wavelet spectral dimension reduction of hyperspectral imagery on a reconfigurable computer tarek...

32
Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1 , Esam El-Araby 1 , Abhishek Agarwal 1 , Jacqueline Le Moigne 2 , and Kris Gaj 3 1 The George Washington University, 2 NASA/Goddard Space Flight Center, 3 George Mason University {tarek, esam, agarwala}@gwu.edu, [email protected], [email protected]

Upload: jennifer-goodman

Post on 18-Jan-2016

217 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer

Tarek El-Ghazawi1, Esam El-Araby1, Abhishek Agarwal1, Jacqueline Le Moigne2, and Kris Gaj3

1The George Washington University,2NASA/Goddard Space Flight Center,

3George Mason University{tarek, esam, agarwala}@gwu.edu, [email protected], [email protected]

Page 2: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

El-Ghazawi 2 E229 / MAPLD2004

Objectives and IntroductionInvestigate Use of Reconfigurable Computing for

On-Board Automatic Processing of Remote Sensing Data

Remote Sensing Image Classification

Applications: Land Classification, Mining, Geology, Forestry, Agriculture, Environmental

Management, Global Atmospheric Profiling (e.g. water vapor and temperature profiles), and Planetary Space missions

Types of Carriers:

Airborne Spaceborne

Page 3: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

El-Ghazawi 3 E229 / MAPLD2004

Types of Sensing

Mono-Spectral Imagery 1 band (SPOT ≡ panchromatic)

Multi-Spectral Imagery 10s of bands (MODIS ≡ 36 bands, SeaWiFS ≡ 8 bands, IKONOS ≡ 5 bands)

Hyperspectral Imagery 100s-1000s of bands (AVIRIS ≡ 224 bands, AIRS ≡ 2378 bands)

Multispectral / Hyperspectral Imagery Comparison

Page 4: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

El-Ghazawi 4 E229 / MAPLD2004

Different Airborne Hyperspectral Systems

AISA AURORA AVIRIS

GER

Page 5: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

El-Ghazawi 5 E229 / MAPLD2004

Solutions Automatic On-Board Processing

Reduces the cost and the complexity of the On-The-Ground/Earth processing system

larger utilization for broader community, including educational institutions

Enables autonomous decisions to be taken on-board faster critical decisions

Applications:» Future reconfigurable web sensors

missions » Future Mars and planetary exploration

missions

Dimension Reduction*

Reduction of communication bandwidth

Simpler and faster subsequent computations

Why On-Board Processing?

Problems Complex Pre-

processing Steps: Image Registration /

Fusion

Large Data Volumes Large cost and

complexity of the On-The-Ground / Earth processing systems

Large critical decisions latency

Large data downlink bandwidth requirements

* Investigated Pre-Processing Step

Page 6: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

El-Ghazawi 6 E229 / MAPLD2004

Solutions

Reconfigurable Computers (RCs) Higher performance (throughput and

processing power) compared to conventional processors

Lower form / wrap factors compared to parallel computers

Higher flexibility (reconfigurability) compared to ASICs

Less costs and shorter time-to-solution compared to ASICs

Why Reconfigurable Computers?

On-Board Processing Problems

High Computational Complexities Low performance for traditional

processing platforms

High form / wrap factors (size and weight) for parallel computing systems

Low flexibility for traditional ASIC-Based solutions

High costs and long design cycles for traditional ASIC-Based solutions

Page 7: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

IntroductionIntroduction

Page 8: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

El-Ghazawi 8 E229 / MAPLD2004

Hyper Image

Bands

Columns

Ro

ws

224 bands

512 pixels

512

pixe

ls

Data Arrangement

Pix

els

≡ (

Ro

ws

x C

olu

mn

s)

Pa

rall

el

Co

mp

uti

ng

Sc

op

e,

Re

co

nfi

gu

rab

le C

om

pu

tin

g 2

nd S

co

pe

BandsReconfigurable

Computing 1st Scope

Matrix Form

Page 9: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

El-Ghazawi 9 E229 / MAPLD2004

Data Arrangement (cnt’d)

Hyper Image

Bands

Columns

Ro

ws

(0,0) (0,1) (0,cols-1)

(rows-1,0) (rows-1,cols-1)

Array Form

8 Bits

012..

Bands-1

012..

Bands-1

012..

Bands-1

0

1

(Pixels-1)

(0,0)

(0,1)

(rows-1,cols-1)

Pixels = Rows X Columns

Page 10: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

El-Ghazawi 10 E229 / MAPLD2004

AVIRIS: SALINAS’98 (217x512 by 192 bands)

AVIRIS: INDIAN PINES’92 (400x400 by 192 bands)

Examples of Hyperspectral Datasets

Page 11: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

El-Ghazawi 11 E229 / MAPLD2004

Dimension Reduction Techniques Principal Component

Analysis (PCA): Most Common Method

Dimension Reduction Does Not Preserve Spectral

Signatures Complex and Global

computations: difficult for parallel processing and hardware implementations

Wavelet-Based Dimension Reduction: Preserves Spectral

Signatures High-Performance

Implementation Simple and Local Operations

Multi-Resolution Wavelet Decomposition of Each Pixel 1-D Spectral Signature (Preservation of Spectral Locality)

Page 12: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

El-Ghazawi 12 E229 / MAPLD2004

2-D DWT (1-level Decomposition)

LL

LH HH

HL

2L

H 2

L

H

2

2

L

H

2

2

L H

1-D DWT

Page 13: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

El-Ghazawi 13 E229 / MAPLD2004

2-D DWT (2-level Decomposition)

L 2

H 2

L 2

H 2

L 2

H 2

L 2

H 2

L 2

H 2

L 2

H 2 LH HH

HL

First Level Second Level

Page 14: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

El-Ghazawi 14 E229 / MAPLD2004

Wavelet-Based vs. PCA (Execution Time, 500 MHz P3)

Timer-Salinas98

104.178

122.173

158.583

7.696 7.6317.677 9.0037.715

94.82490.634

0

20

40

60

80

100

120

140

160

No.of PC/Level of Decomp.

Tim

e (

se

c)

Wavelet

PCA

12/4 24/36/5 48/2 96/1

Complexity: Wavelet-Based = O(MN) ; PCA = O(MN2+N3)

Page 15: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

El-Ghazawi 15 E229 / MAPLD2004

6/5 12/4 24/3 48/2 96/1Timer GLOBAL 7.696 7.677 7.631 7.715 9.003

IO_R 0.406 0.412 0.411 0.412 0.41Comp. 7.253 7.19 7.069 6.692 7.939IO_W 0.037 0.075 0.151 0.311 0.654

No.of PC/Level of Wavelet DecompositionWAVELET PCA

6/5 12/4 24/3 48/2 96/1Timer GLOBAL 90.634 94.824 104.178 122.173 158.583

IO_R 0.423 0.395 0.395 0.394 0.394Comp. 90.173 94.355 103.633 121.478 157.568IO_W 0.038 0.074 0.15 0.301 0.621

No.of PC/Level of Wavelet Decomposition

Complexity: Wavelet-Based = O(MN) ; PCA = O(MN2+N3)

Wavelet-Based

5%

92%

3%

IO_R

Comp.

IO_W

PCA

0%

100%

0%

IO_R

Comp.

IO_W

Wavelet-Based vs. PCA (cnt’d) (Execution Time, 500 MHz P3)

Page 16: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

El-Ghazawi 16 E229 / MAPLD2004

Wavelet-Based vs. PCA (cnt’d) (Classification Accuracy)

Implemented on the HIVE (8 Pentium Xeon/Beowulfs-Type System) 6.5 times faster than sequential implementation

Classification Accuracy Similar or Better than PCA

Faster than PCA

Page 17: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

El-Ghazawi 17 E229 / MAPLD2004

The Algorithm

Decompose Each Pixel to Level L

Read Data

Read Threshold (Th)

Write Data

Get Lowest Level (L) from Global Histogram

Remove Outlier Pixels

OVERALL

Compute Level for Each Individual Pixel(PIXEL LEVEL)

DWT Coefficients (the Approximation)

Reconstructed Approximation

No

Yes

Compute Correlation (Corr) between Orig and Recon.

Add Contribution of the Pixel to Global Histogram

Corr < Th

Decompose Spectral Pixel

Save Current Level [a] of Wavelet Coefficients

ReconstructIndividual Pixel to Original Stage

Get Current Level [a] of Wavelet Coefficients

PIXEL LEVEL

Page 18: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

Prototyping Wavelet-Based Dimension Reduction of Hyperspectral Imagery

on a Reconfigurable Computer, the SRC-6E

Prototyping Wavelet-Based Dimension Reduction of Hyperspectral Imagery

on a Reconfigurable Computer, the SRC-6E

Page 19: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

El-Ghazawi 19 E229 / MAPLD2004

Hardware Architecture of SRC-6E

Page 20: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

El-Ghazawi 20 E229 / MAPLD2004

SRC Compilation Process

Objectfiles

Application sources Macro sources

MAP CompilerP Compiler

Logic synthesis

Place & Route

Linker

.v files

.bin files

.ngo files

.o files .o files

Applicationexecutable

Configurationbitstreams

HDLsources

Netlists

.c or .f files .vhd or .v files

Objectfiles

Application sources Macro sources

MAP CompilerP Compiler

Logic synthesis

Place & Route

Linker

.v files

.bin files

.ngo files

.o files .o files

Applicationexecutable

Configurationbitstreams

HDLsources

Netlists

.c or .f files .vhd or .v files

Page 21: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

El-Ghazawi 21 E229 / MAPLD2004

Top Hierarchy Module

L1:L5

Y1:Y5

THGTE_1: GTE_5

Correlator

X

DWT_IDWT

Level

N

LlevelMUX

Histogram

Page 22: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

El-Ghazawi 22 E229 / MAPLD2004

Decomposition and Reconstruction Levels of Dimension Reduction (DWT_IDWT)

L0

Level_5

L1L 2

L2L 2

L3L 2

L4L 2

L5L 2

Level_4Level_3Level_2Level_1

X

2

L’

2

L’

2

L’

2

L’

2

L’

2

L’

2

L’

Y2

D

2

L’

2

L’

2

L’

Y4D

2

L’

2

L’

2

L’

2

L’

2

L’

Y5Y3

D

Y1

D

Page 23: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

El-Ghazawi 23 E229 / MAPLD2004

FIR Filters (L, L’) Implementation

+

RegisterC(1)

RegisterC(2)

RegisterC(3)

RegisterC(n)

Input Image D(i)

Output Image F(i)

X

X

X

X

Page 24: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

El-Ghazawi 24 E229 / MAPLD2004

Correlator Module

X

Yi

termxx

termyy

termAB

termxy term2xy

TH TH2

MULTtermxxtermyy

MULT

MULT

MULT

Shift Left

(32 bits)

CompareGTE_i(Increment

Histogrami)

termAB

termAB

N

bitsNBABNAtermN

iN

iN

iiAB 2log216

2

16

22

2),(

TH

termterm

termyx

yyxx

xy

Page 25: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

El-Ghazawi 25 E229 / MAPLD2004

Histogram Module

GTE_3

GTE_2

GTE_1

GTE_4

GTE_5

Update Histogram Counters

Level Selector

cnt_3

cnt_2

cnt_1

cnt_4

cnt_5

Level

Page 26: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

El-Ghazawi 26 E229 / MAPLD2004

Resource Utilization and Operating Frequency

Page 27: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

El-Ghazawi 27 E229 / MAPLD2004

Measurements Scenarios

Read

Data

Write

Data

MAP

Free

Configuration + End-to-End time (SW)

End-to-End time with I/OAllocation

time

MAP

Alloc.

MAPFunction

Computations Transfer-Out

OBM

to CM

CM to

OBMCompute

End-to-End time (HW)

Transfer-In

Repeat

nstreams times

Release

time

µP Functions

Page 28: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

El-Ghazawi 28 E229 / MAPLD2004

SRC Experiment Setup and Results Salinas’98

217 X 512 Pixels, 192 Bands = 162.75 MB Number of Streams = 41 Stream Size = 2730 voxels ≈ 4 MB

Non-Overlapped Streams TDMA-IN = 13.040 msec TCOMP = 0.62428 msec TDMA-OUT = 22.712 msec TTotal = 1.49 sec Throughput = 109.23 MB/Sec

Overlapped Streams TDMA = 35.752 msec TCOMP = 0.62428 msec Xc = 0.0175 Throughput = 111.14 MB/Sec

Speedupnon-overlapped = (1+ Xc) =

1.0175 (insignificant)

Compute DMA-OUT

DMA-IN

Compute DMA-OUT

DMA-IN

Compute DMA-OUT

DMA-IN

Compute

DMA-OUTDMA-IN

Compute

DMA-OUTDMA-IN

Compute

DMA-OUTDMA-IN

TTOTAL

Compute DMA-OUTDMA-IN

TDMA-IN TDMA-OUTTCOMPUTATIONS

Page 29: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

El-Ghazawi 29 E229 / MAPLD2004

Execution Time

Salinas'98

14.27

20.2323.21

30.2233.05

8.60

12.34

16.16

20.44 20.21

1.49 1.49 1.49 1.49 1.491.47 1.47 1.47 1.47 1.47

0

5

10

15

20

25

30

35

40

1 2 3 4 5

Level of Decomposition

Tim

e (s

ec)

P3 (500MHz)

Intel Xeon (1.8GHz)

SRC-6E (Non-Overlapped)

SRC-6E (Overlapped)

Page 30: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

El-Ghazawi 30 E229 / MAPLD2004

Distribution of Execution Times

Page 31: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

El-Ghazawi 31 E229 / MAPLD2004

Speedup Results

Salinas'98

0.00

5.00

10.00

15.00

20.00

25.00

1 2 3 4 5

Level of Decomposition

Sp

eed

up

No Overlapping Speedup (P3,500MHz)

No Overlapping Speedup (Xeon,1.8GHz)

Overlapping Speedup (P3,500MHz)

Overlapping Speedup (Xeon,1.8GHz)

Page 32: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery on a Reconfigurable Computer Tarek El-Ghazawi 1, Esam El-Araby 1, Abhishek Agarwal 1, Jacqueline

El-Ghazawi 32 E229 / MAPLD2004

Concluding Remarks

We prototyped the automatic wavelet-based dimension reduction algorithm on a reconfigurable architecture

Both coarse-grain and fine-grain parallelism are exploited

We observed a 10x speedup using the P3 version of SRC-6E. From our previous experience we expect this speedup to double using the P4 version of SRC machine

These speedup figures were obtained while I/O is still dominating. The speedup can be increased by improving I/O Bandwidth of the reconfigurable platforms