia.org/wiki/Multi-configurational_self-consistent_fieldhttps://en.wikipedia.org/wiki/Coupled_clusterhttps://en.wikipedia.org/wiki/Configuration_interactionhttps://en.wikipedia.org/wiki/M%C3%B8ller%E2%80%93Plesset_perturbation_theoryhttps://en.wikipedia.org/wiki/Hartree%E2%80%93Fock_methodhttps://en.wikipedia.org/wiki/Molecular_orbital_theoryhttps://en.wikipedia.org/wiki/Modern_valence_bond_theoryhttps://en.wikipedia.org/wiki/Generalized_valence_bondhttps://en.wikipedia.org/wiki/Valence_bond_theoryhttps://en.wikipedia.org/wiki/Electron_configurationhttps://en.wikipedia.org/wiki/Tight_binding#p-searchhttps://en.wikipedia.org/wiki/Tight_binding#mw-navigation
  • 7/23/2019 wave function summation of bloch electron.docx

    2/14

    e

    Insolid-state physics, the tight-binding model (orTB model) is an approach to the calculation

    ofelectronic band structureusing an approximate set ofwave functionsbased uponsuperpositionof wave functions for isolatedatomslocated at each atomic site. The method is

    closely related to theLCAO methodused in chemistry. Tight-binding models are applied to a

    wide variety of solids. The model gives good qualitative results in many cases and can becombined with other models that give better results where the tight-binding model fails. Though

    the tight-binding model is a one-electron model, the model also provides a basis for more

    advanced calculations like the calculation ofsurface statesand application to various kinds ofmany-body problemandquasiparticlecalculations.

    Contents

    1 Introduction 2 Historical background 3 Mathematical formulation

    o 3.1 Translational symmetry and normalizationo 3.2 The tight binding Hamiltoniano 3.3 The tight binding matrix elements

    4 Evaluation of the matrix elements 5 Connection to Wannier functions 6 Second quantization 7 Example: one-dimensional s-band 8 Table of interatomic matrix elements 9 See also 10 References 11 Further reading 12 External links

    Introduction

    The name "tight binding" of thiselectronic band structure modelsuggests that thisquantum

    mechanical modeldescribes the properties of tightly bound electrons in solids. Theelectronsin

    this model should be tightly bound to theatomto which they belong and they should havelimited interaction withstatesand potentials on surrounding atoms of the solid. As a result the

    wave functionof the electron will be rather similar to theatomic orbitalof the free atom to which

    it belongs. The energy of the electron will also be rather close to theionization energyof theelectron in the free atom or ion because the interaction with potentials and states on neighboring

    atoms is limited.

    https://en.wikipedia.org/w/index.php?title=Template:Electronic_structure_methods&action=edithttps://en.wikipedia.org/w/index.php?title=Template:Electronic_structure_methods&action=edithttps://en.wikipedia.org/wiki/Solid-state_physicshttps://en.wikipedia.org/wiki/Solid-state_physicshttps://en.wikipedia.org/wiki/Solid-state_physicshttps://en.wikipedia.org/wiki/Electronic_band_structurehttps://en.wikipedia.org/wiki/Electronic_band_structurehttps://en.wikipedia.org/wiki/Electronic_band_structurehttps://en.wikipedia.org/wiki/Wave_functionhttps://en.wikipedia.org/wiki/Wave_functionhttps://en.wikipedia.org/wiki/Wave_functionhttps://en.wikipedia.org/wiki/Quantum_superpositionhttps://en.wikipedia.org/wiki/Quantum_superpositionhttps://en.wikipedia.org/wiki/Atomhttps://en.wikipedia.org/wiki/Atomhttps://en.wikipedia.org/wiki/Atomhttps://en.wikipedia.org/wiki/Linear_combination_of_atomic_orbitalshttps://en.wikipedia.org/wiki/Linear_combination_of_atomic_orbitalshttps://en.wikipedia.org/wiki/Linear_combination_of_atomic_orbitalshttps://en.wikipedia.org/wiki/Surface_stateshttps://en.wikipedia.org/wiki/Surface_stateshttps://en.wikipedia.org/wiki/Surface_stateshttps://en.wikipedia.org/wiki/Many-body_problemhttps://en.wikipedia.org/wiki/Many-body_problemhttps://en.wikipedia.org/wiki/Quasiparticlehttps://en.wikipedia.org/wiki/Quasiparticlehttps://en.wikipedia.org/wiki/Quasiparticlehttps://en.wikipedia.org/wiki/Tight_binding#Introductionhttps://en.wikipedia.org/wiki/Tight_binding#Introductionhttps://en.wikipedia.org/wiki/Tight_binding#Historical_backgroundhttps://en.wikipedia.org/wiki/Tight_binding#Historical_backgroundhttps://en.wikipedia.org/wiki/Tight_binding#Mathematical_formulationhttps://en.wikipedia.org/wiki/Tight_binding#Mathematical_formulationhttps://en.wikipedia.org/wiki/Tight_binding#Translational_symmetry_and_normalizationhttps://en.wikipedia.org/wiki/Tight_binding#Translational_symmetry_and_normalizationhttps://en.wikipedia.org/wiki/Tight_binding#The_tight_binding_Hamiltonianhttps://en.wikipedia.org/wiki/Tight_binding#The_tight_binding_Hamiltonianhttps://en.wikipedia.org/wiki/Tight_binding#The_tight_binding_matrix_elementshttps://en.wikipedia.org/wiki/Tight_binding#The_tight_binding_matrix_elementshttps://en.wikipedia.org/wiki/Tight_binding#Evaluation_of_the_matrix_elementshttps://en.wikipedia.org/wiki/Tight_binding#Evaluation_of_the_matrix_elementshttps://en.wikipedia.org/wiki/Tight_binding#Connection_to_Wannier_functionshttps://en.wikipedia.org/wiki/Tight_binding#Connection_to_Wannier_functionshttps://en.wikipedia.org/wiki/Tight_binding#Second_quantizationhttps://en.wikipedia.org/wiki/Tight_binding#Second_quantizationhttps://en.wikipedia.org/wiki/Tight_binding#Example:_one-dimensional_s-bandhttps://en.wikipedia.org/wiki/Tight_binding#Example:_one-dimensional_s-bandhttps://en.wikipedia.org/wiki/Tight_binding#Table_of_interatomic_matrix_elementshttps://en.wikipedia.org/wiki/Tight_binding#Table_of_interatomic_matrix_elementshttps://en.wikipedia.org/wiki/Tight_binding#See_alsohttps://en.wikipedia.org/wiki/Tight_binding#See_alsohttps://en.wikipedia.org/wiki/Tight_binding#Referenceshttps://en.wikipedia.org/wiki/Tight_binding#Referenceshttps://en.wikipedia.org/wiki/Tight_binding#Further_readinghttps://en.wikipedia.org/wiki/Tight_binding#Further_readinghttps://en.wikipedia.org/wiki/Tight_binding#External_linkshttps://en.wikipedia.org/wiki/Tight_binding#External_linkshttps://en.wikipedia.org/wiki/Electronic_band_structurehttps://en.wikipedia.org/wiki/Electronic_band_structurehttps://en.wikipedia.org/wiki/Electronic_band_structurehttps://en.wikipedia.org/wiki/Quantum_mechanicshttps://en.wikipedia.org/wiki/Quantum_mechanicshttps://en.wikipedia.org/wiki/Quantum_mechanicshttps://en.wikipedia.org/wiki/Quantum_mechanicshttps://en.wikipedia.org/wiki/Electronhttps://en.wikipedia.org/wiki/Electronhttps://en.wikipedia.org/wiki/Electronhttps://en.wikipedia.org/wiki/Atomhttps://en.wikipedia.org/wiki/Atomhttps://en.wikipedia.org/wiki/Atomhttps://en.wikipedia.org/wiki/Quantum_statehttps://en.wikipedia.org/wiki/Quantum_statehttps://en.wikipedia.org/wiki/Quantum_statehttps://en.wikipedia.org/wiki/Wave_functionhttps://en.wikipedia.org/wiki/Wave_functionhttps://en.wikipedia.org/wiki/Atomic_orbitalhttps://en.wikipedia.org/wiki/Atomic_orbitalhttps://en.wikipedia.org/wiki/Atomic_orbitalhttps://en.wikipedia.org/wiki/Ionization_energyhttps://en.wikipedia.org/wiki/Ionization_energyhttps://en.wikipedia.org/wiki/Ionization_energyhttps://en.wikipedia.org/wiki/Ionization_energyhttps://en.wikipedia.org/wiki/Atomic_orbitalhttps://en.wikipedia.org/wiki/Wave_functionhttps://en.wikipedia.org/wiki/Quantum_statehttps://en.wikipedia.org/wiki/Atomhttps://en.wikipedia.org/wiki/Electronhttps://en.wikipedia.org/wiki/Quantum_mechanicshttps://en.wikipedia.org/wiki/Quantum_mechanicshttps://en.wikipedia.org/wiki/Electronic_band_structurehttps://en.wikipedia.org/wiki/Tight_binding#External_linkshttps://en.wikipedia.org/wiki/Tight_binding#Further_readinghttps://en.wikipedia.org/wiki/Tight_binding#Referenceshttps://en.wikipedia.org/wiki/Tight_binding#See_alsohttps://en.wikipedia.org/wiki/Tight_binding#Table_of_interatomic_matrix_elementshttps://en.wikipedia.org/wiki/Tight_binding#Example:_one-dimensional_s-bandhttps://en.wikipedia.org/wiki/Tight_binding#Second_quantizationhttps://en.wikipedia.org/wiki/Tight_binding#Connection_to_Wannier_functionshttps://en.wikipedia.org/wiki/Tight_binding#Evaluation_of_the_matrix_elementshttps://en.wikipedia.org/wiki/Tight_binding#The_tight_binding_matrix_elementshttps://en.wikipedia.org/wiki/Tight_binding#The_tight_binding_Hamiltonianhttps://en.wikipedia.org/wiki/Tight_binding#Translational_symmetry_and_normalizationhttps://en.wikipedia.org/wiki/Tight_binding#Mathematical_formulationhttps://en.wikipedia.org/wiki/Tight_binding#Historical_backgroundhttps://en.wikipedia.org/wiki/Tight_binding#Introductionhttps://en.wikipedia.org/wiki/Quasiparticlehttps://en.wikipedia.org/wiki/Many-body_problemhttps://en.wikipedia.org/wiki/Surface_stateshttps://en.wikipedia.org/wiki/Linear_combination_of_atomic_orbitalshttps://en.wikipedia.org/wiki/Atomhttps://en.wikipedia.org/wiki/Quantum_superpositionhttps://en.wikipedia.org/wiki/Wave_functionhttps://en.wikipedia.org/wiki/Electronic_band_structurehttps://en.wikipedia.org/wiki/Solid-state_physicshttps://en.wikipedia.org/w/index.php?title=Template:Electronic_structure_methods&action=edit
  • 7/23/2019 wave function summation of bloch electron.docx

    3/14

    Though the mathematical formulation[1]

    of the one-particle tight-bindingHamiltonianmay look

    complicated at first glance, the model is not complicated at all and can be understood intuitively

    quite easily. There are onlythree kinds of elementsthat play a significant role in the theory. Twoof those three kinds of elements should be close to zero and can often be neglected. The most

    important elements in the model are the interatomic matrix elements, which would simply be

    called thebond energiesby a chemist.

    In general there are a number ofatomic energy levelsand atomic orbitals involved in the model.

    This can lead to complicated band structures because the orbitals belong to differentpoint-grouprepresentations. Thereciprocal latticeand theBrillouin zoneoften belong to a differentspace

    groupthan thecrystalof the solid. High-symmetry points in the Brillouin zone belong to

    different point-group representations. When simple systems like the lattices of elements or

    simple compounds are studied it is often not very difficult to calculate eigenstates in high-symmetry points analytically. So the tight-binding model can provide nice examples for those

    who want to learn more aboutgroup theory.

    The tight-binding model has a long history and has been applied in many ways and with manydifferent purposes and different outcomes. The model doesn't stand on its own. Parts of the

    model can be filled in or extended by other kinds of calculations and models like thenearly-freeelectron model. The model itself, or parts of it, can serve as the basis for other calculations.

    [2]In

    the study ofconductive polymers,organic semiconductorsandmolecular electronics, for

    example, tight-binding-like models are applied in which the role of the atoms in the original

    concept is replaced by themolecular orbitalsofconjugated systemsand where the interatomicmatrix elements are replaced by inter- or intramolecular hopping andtunnelingparameters.

    These conductors nearly all have very anisotropic properties and sometimes are almost perfectly

    one-dimensional.

    Historical background

    By 1928, the idea of a molecular orbital had been advanced byRobert Mulliken, who wasinfluenced considerably by the work ofFriedrich Hund. The LCAO method for approximating

    molecular orbitals was introduced in 1928 by B. N. Finklestein and G. E. Horowitz, while the

    LCAO method for solids was developed byFelix Bloch, as part of his doctoral dissertation in1928, concurrently with and independent of the LCAO-MO approach. A much simpler

    interpolation scheme for approximating the electronic band structure, especially for the d-bands

    oftransition metals, is the parameterized tight-binding method conceived in 1954 byJohn ClarkeSlaterand George Fred Koster,

    [1]sometimes referred to as theSK tight-binding method. With the

    SK tight-binding method, electronic band structure calculations on a solid need not be carried out

    with full rigor as in the originalBloch's theorembut, rather, first-principles calculations arecarried out only at high-symmetry points and the band structure is interpolated over theremainder of theBrillouin zonebetween these points.

    In this approach, interactions between different atomic sites are considered asperturbations.There exist several kinds of interactions we must consider. The crystalHamiltonianis only

    approximately a sum of atomic Hamiltonians located at different sites and atomic wave functions

    overlap adjacent atomic sites in the crystal, and so are not accurate representations of the exact

    https://en.wikipedia.org/wiki/Tight_binding#cite_note-SlaterKoster-1https://en.wikipedia.org/wiki/Tight_binding#cite_note-SlaterKoster-1https://en.wikipedia.org/wiki/Hamiltonian_%28quantum_mechanics%29https://en.wikipedia.org/wiki/Hamiltonian_%28quantum_mechanics%29https://en.wikipedia.org/wiki/Hamiltonian_%28quantum_mechanics%29https://en.wikipedia.org/wiki/Tight_binding#The_tight_binding_matrix_elementshttps://en.wikipedia.org/wiki/Tight_binding#The_tight_binding_matrix_elementshttps://en.wikipedia.org/wiki/Tight_binding#The_tight_binding_matrix_elementshttps://en.wikipedia.org/wiki/Bond_energyhttps://en.wikipedia.org/wiki/Bond_energyhttps://en.wikipedia.org/wiki/Bond_energyhttps://en.wikipedia.org/wiki/Energy_levelhttps://en.wikipedia.org/wiki/Energy_levelhttps://en.wikipedia.org/wiki/Energy_levelhttps://en.wikipedia.org/wiki/Point_groups_in_three_dimensionshttps://en.wikipedia.org/wiki/Point_groups_in_three_dimensionshttps://en.wikipedia.org/wiki/Point_groups_in_three_dimensionshttps://en.wikipedia.org/wiki/Reciprocal_latticehttps://en.wikipedia.org/wiki/Reciprocal_latticehttps://en.wikipedia.org/wiki/Reciprocal_latticehttps://en.wikipedia.org/wiki/Brillouin_zonehttps://en.wikipedia.org/wiki/Brillouin_zonehttps://en.wikipedia.org/wiki/Brillouin_zonehttps://en.wikipedia.org/wiki/Space_grouphttps://en.wikipedia.org/wiki/Space_grouphttps://en.wikipedia.org/wiki/Space_grouphttps://en.wikipedia.org/wiki/Space_grouphttps://en.wikipedia.org/wiki/Crystal_structurehttps://en.wikipedia.org/wiki/Crystal_structurehttps://en.wikipedia.org/wiki/Crystal_structurehttps://en.wikipedia.org/wiki/Group_theoryhttps://en.wikipedia.org/wiki/Group_theoryhttps://en.wikipedia.org/wiki/Group_theoryhttps://en.wikipedia.org/wiki/Nearly-free_electron_modelhttps://en.wikipedia.org/wiki/Nearly-free_electron_modelhttps://en.wikipedia.org/wiki/Nearly-free_electron_modelhttps://en.wikipedia.org/wiki/Nearly-free_electron_modelhttps://en.wikipedia.org/wiki/Tight_binding#cite_note-Harrison-2https://en.wikipedia.org/wiki/Tight_binding#cite_note-Harrison-2https://en.wikipedia.org/wiki/Tight_binding#cite_note-Harrison-2https://en.wikipedia.org/wiki/Conductive_polymerhttps://en.wikipedia.org/wiki/Conductive_polymerhttps://en.wikipedia.org/wiki/Conductive_polymerhttps://en.wikipedia.org/wiki/Organic_semiconductorhttps://en.wikipedia.org/wiki/Organic_semiconductorhttps://en.wikipedia.org/wiki/Organic_semiconductorhttps://en.wikipedia.org/wiki/Molecular_electronicshttps://en.wikipedia.org/wiki/Molecular_electronicshttps://en.wikipedia.org/wiki/Molecular_electronicshttps://en.wikipedia.org/wiki/Molecular_orbitalhttps://en.wikipedia.org/wiki/Molecular_orbitalhttps://en.wikipedia.org/wiki/Molecular_orbitalhttps://en.wikipedia.org/wiki/Conjugated_systemhttps://en.wikipedia.org/wiki/Conjugated_systemhttps://en.wikipedia.org/wiki/Conjugated_systemhttps://en.wikipedia.org/wiki/Quantum_tunnelinghttps://en.wikipedia.org/wiki/Quantum_tunnelinghttps://en.wikipedia.org/wiki/Quantum_tunnelinghttps://en.wikipedia.org/wiki/Robert_S._Mullikenhttps://en.wikipedia.org/wiki/Robert_S._Mullikenhttps://en.wikipedia.org/wiki/Robert_S._Mullikenhttps://en.wikipedia.org/wiki/Friedrich_Hundhttps://en.wikipedia.org/wiki/Friedrich_Hundhttps://en.wikipedia.org/wiki/Friedrich_Hundhttps://en.wikipedia.org/wiki/Felix_Blochhttps://en.wikipedia.org/wiki/Felix_Blochhttps://en.wikipedia.org/wiki/Felix_Blochhttps://en.wikipedia.org/wiki/Transition_metalhttps://en.wikipedia.org/wiki/Transition_metalhttps://en.wikipedia.org/wiki/Transition_metalhttps://en.wikipedia.org/wiki/John_C._Slaterhttps://en.wikipedia.org/wiki/John_C._Slaterhttps://en.wikipedia.org/wiki/John_C._Slaterhttps://en.wikipedia.org/wiki/John_C._Slaterhttps://en.wikipedia.org/wiki/Tight_binding#cite_note-SlaterKoster-1https://en.wikipedia.org/wiki/Tight_binding#cite_note-SlaterKoster-1https://en.wikipedia.org/wiki/Tight_binding#cite_note-SlaterKoster-1https://en.wikipedia.org/wiki/Tight_binding#Table_of_inter_atomic_matrix_elementshttps://en.wikipedia.org/wiki/Tight_binding#Table_of_inter_atomic_matrix_elementshttps://en.wikipedia.org/wiki/Tight_binding#Table_of_inter_atomic_matrix_elementshttps://en.wikipedia.org/wiki/Bloch_wavehttps://en.wikipedia.org/wiki/Bloch_wavehttps://en.wikipedia.org/wiki/Bloch_wavehttps://en.wikipedia.org/wiki/Brillouin_zonehttps://en.wikipedia.org/wiki/Brillouin_zonehttps://en.wikipedia.org/wiki/Brillouin_zonehttps://en.wikipedia.org/wiki/Perturbation_theory_%28quantum_mechanics%29https://en.wikipedia.org/wiki/Perturbation_theory_%28quantum_mechanics%29https://en.wikipedia.org/wiki/Perturbation_theory_%28quantum_mechanics%29https://en.wikipedia.org/wiki/Hamiltonian_%28quantum_mechanics%29https://en.wikipedia.org/wiki/Hamiltonian_%28quantum_mechanics%29https://en.wikipedia.org/wiki/Hamiltonian_%28quantum_mechanics%29https://en.wikipedia.org/wiki/Hamiltonian_%28quantum_mechanics%29https://en.wikipedia.org/wiki/Perturbation_theory_%28quantum_mechanics%29https://en.wikipedia.org/wiki/Brillouin_zonehttps://en.wikipedia.org/wiki/Bloch_wavehttps://en.wikipedia.org/wiki/Tight_binding#Table_of_inter_atomic_matrix_elementshttps://en.wikipedia.org/wiki/Tight_binding#cite_note-SlaterKoster-1https://en.wikipedia.org/wiki/John_C._Slaterhttps://en.wikipedia.org/wiki/John_C._Slaterhttps://en.wikipedia.org/wiki/Transition_metalhttps://en.wikipedia.org/wiki/Felix_Blochhttps://en.wikipedia.org/wiki/Friedrich_Hundhttps://en.wikipedia.org/wiki/Robert_S._Mullikenhttps://en.wikipedia.org/wiki/Quantum_tunnelinghttps://en.wikipedia.org/wiki/Conjugated_systemhttps://en.wikipedia.org/wiki/Molecular_orbitalhttps://en.wikipedia.org/wiki/Molecular_electronicshttps://en.wikipedia.org/wiki/Organic_semiconductorhttps://en.wikipedia.org/wiki/Conductive_polymerhttps://en.wikipedia.org/wiki/Tight_binding#cite_note-Harrison-2https://en.wikipedia.org/wiki/Nearly-free_electron_modelhttps://en.wikipedia.org/wiki/Nearly-free_electron_modelhttps://en.wikipedia.org/wiki/Group_theoryhttps://en.wikipedia.org/wiki/Crystal_structurehttps://en.wikipedia.org/wiki/Space_grouphttps://en.wikipedia.org/wiki/Space_grouphttps://en.wikipedia.org/wiki/Brillouin_zonehttps://en.wikipedia.org/wiki/Reciprocal_latticehttps://en.wikipedia.org/wiki/Point_groups_in_three_dimensionshttps://en.wikipedia.org/wiki/Energy_levelhttps://en.wikipedia.org/wiki/Bond_energyhttps://en.wikipedia.org/wiki/Tight_binding#The_tight_binding_matrix_elementshttps://en.wikipedia.org/wiki/Hamiltonian_%28quantum_mechanics%29https://en.wikipedia.org/wiki/Tight_binding#cite_note-SlaterKoster-1
  • 7/23/2019 wave function summation of bloch electron.docx

    4/14

    wave function. There are further explanations in the next section with some mathematical

    expressions.

    Recently, in the research aboutstrongly correlated material, the tight binding approach is basic

    approximation because highly localized electrons like 3-dtransition metalelectrons sometimes

    display strongly correlated behaviors. In this case, the role of electron-electron interaction mustbe considered using themany-body physicsdescription.

    The tight-binding model is typically used for calculations ofelectronic band structureandbandgapsin the static regime. However, in combination with other methods such as therandom phase

    approximation(RPA) model, the dynamic response of systems may also be studied.

    Mathematical formulation

    We introduce theatomic orbitals , which areeigenfunctionsof theHamiltonian of asingle isolated atom. When the atom is placed in a crystal, this atomic wave function overlaps

    adjacent atomic sites, and so are not true eigenfunctions of the crystal Hamiltonian. The overlap

    is less when electrons are tightly bound, which is the source of the descriptor "tight-binding".Any corrections to the atomic potential required to obtain the true Hamiltonian of the

    system, are assumed small:

    A solution to the time-independent single electronSchrdinger equationis then approximated

    as alinear combination of atomic orbitals :

    ,

    where refers to the m-th atomic energy level and locates an atomic site in thecrystallattice.

    Translational symmetry and normalization

    Thetranslational symmetryof the crystal implies the wave function under translation can change

    only by a phase factor:

    where is thewave vectorof the wave function. Consequently, the coefficients satisfy

    https://en.wikipedia.org/wiki/Strongly_correlated_materialhttps://en.wikipedia.org/wiki/Strongly_correlated_materialhttps://en.wikipedia.org/wiki/Strongly_correlated_materialhttps://en.wikipedia.org/wiki/Transition_metalhttps://en.wikipedia.org/wiki/Transition_metalhttps://en.wikipedia.org/wiki/Transition_metalhttps://en.wikipedia.org/wiki/Many-body_theoryhttps://en.wikipedia.org/wiki/Many-body_theoryhttps://en.wikipedia.org/wiki/Many-body_theoryhttps://en.wikipedia.org/wiki/Electronic_band_structurehttps://en.wikipedia.org/wiki/Electronic_band_structurehttps://en.wikipedia.org/wiki/Electronic_band_structurehttps://en.wikipedia.org/wiki/Band_gaphttps://en.wikipedia.org/wiki/Band_gaphttps://en.wikipedia.org/wiki/Band_gaphttps://en.wikipedia.org/wiki/Band_gaphttps://en.wikipedia.org/wiki/Random_phase_approximationhttps://en.wikipedia.org/wiki/Random_phase_approximationhttps://en.wikipedia.org/wiki/Random_phase_approximationhttps://en.wikipedia.org/wiki/Random_phase_approximationhttps://en.wikipedia.org/wiki/Atomic_orbitalhttps://en.wikipedia.org/wiki/Atomic_orbitalhttps://en.wikipedia.org/wiki/Atomic_orbitalhttps://en.wikipedia.org/wiki/Eigenfunctionhttps://en.wikipedia.org/wiki/Eigenfunctionhttps://en.wikipedia.org/wiki/Eigenfunctionhttps://en.wikipedia.org/wiki/Hamiltonian_%28quantum_mechanics%29https://en.wikipedia.org/wiki/Hamiltonian_%28quantum_mechanics%29https://en.wikipedia.org/wiki/Hamiltonian_%28quantum_mechanics%29https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equationhttps://en.wikipedia.org/wiki/Schr%C3%B6dinger_equationhttps://en.wikipedia.org/wiki/Schr%C3%B6dinger_equationhttps://en.wikipedia.org/wiki/Linear_combination_of_atomic_orbitals_molecular_orbital_methodhttps://en.wikipedia.org/wiki/Linear_combination_of_atomic_orbitals_molecular_orbital_methodhttps://en.wikipedia.org/wiki/Linear_combination_of_atomic_orbitals_molecular_orbital_methodhttps://en.wikipedia.org/wiki/Crystal_structurehttps://en.wikipedia.org/wiki/Crystal_structurehttps://en.wikipedia.org/wiki/Crystal_structurehttps://en.wikipedia.org/wiki/Crystal_structurehttps://en.wikipedia.org/wiki/Translational_symmetryhttps://en.wikipedia.org/wiki/Translational_symmetryhttps://en.wikipedia.org/wiki/Translational_symmetryhttps://en.wikipedia.org/wiki/Wave_vectorhttps://en.wikipedia.org/wiki/Wave_vectorhttps://en.wikipedia.org/wiki/Wave_vectorhttps://en.wikipedia.org/wiki/Wave_vectorhttps://en.wikipedia.org/wiki/Translational_symmetryhttps://en.wikipedia.org/wiki/Crystal_structurehttps://en.wikipedia.org/wiki/Crystal_structurehttps://en.wikipedia.org/wiki/Linear_combination_of_atomic_orbitals_molecular_orbital_methodhttps://en.wikipedia.org/wiki/Schr%C3%B6dinger_equationhttps://en.wikipedia.org/wiki/Hamiltonian_%28quantum_mechanics%29https://en.wikipedia.org/wiki/Eigenfunctionhttps://en.wikipedia.org/wiki/Atomic_orbitalhttps://en.wikipedia.org/wiki/Random_phase_approximationhttps://en.wikipedia.org/wiki/Random_phase_approximationhttps://en.wikipedia.org/wiki/Band_gaphttps://en.wikipedia.org/wiki/Band_gaphttps://en.wikipedia.org/wiki/Electronic_band_structurehttps://en.wikipedia.org/wiki/Many-body_theoryhttps://en.wikipedia.org/wiki/Transition_metalhttps://en.wikipedia.org/wiki/Strongly_correlated_material
  • 7/23/2019 wave function summation of bloch electron.docx

    5/14

    By substituting , we find

    or

    Normalizingthe wave function to unity:

    so the normalization sets b(0) as

    where (Rp ) are the atomic overlap integrals, which frequently are neglected resulting in[3]

    and

    https://en.wikipedia.org/wiki/Normalizable_wave_functionhttps://en.wikipedia.org/wiki/Normalizable_wave_functionhttps://en.wikipedia.org/wiki/Tight_binding#cite_note-Lowdin-3https://en.wikipedia.org/wiki/Tight_binding#cite_note-Lowdin-3https://en.wikipedia.org/wiki/Tight_binding#cite_note-Lowdin-3https://en.wikipedia.org/wiki/Normalizable_wave_function
  • 7/23/2019 wave function summation of bloch electron.docx

    6/14

    The tight binding Hamiltonian

    Using the tight binding form for the wave function, and assuming only the m-th atomicenergy

    levelis important for the m-th energy band, the Bloch energies are of the form

    Here terms involving the atomic Hamiltonian at sites other than where it is centered are

    neglected. The energy then becomes

    whereEm is the energy of the m-th atomic level, and , and are the tight bindingmatrix elements.

    The tight binding matrix elements

    The element

    ,

    is the atomic energy shift due to the potential on neighboring atoms. This term is relatively smallin most cases. If it is large it means that potentials on neighboring atoms have a large influence

    on the energy of the central atom.

    The next term

    https://en.wikipedia.org/wiki/Energy_levelhttps://en.wikipedia.org/wiki/Energy_levelhttps://en.wikipedia.org/wiki/Energy_levelhttps://en.wikipedia.org/wiki/Energy_levelhttps://en.wikipedia.org/wiki/Energy_levelhttps://en.wikipedia.org/wiki/Energy_level
  • 7/23/2019 wave function summation of bloch electron.docx

    7/14

    is theinter atomic matrix elementbetween the atomic orbitals m and lon adjacent atoms. It is

    also called the bond energy or two center integral and it is the most important element in the

    tight binding model.

    The last terms

    ,

    denote theoverlap integralsbetween the atomic orbitals m and lon adjacent atoms.

    Evaluation of the matrix elements

    As mentioned before the values of the -matrix elements are not so large in comparison with

    the ionization energy because the potentials of neighboring atoms on the central atom are

    limited. If is not relatively small it means that the potential of the neighboring atom on thecentral atom is not small either. In that case it is an indication that the tight binding model is not

    a very good model for the description of the band structure for some reason. The inter atomic

    distances can be too small or the charges on the atoms or ions in the lattice is wrong for example.

    The inter atomic matrix elements can be calculated directly if the atomic wave functionsand the potentials are known in detail. Most often this is not the case. There are numerous ways

    to get parameters for these matrix elements. Parameters can be obtained fromchemical bond

    energy data. Energies and eigenstates on some high symmetry points in theBrillouin zonecan be

    evaluated and values integrals in the matrix elements can be matched with band structure datafrom other sources.

    The inter atomic overlap matrix elements should be rather small or neglectable. If they arelarge it is again an indication that the tight binding model is of limited value for some purposes.

    Large overlap is an indication for too short inter atomic distance for example. In metals andtransition metals the broad s-band or sp-band can be fitted better to an existing band structure

    calculation by the introduction of next-nearest-neighbor matrix elements and overlap integrals

    but fits like that don't yield a very useful model for the electronic wave function of a metal.

    Broad bands in dense materials are better described by anearly free electron model.

    The tight binding model works particularly well in cases where the band width is small and theelectrons are strongly localized, like in the case of d-bands and f-bands. The model also gives

    good results in the case of open crystal structures, like diamond or silicon, where the number of

    neighbors is small. The model can easily be combined with a nearly free electron model in a

    hybrid NFE-TB model.[2]

    https://en.wikipedia.org/wiki/Tight_binding#Table_of_inter_atomic_matrix_elementshttps://en.wikipedia.org/wiki/Tight_binding#Table_of_inter_atomic_matrix_elementshttps://en.wikipedia.org/wiki/Tight_binding#Table_of_inter_atomic_matrix_elementshttps://en.wikipedia.org/wiki/Overlap_matrixhttps://en.wikipedia.org/wiki/Overlap_matrixhttps://en.wikipedia.org/wiki/Overlap_matrixhttps://en.wikipedia.org/wiki/Bond_energy#External_linkshttps://en.wikipedia.org/wiki/Bond_energy#External_linkshttps://en.wikipedia.org/wiki/Bond_energy#External_linkshttps://en.wikipedia.org/wiki/Bond_energy#External_linkshttps://en.wikipedia.org/wiki/Brillouin_zonehttps://en.wikipedia.org/wiki/Brillouin_zonehttps://en.wikipedia.org/wiki/Brillouin_zonehttps://en.wikipedia.org/wiki/Nearly_free_electron_modelhttps://en.wikipedia.org/wiki/Nearly_free_electron_modelhttps://en.wikipedia.org/wiki/Nearly_free_electron_modelhttps://en.wikipedia.org/wiki/Tight_binding#cite_note-Harrison-2https://en.wikipedia.org/wiki/Tight_binding#cite_note-Harrison-2https://en.wikipedia.org/wiki/Tight_binding#cite_note-Harrison-2https://en.wikipedia.org/wiki/Tight_binding#cite_note-Harrison-2https://en.wikipedia.org/wiki/Nearly_free_electron_modelhttps://en.wikipedia.org/wiki/Brillouin_zonehttps://en.wikipedia.org/wiki/Bond_energy#External_linkshttps://en.wikipedia.org/wiki/Bond_energy#External_linkshttps://en.wikipedia.org/wiki/Overlap_matrixhttps://en.wikipedia.org/wiki/Tight_binding#Table_of_inter_atomic_matrix_elements
  • 7/23/2019 wave function summation of bloch electron.docx

    8/14

    Connection to Wannier functions

    Bloch wavefunctions describe the electronic states in a periodiccrystal lattice. Bloch functions

    can be represented as aFourier series[4]

    where Rn denotes an atomic site in a periodic crystal lattice, kis thewave vectorof the Bloch

    wave, ris the electron position, m is the band index, and the sum is over allNatomic sites. The

    Bloch wave is an exact eigensolution for the wave function of an electron in a periodic crystalpotential corresponding to an energyEm (k), and is spread over the entire crystal volume.

    Using theFourier transformanalysis, a spatially localized wave function for the m-th energyband can be constructed from multiple Bloch waves:

    These real space wave functions are calledWannier functions, and are fairly closelylocalized to the atomic site Rn. Of course, if we have exactWannier functions, the exact Bloch

    functions can be derived using the inverse Fourier transform.

    However it is not easy to calculate directly eitherBloch functionsorWannier functions. Anapproximate approach is necessary in the calculation ofelectronic structuresof solids. If we

    consider the extreme case of isolated atoms, the Wannier function would become an isolatedatomic orbital. That limit suggests the choice of an atomic wave function as an approximate formfor the Wannier function, the so-called tight binding approximation.

    Second quantization

    Modern explanations of electronic structure liket-J modelandHubbard modelare based on tight

    binding model.[5]

    If we introducesecond quantizationformalism, it is clear to understand theconcept of tight binding model.

    Using the atomic orbital as a basis state, we can establish the second quantization Hamiltonian

    operator in tight binding model.

    ,

    - creation and annihilation operators- spin polarization

    https://en.wikipedia.org/wiki/Bloch_wavehttps://en.wikipedia.org/wiki/Bloch_wavehttps://en.wikipedia.org/wiki/Crystal_structurehttps://en.wikipedia.org/wiki/Crystal_structurehttps://en.wikipedia.org/wiki/Crystal_structurehttps://en.wikipedia.org/wiki/Fourier_serieshttps://en.wikipedia.org/wiki/Fourier_serieshttps://en.wikipedia.org/wiki/Fourier_serieshttps://en.wikipedia.org/wiki/Fourier_serieshttps://en.wikipedia.org/wiki/Wave_vectorhttps://en.wikipedia.org/wiki/Wave_vectorhttps://en.wikipedia.org/wiki/Wave_vectorhttps://en.wikipedia.org/wiki/Fourier_transformhttps://en.wikipedia.org/wiki/Fourier_transformhttps://en.wikipedia.org/wiki/Fourier_transformhttps://en.wikipedia.org/wiki/Wannier_functionhttps://en.wikipedia.org/wiki/Wannier_functionhttps://en.wikipedia.org/wiki/Wannier_functionhttps://en.wikipedia.org/wiki/Wannier_functionhttps://en.wikipedia.org/wiki/Wannier_functionhttps://en.wikipedia.org/wiki/Wannier_functionhttps://en.wikipedia.org/wiki/Bloch_wavehttps://en.wikipedia.org/wiki/Bloch_wavehttps://en.wikipedia.org/wiki/Bloch_wavehttps://en.wikipedia.org/wiki/Wannier_functionhttps://en.wikipedia.org/wiki/Wannier_functionhttps://en.wikipedia.org/wiki/Wannier_functionhttps://en.wikipedia.org/wiki/Electronic_structurehttps://en.wikipedia.org/wiki/Electronic_structurehttps://en.wikipedia.org/wiki/Electronic_structurehttps://en.wikipedia.org/wiki/T-J_modelhttps://en.wikipedia.org/wiki/T-J_modelhttps://en.wikipedia.org/wiki/T-J_modelhttps://en.wikipedia.org/wiki/Hubbard_modelhttps://en.wikipedia.org/wiki/Hubbard_modelhttps://en.wikipedia.org/wiki/Hubbard_modelhttps://en.wikipedia.org/wiki/Tight_binding#cite_note-Altland-5https://en.wikipedia.org/wiki/Tight_binding#cite_note-Altland-5https://en.wikipedia.org/wiki/Tight_binding#cite_note-Altland-5https://en.wikipedia.org/wiki/Second_quantizationhttps://en.wikipedia.org/wiki/Second_quantizationhttps://en.wikipedia.org/wiki/Second_quantizationhttps://en.wikipedia.org/wiki/Second_quantizationhttps://en.wikipedia.org/wiki/Tight_binding#cite_note-Altland-5https://en.wikipedia.org/wiki/Hubbard_modelhttps://en.wikipedia.org/wiki/T-J_modelhttps://en.wikipedia.org/wiki/Electronic_structurehttps://en.wikipedia.org/wiki/Wannier_functionhttps://en.wikipedia.org/wiki/Bloch_wavehttps://en.wikipedia.org/wiki/Wannier_functionhttps://en.wikipedia.org/wiki/Wannier_functionhttps://en.wikipedia.org/wiki/Fourier_transformhttps://en.wikipedia.org/wiki/Wave_vectorhttps://en.wikipedia.org/wiki/Fourier_serieshttps://en.wikipedia.org/wiki/Fourier_serieshttps://en.wikipedia.org/wiki/Crystal_structurehttps://en.wikipedia.org/wiki/Bloch_wave
  • 7/23/2019 wave function summation of bloch electron.docx

    9/14

    - hopping integral

    -nearest neighbor index

    Here, hopping integral corresponds to the transfer integral in tight binding model.

    Considering extreme cases of , it is impossible for electron to hop into neighboring sites.

    This case is the isolated atomic system. If the hopping term is turned on ( ) electrons canstay in both sites lowering theirkinetic energy.

    In the strongly correlated electron system, it is necessary to consider the electron-electron

    interaction. This term can be written in

    This interaction Hamiltonian includes directCoulombinteraction energy and exchange

    interaction energy between electrons. There are several novel physics induced from this electron-electron interaction energy, such asmetal-insulator transitions(MIT),high-temperature

    superconductivity, and severalquantum phase transitions.

    Example: one-dimensional s-band

    Here the tight binding model is illustrated with a s-band model for a string of atoms with a

    singles-orbitalin a straight line with spacing a and bondsbetween atomic sites.

    To find approximate eigenstates of the Hamiltonian, we can use a linear combination of the

    atomic orbitals

    whereN= total number of sites and is a real parameter with . (This wavefunction is normalized to unity by the leading factor 1/N provided overlap of atomic wavefunctions is ignored.) Assuming only nearest neighbor overlap, the only non-zero matrix

    elements of the Hamiltonian can be expressed as

    The energyEi is the ionization energy corresponding to the chosen atomic orbital and Uis theenergy shift of the orbital as a result of the potential of neighboring atoms. The

    elements, which are theSlater and Koster interatomic matrix elements,

    https://en.wikipedia.org/wiki/Kinetic_energyhttps://en.wikipedia.org/wiki/Kinetic_energyhttps://en.wikipedia.org/wiki/Kinetic_energyhttps://en.wikipedia.org/wiki/Coulomb%27s_lawhttps://en.wikipedia.org/wiki/Coulomb%27s_lawhttps://en.wikipedia.org/wiki/Coulomb%27s_lawhttps://en.wikipedia.org/wiki/Metal-insulator_transitionhttps://en.wikipedia.org/wiki/Metal-insulator_transitionhttps://en.wikipedia.org/wiki/Metal-insulator_transitionhttps://en.wikipedia.org/wiki/High-temperature_superconductivityhttps://en.wikipedia.org/wiki/High-temperature_superconductivityhttps://en.wikipedia.org/wiki/High-temperature_superconductivityhttps://en.wikipedia.org/wiki/High-temperature_superconductivityhttps://en.wikipedia.org/wiki/Quantum_phase_transitionhttps://en.wikipedia.org/wiki/Quantum_phase_transitionhttps://en.wikipedia.org/wiki/Quantum_phase_transitionhttps://en.wikipedia.org/wiki/Cubic_harmonic#The_s-orbitalshttps://en.wikipedia.org/wiki/Cubic_harmonic#The_s-orbitalshttps://en.wikipedia.org/wiki/Cubic_harmonic#The_s-orbitalshttps://en.wikipedia.org/wiki/Sigma_bondhttps://en.wikipedia.org/wiki/Sigma_bondhttps://en.wikipedia.org/wiki/Sigma_bondhttps://en.wikipedia.org/wiki/Tight_binding#Table_of_interatomic_matrix_elementshttps://en.wikipedia.org/wiki/Tight_binding#Table_of_interatomic_matrix_elementshttps://en.wikipedia.org/wiki/Tight_binding#Table_of_interatomic_matrix_elementshttps://en.wikipedia.org/wiki/Tight_binding#Table_of_interatomic_matrix_elementshttps://en.wikipedia.org/wiki/Sigma_bondhttps://en.wikipedia.org/wiki/Cubic_harmonic#The_s-orbitalshttps://en.wikipedia.org/wiki/Quantum_phase_transitionhttps://en.wikipedia.org/wiki/High-temperature_superconductivityhttps://en.wikipedia.org/wiki/High-temperature_superconductivityhttps://en.wikipedia.org/wiki/Metal-insulator_transitionhttps://en.wikipedia.org/wiki/Coulomb%27s_lawhttps://en.wikipedia.org/wiki/Kinetic_energy
  • 7/23/2019 wave function summation of bloch electron.docx

    10/14

    are thebond energies . In this one dimensional s-band model we only have -bonds

    between the s-orbitals with bond energy . The overlap between states on

    neighboring atoms is S. We can derive the energy of the state using the above equation:

    where, for example,

    and

    Thus the energy of this state can be represented in the familiar form of the energy dispersion:

    .

    For the energy is and the state consists of a sumof all atomic orbitals. This state can be viewed as a chain ofbonding orbitals.

    For the energy is and the state consists of a sum of atomicorbitals which are a factor out of phase. This state can be viewed as a chain ofnon-bonding orbitals.

    Finally for the energy is and the state consistsof an alternating sum of atomic orbitals. This state can be viewed as a chain ofanti-

    bonding orbitals.

    This example is readily extended to three dimensions, for example, to a body-centered cubic or

    face-centered cubic lattice by introducing the nearest neighbor vector locations in place of

    https://en.wikipedia.org/wiki/Chemical_bondhttps://en.wikipedia.org/wiki/Chemical_bondhttps://en.wikipedia.org/wiki/Chemical_bondhttps://en.wikipedia.org/wiki/Molecular_orbitalhttps://en.wikipedia.org/wiki/Molecular_orbitalhttps://en.wikipedia.org/wiki/Molecular_orbitalhttps://en.wikipedia.org/wiki/Non-bonding_orbitalhttps://en.wikipedia.org/wiki/Non-bonding_orbitalhttps://en.wikipedia.org/wiki/Non-bonding_orbitalhttps://en.wikipedia.org/wiki/Non-bonding_orbitalhttps://en.wikipedia.org/wiki/Antibondinghttps://en.wikipedia.org/wiki/Antibondinghttps://en.wikipedia.org/wiki/Antibondinghttps://en.wikipedia.org/wiki/Antibondinghttps://en.wikipedia.org/wiki/Antibondinghttps://en.wikipedia.org/wiki/Antibondinghttps://en.wikipedia.org/wiki/Non-bonding_orbitalhttps://en.wikipedia.org/wiki/Non-bonding_orbitalhttps://en.wikipedia.org/wiki/Molecular_orbitalhttps://en.wikipedia.org/wiki/Chemical_bond
  • 7/23/2019 wave function summation of bloch electron.docx

    11/14

    simply n a.[6]

    Likewise, the method can be extended to multiple bands using multiple different

    atomic orbitals at each site. The general formulation above shows how these extensions can be

    accomplished.

    Table of interatomic matrix elements

    In 1954 J.C. Slater and F.G. Koster published, mainly for the calculation oftransition metald-

    bands, a table of interatomic matrix elements[1]

    which, with a little patience and effort, can also be derived from thecubic harmonic orbitalsstraightforwardly. The table expresses the matrix elements as functions ofLCAOtwo-centre

    bond integralsbetween twocubic harmonicorbitals, i andj, on adjacent atoms. The bond

    integrals are for example the , and forsigma,pianddeltabonds.

    The interatomic vector is expressed as

    where dis the distance between the atoms and l, m and n are thedirection cosinesto theneighboring atom.

    https://en.wikipedia.org/wiki/Tight_binding#cite_note-Mott-6https://en.wikipedia.org/wiki/Tight_binding#cite_note-Mott-6https://en.wikipedia.org/wiki/Tight_binding#cite_note-Mott-6https://en.wikipedia.org/wiki/Transition_metalhttps://en.wikipedia.org/wiki/Transition_metalhttps://en.wikipedia.org/wiki/Transition_metalhttps://en.wikipedia.org/wiki/Tight_binding#cite_note-SlaterKoster-1https://en.wikipedia.org/wiki/Tight_binding#cite_note-SlaterKoster-1https://en.wikipedia.org/wiki/Cubic_harmonichttps://en.wikipedia.org/wiki/Cubic_harmonichttps://en.wikipedia.org/wiki/Cubic_harmonichttps://en.wikipedia.org/wiki/LCAOhttps://en.wikipedia.org/wiki/LCAOhttps://en.wikipedia.org/wiki/LCAOhttps://en.wikipedia.org/wiki/Chemical_bondhttps://en.wikipedia.org/wiki/Chemical_bondhttps://en.wikipedia.org/wiki/Cubic_harmonichttps://en.wikipedia.org/wiki/Cubic_harmonichttps://en.wikipedia.org/wiki/Cubic_harmonichttps://en.wikipedia.org/wiki/Sigma_bondhttps://en.wikipedia.org/wiki/Sigma_bondhttps://en.wikipedia.org/wiki/Sigma_bondhttps://en.wikipedia.org/wiki/Pi_bondhttps://en.wikipedia.org/wiki/Pi_bondhttps://en.wikipedia.org/wiki/Pi_bondhttps://en.wikipedia.org/wiki/Delta_bondhttps://en.wikipedia.org/wiki/Delta_bondhttps://en.wikipedia.org/wiki/Delta_bondhttps://en.wikipedia.org/wiki/Direction_cosinehttps://en.wikipedia.org/wiki/Direction_cosinehttps://en.wikipedia.org/wiki/Direction_cosinehttps://en.wikipedia.org/wiki/Direction_cosinehttps://en.wikipedia.org/wiki/Delta_bondhttps://en.wikipedia.org/wiki/Pi_bondhttps://en.wikipedia.org/wiki/Sigma_bondhttps://en.wikipedia.org/wiki/Cubic_harmonichttps://en.wikipedia.org/wiki/Chemical_bondhttps://en.wikipedia.org/wiki/LCAOhttps://en.wikipedia.org/wiki/Cubic_harmonichttps://en.wikipedia.org/wiki/Tight_binding#cite_note-SlaterKoster-1https://en.wikipedia.org/wiki/Transition_metalhttps://en.wikipedia.org/wiki/Tight_binding#cite_note-Mott-6
  • 7/23/2019 wave function summation of bloch electron.docx

    12/14

    Not all interatomic matrix elements are listed explicitly. Matrix elements that are not listed in

    this table can be constructed by permutation of indices and cosine directions of other matrixelements in the table.

    See also

    Electronic band structure Nearly-free electron

    model

    Bloch waves Kronig-Penney model Fermi surface Wannier function Hubbard model t-J model

    Effective mass Anderson's rule Dynamical theory of diffraction Solid state physics Linear combination of atomic orbitals molecular orbital

    method(LCAO)

    References

    https://en.wikipedia.org/wiki/Electronic_band_structurehttps://en.wikipedia.org/wiki/Electronic_band_structurehttps://en.wikipedia.org/wiki/Nearly-free_electron_modelhttps://en.wikipedia.org/wiki/Nearly-free_electron_modelhttps://en.wikipedia.org/wiki/Nearly-free_electron_modelhttps://en.wikipedia.org/wiki/Nearly-free_electron_modelhttps://en.wikipedia.org/wiki/Nearly-free_electron_modelhttps://en.wikipedia.org/wiki/Bloch_wavehttps://en.wikipedia.org/wiki/Bloch_wavehttps://en.wikipedia.org/wiki/Kronig-Penney_modelhttps://en.wikipedia.org/wiki/Kronig-Penney_modelhttps://en.wikipedia.org/wiki/Fermi_surfacehttps://en.wikipedia.org/wiki/Fermi_surfacehttps://en.wikipedia.org/wiki/Wannier_functionhttps://en.wikipedia.org/wiki/Wannier_functionhttps://en.wikipedia.org/wiki/Hubbard_modelhttps://en.wikipedia.org/wiki/Hubbard_modelhttps://en.wikipedia.org/wiki/T-J_modelhttps://en.wikipedia.org/wiki/T-J_modelhttps://en.wikipedia.org/wiki/Effective_mass_%28solid-state_physics%29https://en.wikipedia.org/wiki/Effective_mass_%28solid-state_physics%29https://en.wikipedia.org/wiki/Anderson%27s_rulehttps://en.wikipedia.org/wiki/Anderson%27s_rulehttps://en.wikipedia.org/wiki/Dynamical_theory_of_diffractionhttps://en.wikipedia.org/wiki/Dynamical_theory_of_diffractionhttps://en.wikipedia.org/wiki/Solid_state_physicshttps://en.wikipedia.org/wiki/Solid_state_physicshttps://en.wikipedia.org/wiki/Linear_combination_of_atomic_orbitals_molecular_orbital_methodhttps://en.wikipedia.org/wiki/Linear_combination_of_atomic_orbitals_molecular_orbital_methodhttps://en.wikipedia.org/wiki/Linear_combination_of_atomic_orbitals_molecular_orbital_methodhttps://en.wikipedia.org/wiki/Linear_combination_of_atomic_orbitals_molecular_orbital_methodhttps://en.wikipedia.org/wiki/Linear_combination_of_atomic_orbitals_molecular_orbital_methodhttps://en.wikipedia.org/wiki/Linear_combination_of_atomic_orbitals_molecular_orbital_methodhttps://en.wikipedia.org/wiki/Linear_combination_of_atomic_orbitals_molecular_orbital_methodhttps://en.wikipedia.org/wiki/Solid_state_physicshttps://en.wikipedia.org/wiki/Dynamical_theory_of_diffractionhttps://en.wikipedia.org/wiki/Anderson%27s_rulehttps://en.wikipedia.org/wiki/Effective_mass_%28solid-state_physics%29https://en.wikipedia.org/wiki/T-J_modelhttps://en.wikipedia.org/wiki/Hubbard_modelhttps://en.wikipedia.org/wiki/Wannier_functionhttps://en.wikipedia.org/wiki/Fermi_surfacehttps://en.wikipedia.org/wiki/Kronig-Penney_modelhttps://en.wikipedia.org/wiki/Bloch_wavehttps://en.wikipedia.org/wiki/Nearly-free_electron_modelhttps://en.wikipedia.org/wiki/Nearly-free_electron_modelhttps://en.wikipedia.org/wiki/Electronic_band_structure
  • 7/23/2019 wave function summation of bloch electron.docx

    13/14

    Wikimedia Commons has media related to:Dispersion r elati ons of electrons

    1. ^abcJ. C. Slater, G. F. Koster (1954). "Simplified LCAO method for the PeriodicPotential Problem".Physical Review94 (6): 14981524.Bibcode:1954PhRv...94.1498S.doi:10.1103/PhysRev.94.1498.

    2. ^abWalter Ashley Harrison (1989).Electronic Structure and the Properties of Solids.Dover Publications.ISBN0-486-66021-4.

    3. ^As an alternative to neglecting overlap, one may choose as a basis instead of atomicorbitals a set of orbitals based upon atomic orbitals but arranged to be orthogonal toorbitals on other atomic sites, the so-calledLwdin orbitals. See PY Yu & M Cardona

    (2005)."Tight-binding or LCAO approach to the band structure of semiconductors".

    Fundamentals of Semiconductors (3 ed.). Springrer. p. 87.ISBN3-540-25470-6.

    4. ^Orfried Madelung,Introduction to Solid-State Theory (Springer-Verlag, BerlinHeidelberg, 1978).

    5. ^Alexander Altland and Ben Simons (2006)."Interaction effects in the tight-bindingsystem".Condensed Matter Field Theory. Cambridge University Press. pp. 58ff.ISBN978-0-521-84508-3.

    6. ^Sir Nevill F Mott & H Jones (1958)."II 4 Motion of electrons in a periodic field".Thetheory of the properties of metals and alloys (Reprint of Clarendon Press (1936) ed.).Courier Dover Publications. pp. 56ff.ISBN0-486-60456-X.

    N. W. Ashcroft and N. D. Mermin, Solid State Physics (Thomson Learning, Toronto,1976).

    Stephen BlundellMagnetism in Condensed Matter(Oxford, 2001). S.Maekawa et al.Physics of Transition Metal Oxides (Spinger-Verlag Berlin Heidelberg,

    2004).

    John SingletonBand Theory and Electronic Properties of Solids (Oxford, 2001).Further reading

    Walter Ashley Harrison (1989).Electronic Structure and the Properties of Solids. DoverPublications.ISBN0-486-66021-4.

    N. W. Ashcroft and N. D. Mermin (1976). Solid State Physics. Toronto: ThomsonLearning.

    Davies, John H. (1998). The physics of low-dimensional semiconductors: Anintroduction. Cambridge, United Kingdom: Cambridge University Press.ISBN0-521-

    48491-X. Goringe, C M; Bowler, D R; Hernndez, E (1997). "Tight-binding modelling of

    materials".Reports on Progress in Physics60 (12): 14471512.Bibcode:1997RPPh...60.1447G.doi:10.1088/0034-4885/60/12/001.

    Slater, J. C.; Koster, G. F. (1954). "Simplified LCAO Method for the Periodic PotentialProblem".Physical Review94 (6): 14981524.Bibcode:1954PhRv...94.1498S.doi:10.1103/PhysRev.94.1498.

    https://commons.wikimedia.org/wiki/Category:Dispersion_relations_of_electronshttps://commons.wikimedia.org/wiki/Category:Dispersion_relations_of_electronshttps://commons.wikimedia.org/wiki/Category:Dispersion_relations_of_electronshttps://en.wikipedia.org/wiki/Tight_binding#cite_ref-SlaterKoster_1-0https://en.wikipedia.org/wiki/Tight_binding#cite_ref-SlaterKoster_1-0https://en.wikipedia.org/wiki/Tight_binding#cite_ref-SlaterKoster_1-1https://en.wikipedia.org/wiki/Tight_binding#cite_ref-SlaterKoster_1-1https://en.wikipedia.org/wiki/Tight_binding#cite_ref-SlaterKoster_1-2https://en.wikipedia.org/wiki/Tight_binding#cite_ref-SlaterKoster_1-2https://en.wikipedia.org/wiki/Tight_binding#cite_ref-SlaterKoster_1-2https://en.wikipedia.org/wiki/Physical_Reviewhttps://en.wikipedia.org/wiki/Physical_Reviewhttps://en.wikipedia.org/wiki/Physical_Reviewhttps://en.wikipedia.org/wiki/Bibcodehttps://en.wikipedia.org/wiki/Bibcodehttp://adsabs.harvard.edu/abs/1954PhRv...94.1498Shttp://adsabs.harvard.edu/abs/1954PhRv...94.1498Shttp://adsabs.harvard.edu/abs/1954PhRv...94.1498Shttps://en.wikipedia.org/wiki/Digital_object_identifierhttp://dx.doi.org/10.1103%2FPhysRev.94.1498http://dx.doi.org/10.1103%2FPhysRev.94.1498http://dx.doi.org/10.1103%2FPhysRev.94.1498https://en.wikipedia.org/wiki/Tight_binding#cite_ref-Harrison_2-0https://en.wikipedia.org/wiki/Tight_binding#cite_ref-Harrison_2-0https://en.wikipedia.org/wiki/Tight_binding#cite_ref-Harrison_2-1https://en.wikipedia.org/wiki/Tight_binding#cite_ref-Harrison_2-1https://en.wikipedia.org/wiki/Tight_binding#cite_ref-Harrison_2-1http://books.google.com/books?id=R2VqQgAACAAJhttp://books.google.com/books?id=R2VqQgAACAAJhttp://books.google.com/books?id=R2VqQgAACAAJhttps://en.wikipedia.org/wiki/International_Standard_Book_Numberhttps://en.wikipedia.org/wiki/International_Standard_Book_Numberhttps://en.wikipedia.org/wiki/Special:BookSources/0-486-66021-4https://en.wikipedia.org/wiki/Special:BookSources/0-486-66021-4https://en.wikipedia.org/wiki/Special:BookSources/0-486-66021-4https://en.wikipedia.org/wiki/Tight_binding#cite_ref-Lowdin_3-0https://en.wikipedia.org/wiki/Tight_binding#cite_ref-Lowdin_3-0https://en.wikipedia.org/w/index.php?title=L%C3%B6wdin_orbitals&action=edit&redlink=1https://en.wikipedia.org/w/index.php?title=L%C3%B6wdin_orbitals&action=edit&redlink=1https://en.wikipedia.org/w/index.php?title=L%C3%B6wdin_orbitals&action=edit&redlink=1http://books.google.com/books?id=W9pdJZoAeyEC&pg=PA87http://books.google.com/books?id=W9pdJZoAeyEC&pg=PA87http://books.google.com/books?id=W9pdJZoAeyEC&pg=PA87https://en.wikipedia.org/wiki/International_Standard_Book_Numberhttps://en.wikipedia.org/wiki/International_Standard_Book_Numberhttps://en.wikipedia.org/wiki/Special:BookSources/3-540-25470-6https://en.wikipedia.org/wiki/Special:BookSources/3-540-25470-6https://en.wikipedia.org/wiki/Special:BookSources/3-540-25470-6https://en.wikipedia.org/wiki/Tight_binding#cite_ref-4https://en.wikipedia.org/wiki/Tight_binding#cite_ref-4https://en.wikipedia.org/wiki/Tight_binding#cite_ref-Altland_5-0https://en.wikipedia.org/wiki/Tight_binding#cite_ref-Altland_5-0http://books.google.com/books?id=0KMkfAMe3JkC&pg=RA4-PA58http://books.google.com/books?id=0KMkfAMe3JkC&pg=RA4-PA58http://books.google.com/books?id=0KMkfAMe3JkC&pg=RA4-PA58http://books.google.com/books?id=0KMkfAMe3JkC&pg=RA4-PA58https://en.wikipedia.org/wiki/International_Standard_Book_Numberhttps://en.wikipedia.org/wiki/International_Standard_Book_Numberhttps://en.wikipedia.org/wiki/Special:BookSources/978-0-521-84508-3https://en.wikipedia.org/wiki/Special:BookSources/978-0-521-84508-3https://en.wikipedia.org/wiki/Tight_binding#cite_ref-Mott_6-0https://en.wikipedia.org/wiki/Tight_binding#cite_ref-Mott_6-0http://books.google.com/?id=LIPsUaTqUXUC&printsec=frontcover#PPA58,M1http://books.google.com/?id=LIPsUaTqUXUC&printsec=frontcover#PPA58,M1http://books.google.com/?id=LIPsUaTqUXUC&printsec=frontcover#PPA58,M1https://en.wikipedia.org/wiki/International_Standard_Book_Numberhttps://en.wikipedia.org/wiki/International_Standard_Book_Numberhttps://en.wikipedia.org/wiki/Special:BookSources/0-486-60456-Xhttps://en.wikipedia.org/wiki/Special:BookSources/0-486-60456-Xhttps://en.wikipedia.org/wiki/Special:BookSources/0-486-60456-Xhttp://books.google.com/books?id=R2VqQgAACAAJhttp://books.google.com/books?id=R2VqQgAACAAJhttp://books.google.com/books?id=R2VqQgAACAAJhttps://en.wikipedia.org/wiki/International_Standard_Book_Numberhttps://en.wikipedia.org/wiki/International_Standard_Book_Numberhttps://en.wikipedia.org/wiki/Special:BookSources/0-486-66021-4https://en.wikipedia.org/wiki/Special:BookSources/0-486-66021-4https://en.wikipedia.org/wiki/Special:BookSources/0-486-66021-4https://en.wikipedia.org/wiki/International_Standard_Book_Numberhttps://en.wikipedia.org/wiki/International_Standard_Book_Numberhttps://en.wikipedia.org/wiki/Special:BookSources/0-521-48491-Xhttps://en.wikipedia.org/wiki/Special:BookSources/0-521-48491-Xhttps://en.wikipedia.org/wiki/Special:BookSources/0-521-48491-Xhttps://en.wikipedia.org/wiki/Special:BookSources/0-521-48491-Xhttps://en.wikipedia.org/wiki/Bibcodehttp://adsabs.harvard.edu/abs/1997RPPh...60.1447Ghttp://adsabs.harvard.edu/abs/1997RPPh...60.1447Ghttp://adsabs.harvard.edu/abs/1997RPPh...60.1447Ghttps://en.wikipedia.org/wiki/Digital_object_identifierhttps://en.wikipedia.org/wiki/Digital_object_identifierhttp://dx.doi.org/10.1088%2F0034-4885%2F60%2F12%2F001http://dx.doi.org/10.1088%2F0034-4885%2F60%2F12%2F001http://dx.doi.org/10.1088%2F0034-4885%2F60%2F12%2F001https://en.wikipedia.org/wiki/Bibcodehttps://en.wikipedia.org/wiki/Bibcodehttp://adsabs.harvard.edu/abs/1954PhRv...94.1498Shttp://adsabs.harvard.edu/abs/1954PhRv...94.1498Shttp://adsabs.harvard.edu/abs/1954PhRv...94.1498Shttps://en.wikipedia.org/wiki/Digital_object_identifierhttp://dx.doi.org/10.1103%2FPhysRev.94.1498http://dx.doi.org/10.1103%2FPhysRev.94.1498http://dx.doi.org/10.1103%2FPhysRev.94.1498http://dx.doi.org/10.1103%2FPhysRev.94.1498https://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/1954PhRv...94.1498Shttps://en.wikipedia.org/wiki/Bibcodehttp://dx.doi.org/10.1088%2F0034-4885%2F60%2F12%2F001https://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/1997RPPh...60.1447Ghttps://en.wikipedia.org/wiki/Bibcodehttps://en.wikipedia.org/wiki/Special:BookSources/0-521-48491-Xhttps://en.wikipedia.org/wiki/Special:BookSources/0-521-48491-Xhttps://en.wikipedia.org/wiki/International_Standard_Book_Numberhttps://en.wikipedia.org/wiki/Special:BookSources/0-486-66021-4https://en.wikipedia.org/wiki/International_Standard_Book_Numberhttp://books.google.com/books?id=R2VqQgAACAAJhttps://en.wikipedia.org/wiki/Special:BookSources/0-486-60456-Xhttps://en.wikipedia.org/wiki/International_Standard_Book_Numberhttp://books.google.com/?id=LIPsUaTqUXUC&printsec=frontcover#PPA58,M1https://en.wikipedia.org/wiki/Tight_binding#cite_ref-Mott_6-0https://en.wikipedia.org/wiki/Special:BookSources/978-0-521-84508-3https://en.wikipedia.org/wiki/International_Standard_Book_Numberhttp://books.google.com/books?id=0KMkfAMe3JkC&pg=RA4-PA58http://books.google.com/books?id=0KMkfAMe3JkC&pg=RA4-PA58https://en.wikipedia.org/wiki/Tight_binding#cite_ref-Altland_5-0https://en.wikipedia.org/wiki/Tight_binding#cite_ref-4https://en.wikipedia.org/wiki/Special:BookSources/3-540-25470-6https://en.wikipedia.org/wiki/International_Standard_Book_Numberhttp://books.google.com/books?id=W9pdJZoAeyEC&pg=PA87https://en.wikipedia.org/w/index.php?title=L%C3%B6wdin_orbitals&action=edit&redlink=1https://en.wikipedia.org/wiki/Tight_binding#cite_ref-Lowdin_3-0https://en.wikipedia.org/wiki/Special:BookSources/0-486-66021-4https://en.wikipedia.org/wiki/International_Standard_Book_Numberhttp://books.google.com/books?id=R2VqQgAACAAJhttps://en.wikipedia.org/wiki/Tight_binding#cite_ref-Harrison_2-1https://en.wikipedia.org/wiki/Tight_binding#cite_ref-Harrison_2-0http://dx.doi.org/10.1103%2FPhysRev.94.1498https://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/1954PhRv...94.1498Shttps://en.wikipedia.org/wiki/Bibcodehttps://en.wikipedia.org/wiki/Physical_Reviewhttps://en.wikipedia.org/wiki/Tight_binding#cite_ref-SlaterKoster_1-2https://en.wikipedia.org/wiki/Tight_binding#cite_ref-SlaterKoster_1-1https://en.wikipedia.org/wiki/Tight_binding#cite_ref-SlaterKoster_1-0https://commons.wikimedia.org/wiki/Category:Dispersion_relations_of_electrons
  • 7/23/2019 wave function summation of bloch electron.docx

    14/14

    External links

    Crystal-field Theory, Tight-binding Method, and Jahn-Teller Effectin E. Pavarini, E.Koch, F. Anders, and M. Jarrell (eds.): Correlated Electrons: From Models to Materials,Jlich 2012,ISBN 978-3-89336-796-2

    http://www.cond-mat.de/events/correl12/manuscripts/pavarini.pdfhttp://www.cond-mat.de/events/correl12/manuscripts/pavarini.pdfhttps://en.wikipedia.org/wiki/Special:BookSources/9783893367962https://en.wikipedia.org/wiki/Special:BookSources/9783893367962https://en.wikipedia.org/wiki/Special:BookSources/9783893367962https://en.wikipedia.org/wiki/Special:BookSources/9783893367962http://www.cond-mat.de/events/correl12/manuscripts/pavarini.pdf