wb_vm

184
Verification Manual for Workbench Release 12.0 ANSYS, Inc. April 2009 Southpointe 275 Technology Drive ANSYS, Inc. is certified to ISO 9001:2008. Canonsburg, PA 15317 [email protected] http://www.ansys.com (T) 724-746-3304 (F) 724-514-9494

Upload: vijay-kr-gupta

Post on 07-Nov-2015

241 views

Category:

Documents


11 download

DESCRIPTION

tut for ansys workbench

TRANSCRIPT

  • Verification Manual for Workbench

    Release 12.0ANSYS, Inc.

    April 2009Southpointe

    275 Technology Drive ANSYS, Inc. iscertified to ISO

    9001:2008.Canonsburg, PA 15317

    [email protected]

    http://www.ansys.com

    (T) 724-746-3304

    (F) 724-514-9494

  • Copyright and Trademark Information

    2009 SAS IP, Inc. All rights reserved. Unauthorized use, distribution or duplication is prohibited.

    ANSYS, ANSYS Workbench, Ansoft, AUTODYN, EKM, Engineering Knowledge Manager, CFX, FLUENT, HFSS and any and

    all ANSYS, Inc. brand, product, service and feature names, logos and slogans are registered trademarks or trademarks

    of ANSYS, Inc. or its subsidiaries in the United States or other countries. ICEM CFD is a trademark used by ANSYS, Inc.

    under license. CFX is a trademark of Sony Corporation in Japan. All other brand, product, service and feature names

    or trademarks are the property of their respective owners.

    Disclaimer Notice

    THIS ANSYS SOFTWARE PRODUCT AND PROGRAM DOCUMENTATION INCLUDE TRADE SECRETS AND ARE CONFIDENTIAL

    AND PROPRIETARY PRODUCTS OF ANSYS, INC., ITS SUBSIDIARIES, OR LICENSORS. The software products and document-

    ation are furnished by ANSYS, Inc., its subsidiaries, or affiliates under a software license agreement that contains pro-

    visions concerning non-disclosure, copying, length and nature of use, compliance with exporting laws, warranties,

    disclaimers, limitations of liability, and remedies, and other provisions. The software products and documentation may

    be used, disclosed, transferred, or copied only in accordance with the terms and conditions of that software license

    agreement.

    ANSYS, Inc. is certified to ISO 9001:2008.

    U.S. Government Rights

    For U.S. Government users, except as specifically granted by the ANSYS, Inc. software license agreement, the use, du-

    plication, or disclosure by the United States Government is subject to restrictions stated in the ANSYS, Inc. software

    license agreement and FAR 12.212 (for non-DOD licenses).

    Third-Party Software

    See the legal information in the product help files for the complete Legal Notice for ANSYS proprietary software and

    third-party software. If you are unable to access the Legal Notice, please contact ANSYS, Inc.

    Published in the U.S.A.

  • Table of Contents

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    I. DesignModeler Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    WBVMDM001 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    WBVMDM002 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    WBVMDM003 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    II. Mechanical Application Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    WBVMMECH001 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    WBVMMECH002 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    WBVMMECH003 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    WBVMMECH004 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    WBVMMECH005 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    WBVMMECH006 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    WBVMMECH007 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    WBVMMECH008 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    WBVMMECH009 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    WBVMMECH010 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    WBVMMECH011 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

    WBVMMECH012 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    WBVMMECH013 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    WBVMMECH014 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    WBVMMECH015 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    WBVMMECH016 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

    WBVMMECH017 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    WBVMMECH018 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

    WBVMMECH019 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

    WBVMMECH020 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    WBVMMECH021 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    WBVMMECH022 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    WBVMMECH023 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    WBVMMECH024 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    WBVMMECH025 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

    WBVMMECH026 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

    WBVMMECH027 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

    WBVMMECH028 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    WBVMMECH029 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

    WBVMMECH030 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

    WBVMMECH031 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

    WBVMMECH032 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

    WBVMMECH033 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

    WBVMMECH034 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

    WBVMMECH035 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

    WBVMMECH036 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

    WBVMMECH037 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

    WBVMMECH038 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    WBVMMECH039 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

    WBVMMECH040 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

    WBVMMECH041 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

    WBVMMECH042 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

    WBVMMECH043 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

    WBVMMECH044 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

    iiiRelease 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • WBVMMECH045 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

    WBVMMECH046 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

    WBVMMECH047 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

    WBVMMECH048 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

    WBVMMECH049 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

    WBVMMECH050 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

    WBVMMECH051 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    WBVMMECH052 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

    WBVMMECH053 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

    WBVMMECH054 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

    WBVMMECH055 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

    WBVMMECH056 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

    WBVMMECH057 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

    WBVMMECH058 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

    WBVMMECH059 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

    WBVMMECH060 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

    WBVMMECH061 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

    WBVMMECH062 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

    WBVMMECH063 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

    WBVMMECH064 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

    WBVMMECH065 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

    WBVMMECH066 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

    WBVMMECH067 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

    WBVMMECH068 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

    WBVMMECH069 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

    WBVMMECH070 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

    WBVMMECH071 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

    WBVMMECH072 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

    III. Design Exploration Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

    WBVMDX001 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

    WBVMDX002 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

    WBVMDX003 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

    WBVMDX004 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

    WBVMDX005 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

    Index .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

    Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.iv

    Verification Manual for Workbench

  • Introduction

    This manual presents a collection of test cases that demonstrate a number of the capabilities of the Workbench

    analysis environment. The available tests are engineering problems that provide independent verification,

    usually a closed form equation. Many of them are classical engineering problems.

    The solutions for the test cases have been verified, however, certain differences may exist with regard to

    the references. These differences have been examined and are considered acceptable. The workbench analyses

    employ a balance between accuracy and solution time. Improved results can be obtained in some cases by

    employing a more refined finite element mesh but requires longer solution times. For the tests, an error

    rate of 3% or less has been the goal.

    These tests were run on an Intel Xeon processor using Microsoft Windows XP Professional. These results are

    reported in the test documentation. Slightly different results may be obtained when different processor

    types or operating systems are used.

    The tests contained in this manual are a partial subset of the full set of tests that are run by ANSYS developers

    to ensure a high degree of quality for the Workbench product. The verification of the Workbench product

    is conducted in accordance with the written procedures that form a part of an overall Quality Assurance

    program at ANSYS, Inc.

    You are encouraged to use these tests as starting points when exploring new Workbench features. Geometries,

    material properties, loads, and output results can easily be changed and the solution repeated. As a result,

    the tests offer a quick introduction to new features with which you may be unfamiliar.

    Some test cases will require different licenses, such as DesignModeler, Emag, or Design Exploration. If you

    do not have the available licenses, you may not be able to reproduce the results. The Educational version

    of Workbench should be able to solve most of these tests. License limitations are not applicable to Workbench

    Education version but problem size may restrict the solution of some of the tests.

    The working directories for each of the Verification Manual tests are available at the Customer Portal.

    Download the ANSYS Workbench Verification Manual Database Files. These databases provide all of the

    necessary elements for running a test, including geometry parts, material files and workbench databases.

    To open a test case in workbench, locate the working directory and double-click the Workbench database

    (.wbdb).

    You can use these tests to verify that your hardware is executing the ANSYS Workbench tests correctly. The

    results in the databases can be cleared and the tests solved multiple times. The test results should be checked

    against the verified results in the documentation for each test.

    ANSYS Inc. offers the Workbench Verification and Validation package for users that must perform system

    validation.

    This package automates the process of test execution and report generation. If you are interested in con-

    tracting for such services contact the ANSYS, Inc. Quality Assurance Group.

    1Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.2

  • Part I, DesignModeler Descriptions

  • WBVMDM001: Extrude, Chamfer, and Blend Features

    Overview

    Extrude, Chamfer, and BlendFeature:

    MillimeterDrawing Units:

    Test Case

    Create a Model using Extrude, Chamfer, and Blend features.

    A polygonal area is extruded 60 mm. A rectangular area of 30 mm x 40 mm [having a circular area of radius

    6 mm subtracted] is extruded to 20 mm. Both resultant solids form one solid geometry. A rectangular area

    (24 mm x 5 mm) is subtracted from the solid. Two rectangular areas (40 mm x 10 mm) are extruded 10 mm

    and subtracted from solid. Two rectangular areas (25 mm x 40 mm) are extruded 40 mm and subtracted

    from solid. A Chamfer (10 mm x 10 mm) is given to 4 edges on the resultant solid. Four Oval areas are extruded

    and subtracted from Solid. Fillet (Radius 5 mm) is given to 4 edges using Blend Feature.

    Verify Volume of the resultant geometry.

    Figure: Final Model after creating Extrude, Chamfer, and Blend

    Calculations

    1. Volume of Solid after extruding Polygonal Area: v1 = 264000 mm3.

    2. Volume of rectangular area having circular hole: v2 = 21738.05 mm3.

    Net Volume = V = v1 + v2 = 285738.05 mm3.

    3. Volume of rectangular (24mm x 5mm) solid extruded 30mm using Cut Material = 3600 565.5 = 3034.5

    mm3.

    Net volume V = 285738.05 3034.5 = 282703.5 mm3.

    4. Volume of two rectangular areas each 40mm x 10mm extruded 10mm = 8000 mm3.

    Net volume V = 282703.5 8000 = 274703.5 mm3.

    5. Volume of two rectangular areas 25mm x 40mm extruded 40mm = 80000 mm3.

    5Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Net volume V = 274703.5 80000 = 194703.5 mm3.

    6. Volume of four solids added due to Chamfer = 4 x 500 = 2000 mm3

    Net volume V = 194703.5 + 2000 = 196703.5 mm3.

    7. Volume of four oval areas extruded 10 mm = 7141.6 mm3.

    Net volume V = 196703.5 - 7141.6 = 189561.9 mm3.

    8. Volume of 4 solids subtracted due to Blend of radius 5 mm = 429.2 mm3.

    Hence Net volume of final Solid body = V = 189561.9 429.2 = 189132.7 mm3.

    Results Comparison

    Error (%)Design-

    Modeler

    TargetResults

    0189132.7189132.7Volume (mm3)

    0.00144261.644261.29Surface Area (mm2)

    05252Number of Faces

    011Number of Bodies

    Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.6

    WBVMDM001

  • WBVMDM002: Cylinder using Revolve, Sweep, Extrude, and Skin-Loft

    Overview

    Revolve, Sweep, Extrude, and Skin-LoftFeature:

    MillimeterDrawing Units:

    Test Case

    Create a Model using Revolve, Sweep, Extrude, and Skin-Loft features.

    A Rectangular area (100 mm x 30 mm) is revolved about Z-Axis in 3600 to form a Cylinder. A circular area

    of radius 30 mm is swept 100 mm using Sweep feature. A circular area of radius 30 mm is extruded 100

    mm. A solid cylinder is created using Skin-Loft feature between two coaxial circular areas each of radius 30

    mm and 100 mm apart.

    Verify Volume of the resultant geometry.

    Figure: Final Model after creating Revolve, Sweep, Extrude, and Skin-Loft

    Calculations

    1. Volume of Cylinder created after Revolving Rectangular area (100 mm x 30 mm) = v1 = 282743.3 mm3.

    2. Volume of Cylinder created when a circular area (Radius 30mm) is swept 100 mm = v2 = 282743.3

    mm3.

    Net Volume = V = v1 + v2 = 282743.3 + 282743.3 = 565486.6 mm3.

    3. Volume of Cylinder after extruding a circular area (Radius 30 mm) 100 mm = 282743.3 mm3.

    Net Volume = V = 565486.6 + 282743.3 = 848229.9 mm3.

    4. Volume of Cylinder created after using Skin-Loft feature between two circular areas of Radius 30 mm

    and 100 mm apart. = 282743.3 mm3.

    Net Volume of the final Cylinder = 848229.9 + 282743.3 = 1130973.2 mm3.

    7Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Results Comparison

    Error (%)Design-

    Modeler

    TargetResults

    01130973.31130973.3Volume (mm3)

    081053.181053.1Surface Area (mm2)

    033Number of Faces

    011Number of Bodies

    Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.8

    WBVMDM002

  • WBVMDM003: Extrude, Revolve, Skin-Loft, and Sweep

    Overview

    Extrude, Revolve, Skin-Loft, and SweepFeature:

    MillimeterDrawing Units:

    Test Case

    Create a Model using Extrude, Revolve, Skin-Loft, and Sweep.

    A rectangular area (103 mm x 88 mm) is extruded 100 mm to form a solid box. A circular area of radius 25

    mm is revolved 900 using Revolve feature and keeping Thin/Surface option to Yes and 3 mm Inward and

    Outward Thickness. A solid is subtracted using Skin-Loft feature between two square areas (each of side 25

    mm) and 100 mm apart. The two solid bodies are frozen using Freeze feature. A circular area of radius 25

    mm is swept using Sweep feature and keeping Thin/Surface option to Yes and 3 mm Inward and Outward

    Thickness. Thus a total of 4 geometries are created.

    Verify the volume of the resulting geometry.

    Figure: Final Model after creating Extrude, Revolve, Skin-Loft and Sweep

    Calculations

    1. Volume of rectangular (103 mm x 88 mm) solid extruded 100mm = 906400 mm3.

    2. Volume of solid after revolving circular area of Radius 25 mm through 900 = 29639.6 mm3.

    Net Volume of solid box, Va = 906400 - 29639.6 = 876760.3 mm3.

    3. Volume of additional body created due to Revolve feature = Vb= 11134.15 mm3.

    4. Volume of the rectangular box cut after Skin-Loft between two square areas each of side 25 mm =

    62500 mm3.

    Net Volume of solid box becomes Va = 876760.3 62500 = 814260.3 mm3.

    5. Volume of additional two bodies created due to Sweep feature:

    Vc = 47123.9 mm3 and Vd = 28352.8 mm

    3.

    And total volume that gets subtracted from box due to Sweep Feature = 75476.7 mm3.

    9Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Hence Net volume of box, Va = 814260.3 - 75476.7 = 738783.6 mm3.

    Sum of volumes of all four bodies = Va+Vb+Vc+Vd = 738783.6 + 11134.15 + 47123.9 +28352.8 =

    825394.4 mm3.

    Results Comparison

    Error (%)Design-

    Modeler

    TargetResults

    0825394.5825394.4Volume (mm3)

    0101719.95101719.47Surface Area (mm2)

    02222Number of Faces

    044Number of Bodies

    Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.10

    WBVMDM003

  • Part II, Mechanical Application Descriptions

  • WBVMMECH001: Statically Indeterminate Reaction Force Analysis

    Overview

    S.Timoshenko, Strength of Materials, Part 1, Elementary Theory

    and Problems, 3rd Edition, CBS Publishers and Distributors, pg.

    22 and 26

    Reference:

    Linear Static Structural AnalysisAnalysis

    Type(s):

    SolidElement

    Type(s):

    Test Case

    An assembly of three prismatic bars is supported at both end faces and is axially loaded with forces F1 and

    F2. Force F1 is applied on the face between Parts 2 and 3 and F2 is applied on the face between Parts 1 and

    2. Apply advanced mesh control with element size of 0.5.

    Find reaction forces in the Y direction at the fixed supports.

    Figure: Schematic

    LoadingGeometric PropertiesMaterial Properties

    Force F1 = -1000 (Y direc-

    tion)

    Cross section of all parts

    = 1 x 1

    E = 2.9008e7 psi

    = 0.3

    Force F2 = -500 (Y direc-

    tion)

    Length of Part 1 = 4" = 0.28383 lbm/in3

    Length of Part 2 = 3"

    Length of Part 3 = 3

    Results Comparison

    Error (%)MechanicalTargetResults

    0.127901.14900Y Reaction Force at Top Fixed

    Support (lbf )

    -0.190598.86600Y Reaction Force at Bottom

    Fixed Support (lbf )

    13Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.14

  • WBVMMECH002: Rectangular Plate with Circular Hole Subjected to Tensile Loading

    Overview

    J. E. Shigley, Mechanical Engineering Design, McGraw-Hill, 1st Edi-

    tion, 1986,Table A-23, Figure A-23-1, pg. 673

    Reference:

    Linear Static Structural AnalysisAnalysis

    Type(s):

    SolidElement

    Type(s):

    Test Case

    A rectangular plate with a circular hole is fixed along one of the end faces and a tensile pressure load is

    applied on the opposite face. A convergence with an allowable change of 10% is applied to account for the

    stress concentration near the hole. The Maximum Refinement Loops is set to 2 and the Refinement mesh

    control is added on the cylindrical surfaces of the hole with Refinement = 1.

    Find the Maximum Normal Stress in the x direction on the cylindrical surfaces of the hole.

    Figure: Schematic

    LoadingGeometric PropertiesMaterial Properties

    Pressure = -100 PaLength = 15 mE = 1000 Pa

    Width = 5 m = 0

    Thickness = 1 m

    Hole radius = 0.5 m

    Results Comparison

    Error (%)MechanicalTargetResults

    0.720314.75312.5Maximum Normal X Stress

    (Pa)

    15Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.16

  • WBVMMECH003: Modal Analysis of Annular Plate

    Overview

    R. J. Blevins, Formula for Natural Frequency and Mode Shape, Van

    Nostrand Reinhold Company Inc., 1979,Table 11-2, Case 4, pg.

    247

    Reference:

    Free Vibration AnalysisAnalysis

    Type(s):

    SolidElement

    Type(s):

    Test Case

    An assembly of three annular plates has cylindrical support (fixed in the radial, tangential, and axial directions)

    applied on the cylindrical surface of the hole. Sizing control with element size of 0.5 is applied to the cyl-

    indrical surface of the hole.

    Find the first six modes of natural frequencies.

    Figure: Schematic

    LoadingGeometric PropertiesMaterial Properties

    Inner diameter of inner

    plate = 20"

    E = 2.9008e7 psi

    = 0.3

    Inner diameter of

    middle plate = 28"

    = 0.28383 lbm/in3

    Inner diameter of outer

    plate = 34"

    Outer diameter of outer

    plate = 40"

    Thickness of all plates =

    1"

    17Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Results Comparison

    Error (%)MechanicalTargetResults

    1.363315.15310.9111st Frequency Mode (Hz)

    0.778320.56318.0862nd Frequency Mode (Hz)

    0.872320.86318.0863rd Frequency Mode (Hz)

    0.108351.95351.5694th Frequency Mode (Hz)

    0.214352.32351.5695th Frequency Mode (Hz)

    -0.219441.48442.4516th Frequency Mode (Hz)

    Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.18

    WBVMMECH003

  • WBVMMECH004: Shape Optimization of a Quarter of a Plate With Hole

    Overview

    Mlejnek and Schirrmacher, Comp. Meth. Appl. Mech Engg.,Vol. 106,

    1993

    Reference:

    Shape OptimizationAnalysis

    Type(s):

    SolidElement

    Type(s):

    Test Case

    A rectangular plate (1300 x 1300 mm) with a hole is modeled with one-quarter symmetry. It has frictionless

    support applied on the two flat faces along the thickness near the hole. Pressure loads are applied on the

    remaining two flat faces along the thickness as shown below. Apply advanced mesh control with element

    size of 29 mm to get accurate results.

    Find the Optimized Mass for target reduction of 20%.

    Figure: Schematic

    LoadingGeometric PropertiesMaterial Properties

    Pressure = -0.15385 MPaQuadrant Length = 650

    mm

    E = 2.1e5 MPa

    Pressure 2 = -0.076925

    MPa

    = 0.3

    Quadrant Width = 650

    mm

    = 8e-6 kg/mm3

    Thickness = 10 mm

    Radius = 250 mm

    19Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Results Comparison

    Error (%)MechanicalTargetResults

    1.68024.323.8984Optimized Mass (kg)

    Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.20

    WBVMMECH004

  • WBVMMECH005: Heat Transfer in a Composite Wall

    Overview

    F. Kreith, Principles of Heat Transfer, Harper and Row Publisher, 3rd

    Edition, 1976, Example 2-5, pg. 39

    Reference:

    Linear Static Thermal AnalysisAnalysis

    Type(s):

    SolidElement

    Type(s):

    Test Case

    A furnace wall consists of two layers: fire brick and insulating brick. The temperature inside the furnace is

    3000F (Tf) and the inner surface convection coefficient is 3.333e-3 BTU/s ft2F (hf). The ambient temperature

    is 80F (Ta) and the outer surface convection coefficient is 5.556e-4 BTU/s ft2F (ha).

    Find the Temperature Distribution.

    Figure: Schematic

    LoadingGeometric PropertiesMaterial Properties

    Cross-section = 1" x 1"Fire brick wall: k = 2.222e-4

    BTU/s ft F Fire brick wall thickness

    = 9"Insulating wall: k = 2.778e-5

    BTU/s ft F Insulating wall thickness

    = 5"

    Results Comparison

    Error (%)MechanicalTargetResults

    0.205336.69336Minimum Temperature (F)

    0.0072957.22957Maximum Temperature (F)

    21Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.22

  • WBVMMECH006: Heater with Nonlinear Conductivity

    Overview

    Vedat S. Arpaci, Conduction Heat Transfer, Addison-Wesley Book

    Series, 1966, pg. 130

    Reference:

    Nonlinear Static Thermal AnalysisAnalysis Type(s):

    SolidElement Type(s):

    Test Case

    A liquid is boiled using the front face of a flat electric heater plate. The boiling temperature of the liquid is

    212F. The rear face of the heater is insulated. The internal energy generated electrically may be assumed

    to be uniform and is applied as internal heat generation.

    Find the maximum temperature and maximum total heat flux.

    Figure: Schematic

    LoadingGeometric PropertiesMaterial Properties

    Front face temperature

    = 212F

    k = [0.01375 * (1 + 0.001 T)]

    BTU/s inF

    Radius = 3.937

    Thickness = 1

    Internal heat generation

    = 10 BTU/s in3

    Conductiv-

    ity (BTU/s

    inF)

    Temperat-

    ure (F)

    1.419e-00232

    2.75e-0021000

    Results Comparison

    Error (%)MechanicalTargetResults

    0.960480.57476Maximum Temperature (F)

    -0.0039.999710Maximum Total Heat Flux

    (BTU/s in2)

    23Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.24

  • WBVMMECH007: Thermal Stress in a Bar with Temperature Dependent

    Conductivity

    Overview

    Any basic Heat Transfer bookReference:

    Nonlinear Thermal Stress AnalysisAnalysis

    Type(s):

    SolidElement

    Type(s):

    Test Case

    A long bar has thermal conductivity that varies with temperature. The bar is constrained at both ends by

    frictionless surfaces. A temperature of TC is applied at one end of the bar (End A). The reference temperature

    is 5C. At the other end, a constant convection of h W/m2C is applied. The ambient temperature is 5C.

    Advanced mesh control with element size of 2 m is applied.

    Find the following:

    Minimum temperature

    Maximum thermal strain in z direction (on the two end faces)

    Maximum deformation in z direction

    Maximum heat flux in z direction at z = 20 m

    Figure: Schematic

    LoadingGeometric PropertiesMaterial Properties

    Rear face temperature T

    = 100C

    Length = 20 mE = 2e11 Pa

    Width = 2 m = 0

    Film Coefficient h =

    0.005 W/m2C

    Breadth = 2 m = 1.5e-05 / C

    k = 0.038*(1 + 0.00582*T)

    W/m C Ambient temperature =

    5CConductiv-

    ity (W/m C)

    Temperat-

    ure (C) Reference temperature

    = 5C3.91e-0025

    0.215800

    25Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Analysis

    Temperature at a distance "z" from rear face is given by:

    T x zz = + 171 82 73886 82 1492 13. . . ( )

    Thermal strain in the z direction in the bar is given by:

    zT zT= 1 5 10 55. ( )

    Deformation in the z direction is given by:

    u T dzz z

    z

    = ( . ( ))1 425 10 550

    Heat flux in the z direction is given by:

    q Tz= 0 005 5. ( )

    Results Comparison

    Error (%)MechanicalTargetResults

    -0.01638.01438.02Minimum Temperature (C)

    0.0420.000495210.000495Maximum Thermal strain (z

    = 20) (m/m)

    0.0000.0014250.001425Maximum Thermal strain (z

    = 0) (m/m)

    0.9050.0023410.00232Maximum Z Deformation (m)

    0.0420.165070.165Maximum Z Heat Flux (z = 20)

    (W/m2)

    Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.26

    WBVMMECH007

  • WBVMMECH008: Heat Transfer from a Cooling Spine

    Overview

    Kreith, F., Principles of Heat Transfer, Harper and Row, 3rd Edition,

    1976, Equation 2-44a, pg. 59, Equation 245, pg. 60

    Reference:

    Linear Static Thermal AnalysisAnalysis

    Type(s):

    SolidElement

    Type(s):

    Test Case

    A steel cooling spine of cross-sectional area A and length L extend from a wall that is maintained at temper-

    ature Tw. The surface convection coefficient between the spine and the surrounding air is h, the air temper

    is Ta, and the tip of the spine is insulated. Apply advanced mesh control with element size of 0.025'.

    Find the heat conducted by the spine and the temperature of the tip.

    Figure: Schematic

    LoadingGeometric PropertiesMaterial Properties

    LoadingGeometric PropertiesMaterial Properties

    Tw = 100FCross section = 1.2 x

    1.2

    E = 4.177e9 psf

    Ta = 0F = 0.3

    h = 2.778e-4 BTU/s ft2 FL = 8Thermal conductivity k =

    9.71e-3 BTU/s ft F

    Results Comparison

    Error (%)MechanicalTargetResults

    0.05579.07879.0344Temperature of the Tip (F)

    -0.0416.3614e-36.364e-3Heat Conducted by the Spine

    (Heat Reaction) (BTU/s)

    27Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.28

  • WBVMMECH009: Stress Tool for Long Bar with Compressive Load

    Overview

    Any basic Strength of Materials bookReference:

    Linear Static Structural AnalysisAnalysis

    Type(s):

    SolidElement

    Type(s):

    Test Case

    A multibody of four bars connected end to end has one of the end faces fixed and a pressure is applied to

    the opposite face as given below. The multibody is used to nullify the numerical noise near the contact re-

    gions.

    Find the maximum equivalent stress for the whole multibody and the safety factor for each part using the

    maximum equivalent stress theory with tensile yield limit.

    Figure: Schematic

    Material Properties

    Tensile Yield (Pa)E (Pa)Material

    2.07e801.93e11Part 1

    2.8e807.1e10Part 2

    2.5e802e11Part 3

    2.8e801.1e11Part 4

    LoadingGeometric Properties

    Pressure = 2.5e8 PaPart 1: 2 m x 2 m x 3 m

    Part 2: 2 m x 2 m x 10

    m

    Part 3: 2 m x 2 m x 5 m

    Part 4: 2 m x 2 m x 2 m

    29Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Results Comparison

    Error (%)MechanicalTargetResults

    0.0002.5e82.5e8Maximum Equivalent Stress

    (Pa)

    0.0000.8280.828Safety Factor for Part 1

    0.0001.121.12Safety Factor for Part 2

    0.00011Safety Factor for Part 3

    0.0001.121.12Safety Factor for Part 4

    Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.30

    WBVMMECH009

  • WBVMMECH010: Modal Analysis of a Rectangular Plate

    Overview

    Blevins, Formula for Natural Frequency and Mode Shape, Van Nos-

    trand Reinhold Company Inc., 1979,Table 11-4, Case 11, pg. 256

    Reference:

    Free Vibration AnalysisAnalysis

    Type(s):

    ShellElement

    Type(s):

    Test Case

    A rectangular plate is simply supported on both the smaller edges and fixed on one of the longer edges as

    shown below. Sizing mesh control with element size of 6.5 mm is applied on all the edges to get accurate

    results.

    Find the first five modes of natural frequency.

    Figure: Schematic

    LoadingGeometric PropertiesMaterial Properties

    Length = 0.25 mE = 2e11 Pa

    Width = 0.1 m = 0.3

    Thickness = 0.005 m = 7850 kg/m3

    Results Comparison

    Error (%)MechanicalTargetResults

    -0.952590.03595.71st Frequency Mode (Hz)

    -0.9871118.41129.552nd Frequency Mode (Hz)

    -0.6672038.12051.793rd Frequency Mode (Hz)

    -0.9942879.32906.734th Frequency Mode (Hz)

    -0.48933503366.485th Frequency Mode (Hz)

    31Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.32

  • WBVMMECH011: Large Deflection of a Circular Plate with Uniform Pressure

    Overview

    Timoshenko S.P.,Woinowsky-Krieger S.,Theory of Plates and Shells,

    McGraw-Hill, 2nd Edition, Article 97, equation 232, pg. 401

    Reference:

    Nonlinear Structural Analysis (Large Deformation On)Analysis

    Type(s):

    ShellElement

    Type(s):

    Test Case

    A circular plate is subjected to a uniform pressure on its flat surface. The circular edge of the plate is fixed.

    To get accurate results, apply sizing control with element size of 5 mm on the circular edge.

    Find the total deformation at the center of the plate.

    Figure: Schematic

    LoadingGeometric PropertiesMaterial Properties

    Pressure = 6585.18 PaRadius = 0.25 mE = 2e11 Pa

    Thickness = 0.0025 m = 0.3

    Results Comparison

    Error (%)MechanicalTargetResults

    -0.960.0012380.00125Total deformation (m)

    33Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.34

  • WBVMMECH012: Buckling of a Stepped Rod

    Overview

    Warren C.Young, Roark's Formulas for Stress & Strains, McGraw

    Hill, 6th Edition,Table 34, Case 2a, pg. 672

    Reference:

    Buckling AnalysisAnalysis

    Type(s):

    SolidElement

    Type(s):

    Test Case

    A stepped rod is fixed at one end face. It is axially loaded by two forces: a tensile load at the free end and

    a compressive load on the flat step face at the junction of the two cross sections. To get accurate results,

    apply sizing control with element size of 6.5 mm.

    Find the Load Multiplier for the First Buckling Mode.

    Figure: Schematic

    LoadingGeometric PropertiesMaterial Properties

    Force at free end = 1000

    N

    Larger diameter =

    0.011982 m

    E = 2e11 Pa

    = 0.3

    Force at the flat step

    face = -2000 N

    Smaller diameter =

    0.010 m

    Both forces are in the z

    direction

    Length of larger diamet-

    er = 0.2 m

    Length of smaller dia-

    meter = 0.1 m

    Results Comparison

    Error (%)MechanicalTargetResults

    1.64922.87122.5Load Multiplier

    35Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.36

  • WBVMMECH013: Buckling of a Circular Arch

    Overview

    Warren C.Young, Roark's Formulas for Stress Strains, McGraw Hill,

    6th Edition,Table 34, Case 10, pg. 679

    Reference:

    Buckling AnalysisAnalysis

    Type(s):

    ShellElement

    Type(s):

    Test Case

    A circular arch of a rectangular cross section (details given below) is subjected to a pressure load as shown

    below. Both the straight edges of the arch are fixed.

    Find the Load Multiplier for the first buckling mode.

    Figure: Schematic

    LoadingGeometric PropertiesMaterial Properties

    Pressure = 1 MPaArch cross-section = 5

    mm x 50 mm

    E = 2e5 MPa

    = 0

    Mean radius of arch =

    50 mm

    Included angle = 90

    Results Comparison

    Error (%)MechanicalTargetResults

    0.357545.94544Load Multiplier

    37Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.38

  • WBVMMECH014: Harmonic Response of a Single Degree of Freedom System

    Overview

    Any basic Vibration Analysis bookReference:

    Harmonic AnalysisAnalysis

    Type(s):

    SolidElement

    Type(s):

    Test Case

    An assembly where four cylinders represent massless springs in series and a point mass simulates a spring

    mass system. The flat end face of the cylinder (Shaft 1) is fixed. Harmonic force is applied on the end face

    of another cylinder (Shaft 4) as shown below.

    Find the z directional Deformation Frequency Response of the system on the face to which force is applied

    for the frequency range of 0 to 500 Hz for the following scenarios using Mode Superposition. Solution intervals

    = 20.

    Scenario 1: Damping ratio = 0

    Scenario 2: Damping ratio = 0.05

    Figure: Schematic

    Material Properties

    (kg/m3

    )E (Pa)Material

    1e-80.341.1e11Shaft 1

    1e-80.341.1e11Shaft 2

    1e-80.354.5e10Shaft 3

    1e-80.354.5e10Shaft 4

    LoadingGeometric Properties

    Force = 1e7 N (Z-direction)Each cylinder:

    Point Mass = 3.1044 KgDiameter = 20 mm

    Length = 50 mm

    39Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Results Comparison

    Error (%)MechanicalTargetResults

    0.5910.141230.1404Maximum Amplitude without

    damping (m)

    0.000180180Phase angle without damp-

    ing (degrees)

    0.5770.14080.14Maximum Amplitude with

    damping (m)

    0.000175.58175.6Phase angle with damping

    (degrees)

    Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.40

    WBVMMECH014

  • WBVMMECH015: Harmonic Response of Two Storied Building under Transverse

    Loading

    Overview

    W.T.Thomson, Theory of Vibration with Applications, 3rd Edition,

    1999, Example 6.4-1, pg. 166

    Reference:

    Harmonic AnalysisAnalysis

    Type(s):

    SolidElement

    Type(s):

    Test Case

    A two-story building has two columns (2K and K) constituting stiffness elements and two slabs (2M and M)

    constituting mass elements. The material of the columns is assigned negligible density so as to make them

    as massless springs. The slabs are allowed to move only in the y direction by applying frictionless supports

    on all the faces of the slabs in the y direction. The end face of the column (2K) is fixed and a harmonic force

    is applied on the face of the slab (M) as shown in the figure below.

    Find the y directional Deformation Frequency Response of the system at 70 Hz on each of the vertices as

    shown below for the frequency range of 0 to 500 Hz using Mode Superposition. Use Solution intervals = 50.

    Figure: Schematic

    Material Properties

    (kg/m3

    )E (Pa)Material

    78500.32e18Block 2

    1e-80.354.5e10Shaft 2

    157000.32e18Block 1

    1e-80.359e10Shaft 1

    LoadingGeometric Properties

    Force = -1e5 N (y direction)Block 1 and 2:

    41Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • 40 mm x 40 mm x 40 mm

    Shaft 1 and 2:

    20 mm x 20 mm x 200 mm

    Results Comparison

    Error (%)MechanicalTargetResults

    0.8630.210330.20853Maximum Amplitude for ver-

    tex A (m)

    0.7610.075470.074902Maximum Amplitude for ver-

    tex B (m)

    Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.42

    WBVMMECH015

  • WBVMMECH016: Fatigue Tool with Non-Proportional Loading for Normal Stress

    Overview

    Any basic Machine Design bookReference:

    Fatigue AnalysisAnalysis

    Type(s):

    SolidElement

    Type(s):

    Test Case

    A bar of rectangular cross section has the following loading scenarios.

    Scenario 1: One of the end faces is fixed and a force is applied on the opposite face as shown below

    in Figure : Scenario 1 (p. 43).

    Scenario 2: Frictionless support is applied to all the faces of the three standard planes (faces not seen

    in Figure : Scenario 2 (p. 43)) and a pressure load is applied on the opposite faces in positive y- and z-

    directions.

    Find the life, damage, and safety factor for the normal stresses in the x, y, and z directions for non-propor-

    tional fatigue using the Soderberg theory. Use a design life of 1e6 cycles, a fatigue strength factor or 1, a

    scale factor of 1, and 1 for coefficients of both the environments under Solution Combination.

    Figure: Scenario 1

    Figure: Scenario 2

    Material Properties

    E = 2e11 Pa

    = 0.3

    43Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Material Properties

    Ultimate Tensile Strength = 4.6e8 Pa

    Yield Tensile Strength = 3.5e8 Pa

    Endurance Strength = 2.2998e6 Pa

    Alternating Stress (Pa)Number of Cycles

    4.6e81000

    2.2998e61e6

    LoadingGeometric Properties

    Scenario 1: Force = 2e6 N

    (y-direction)

    Bar: 20 m x 1 m x 1m

    Scenario 2: Pressure = -1e8

    Pa

    Analysis

    Non-proportional fatigue uses the corresponding results from the two scenarios as the maximum and min-

    imum stresses for fatigue calculations. The fatigue calculations use standard formulae for the Soderberg

    theory.

    Results Comparison

    Error (%)MechanicalTargetResults

    -0.1563329.93335.1049LifeStress Component - Component X

    0.157300.31299.8406Damage

    0.1320.0190250.019Safety Factor

    -0.7641465314765.7874LifeStress Component - Component Y

    0.77268.24767.724Damage

    -0.6830.0453780.04569Safety Factor

    0.0011476614765.7874LifeStress Component - Component Z

    0.00167.72567.724Damage

    0.0130.0456960.04569Safety Factor

    Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.44

    WBVMMECH016

  • WBVMMECH017:Thermal Stress Analysis with Remote Force and Thermal Loading

    Overview

    Any basic Strength of Materials bookReference:

    Linear Thermal Stress AnalysisAnalysis

    Type(s):

    SolidElement

    Type(s):

    Test Case

    A cylindrical rod assembly of four cylinders connected end to end has frictionless support applied on all the

    cylindrical surfaces and both the flat end faces are fixed. Other thermal and structural loads are as shown

    below.

    Find the Deformation in the x direction of the contact surface on which the remote force is applied. To get

    accurate results apply a global element size of 1.5 m.

    Figure: Schematic

    LoadingGeometric PropertiesMaterial Properties

    Given temperature (End A)

    = 1000C

    Diameter = 2 mE = 2e11 Pa

    Lengths of cylinders in

    order from End A: 2 m,

    5 m, 10 m, and 3 m.

    = 0

    Given temperature (End B)

    = 0C

    = 1.2e-5/C

    Remote force = 1e10 N ap-

    plied on the contact surface

    at a distance 7 m from end

    A.

    Location of remote force =

    (7,0,0) m

    Results Comparison

    Error (%)MechanicalTargetResults

    -1.6250.100160.101815Maximum X Deformation (m)

    45Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.46

  • WBVMMECH018: A Bar Subjected to Tensile Load with Inertia Relief

    Overview

    Any basic Strength of Materials bookReference:

    Linear Static Structural Analysis (Inertia Relief On)Analysis

    Type(s):

    SolidElement

    Type(s):

    Test Case

    A long bar assembly is fixed at one end and subjected to a tensile force at the other end as shown below.

    Turn on Inertia Relief.

    Find the deformation in the z direction

    Figure: Schematic

    LoadingGeometric PropertiesMaterial Properties

    Force P = 2e5 N (positive z

    direction)

    Cross-Section = 2 m x 2

    m

    E = 2e11 Pa

    = 0.3

    Lengths of bars in order

    from End A: 2 m, 5 m,

    10 m, and 3 m.

    = 7850 kg/m3

    Analysis

    zPL

    AE

    PL

    mE=

    2

    2

    where:

    L = total length of bar

    A = cross-section

    m = mass

    47Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Results Comparison

    Error (%)MechanicalTargetResults

    0.1522.5038e-62.5e-6Maximum Z Deformation (m)

    Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.48

    WBVMMECH018

  • WBVMMECH019: Mixed Model Subjected to Bending Loads with Solution

    Combination

    Overview

    Any basic Strength of Materials bookReference:

    Linear Static Structural AnalysisAnalysis

    Type(s):

    Beam and ShellElement

    Type(s):

    Test Case

    A mixed model (shell and beam) has one shell edge fixed as shown below. Bending loads are applied on

    the free vertex of the beam as given below. Apply a global element size of 80 mm to get accurate results.

    Scenario 1: Only a force load.

    Scenario 2: Only a moment load.

    Find the deformation in the y direction under Solution Combination with the coefficients for both the envir-

    onments set to 1.

    Figure: Scenario 1

    Figure: Scenario 2

    LoadingGeometric PropertiesMaterial Properties

    Force F = -10 N (y direction)Shell = 160 mm x 500

    mm x 10 mm

    E = 2e5 Pa

    Moment M = -4035 Nmm

    @ z-axis

    = 0

    49Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Beam rectangular cross

    section = 10 mm x 10

    mm

    Beam length = 500 mm

    Analysis

    yF

    EI

    M

    EI= +

    23

    384

    19

    128

    3 2l l

    where:

    I = total bending length of the mixed model

    I = moment of inertia of the beam cross-section

    Results Comparison

    Error (%)MechanicalTargetResults

    0.929-7.2542-7.18742Maximum Y-Deformation

    (mm)

    Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.50

    WBVMMECH019

  • WBVMMECH020: Modal Analysis for Beams

    Overview

    Any basic Vibration Analysis bookReference:

    Modal AnalysisAnalysis

    Type(s):

    BeamElement

    Type(s):

    Test Case

    Two collinear beams form a spring mass system. The density of the longer beam is kept very low so that it

    acts as a massless spring and the smaller beam acts as a mass. The end vertex of the longer beam (acting

    as a spring) is fixed. The cross section details are as shown below.

    Find the natural frequency of the axial mode.

    Figure: Cross Section Details for Both Beams

    Figure: Schematic

    Material Properties

    (kg/m3)E (Pa)Material

    1e-80.341.1e11Spring

    7.85e502e11Mass

    51Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • LoadingGeometric Properties

    Spring beam length = 500 mm

    Mass beam length = 5 mm

    Results Comparison

    Error (%)MechanicalTargetResults

    0.1601190.51188.6Natural Frequency of Axial

    Mode (Hz)

    Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.52

    WBVMMECH020

  • WBVMMECH021: Buckling Analysis of Beams

    Overview

    Warren C.Young, Roark's Formulas for Stress and Strains, McGraw

    Hill, 6th Edition,Table 34, Case 3a, pg. 675

    Reference:

    Buckling AnalysisAnalysis

    Type(s):

    BeamElement

    Type(s):

    Test Case

    A beam fixed at one end and is subjected to two compressive forces. One of the forces is applied on a

    portion of the beam of length 50 mm (L1) from the fixed end and the other is applied on the free vertex,

    as shown below.

    Find the load multiplier for the first buckling mode.

    Figure: Schematic

    LoadingGeometric PropertiesMaterial Properties

    Force on L1 = -1000 N (x

    direction)

    L1 = 50 mmE = 2e11 Pa

    Total length = 200 mm = 0.3

    Force on free vertex = -

    1000 N (x direction)

    Rectangular cross sec-

    tion = 10 mm x 10 mm

    Results Comparison

    Error (%)MechanicalTargetResults

    -0.40710.19810.2397Load Multiplier

    53Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.54

  • WBVMMECH022: Structural Analysis with Advanced Contact Options

    Overview

    Any basic Strength of Material bookReference:

    Nonlinear Static Structural AnalysisAnalysis

    Type(s):

    SolidElement

    Type(s):

    Test Case

    An assembly of two parts with a gap has a Frictionless Contact defined between the two parts. The end

    faces of both the parts are fixed and a given displacement is applied on the contact surface of Part 1 as

    shown below.

    Find the Normal stress and Directional deformation - both in the z direction for each part for the following

    scenarios:

    Scenario 1: Interface treatment - adjust to touch.

    Scenario 2: Interface treatment - add offset. Offset = 0 m.

    Scenario 3: Interface treatment - add offset. Offset = 0.001 m.

    Scenario 4: Interface treatment - add offset. Offset = -0.001 m.

    Validate all of the above scenarios for Augmented Lagrange and Pure Penalty formulations.

    Figure: Schematic

    LoadingGeometric PropertiesMaterial Properties

    Given displacement = (0, 0,

    0.0006) m

    Gap = 0.0005 mE = 2e11 Pa

    Dimensions for each

    part: 0.1 m x 0.1 m x

    0.5m

    = 0

    Results Comparison

    The same results are obtained for both Augmented Lagrange and Pure Penalty formulations.

    55Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Er-

    ror

    (%)

    Mechan-

    ical

    Tar-

    get

    Results

    0.0006e-46e-4Maximum directional z de-

    formation Part 1 (m)

    Adjust To Touch

    -0.3575.9786e-

    4

    6e-4Maximum directional z de-

    formation Part 2 (m)

    0.0002.4e82.4e8Maximum normal z stress

    Part 1 (Pa)

    -0.354-2.3915e8-2.4e8Maximum normal z stress

    Part 2 (Pa)

    0.0006e-46e-4Maximum directional z de-

    formation Part 1 (m)

    Add Offset. Offset = 0 m

    -0.3560.99644e-

    4

    1e-4Maximum directional z de-

    formation Part 2 (m)

    0.0002.4e82.4e8Maximum normal z stress

    Part 1 (Pa)

    -0.355-3.9858e7-4e7Maximum normal z stress

    Part 2 (Pa)

    0.0006e-46e-4Maximum directional z de-

    formation Part 1 (m)

    Add Offset. Offset = 0.001

    m

    -0.3551.0961e-

    3

    1.1e-

    3

    Maximum directional z de-

    formation Part 2 (m)

    0.0002.4e82.4e8Maximum normal z stress

    Part 1 (Pa)

    -0.357-4.3843e8-4.4e8Maximum normal z stress

    Part 2 (Pa)

    0.0006e-46e-4Maximum directional z de-

    formation Part 1 (m)

    Add Offset. Offset = -

    0.001 m

    0.00000Maximum directional z de-

    formation Part 2 (m)

    0.0002.4e82.4e8Maximum normal z stress

    Part 1 (Pa)

    000Maximum normal z stress

    Part 2 (Pa)

    Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.56

    WBVMMECH022

  • WBVMMECH023: Curved Beam Assembly with Multiple Loads

    Overview

    Any basic Strength of Materials bookReference:

    Linear Static Structural AnalysisAnalysis

    Type(s):

    BeamElement

    Type(s):

    Test Case

    An assembly of two curved beams, each having an included angle of 45, has a square cross-section. It is

    fixed at one end and at the free end a Force F and a Moment M are applied. Also, a UDL of "w " N / mm is

    applied on both the beams. Use a global element size of 30 mm to get accurate results. See the figure below

    for details.

    Find the deformation of the free end in the y direction.

    Figure: Schematic

    Equivalent Loading:

    LoadingGeometric PropertiesMaterial Properties

    Force F = -1000 N (y direc-

    tion)

    For each beam:Beam 1:

    Cross-section = 10 mm

    x 10 mm

    E1 = 1.1e5 MPa

    Moment M = -10000 Nmm

    (about z-axis)

    1 = 0

    Radius r = 105 mm1 = 8.3e-6 kg/mm3

    57Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • LoadingGeometric PropertiesMaterial Properties

    UDL w = -5 N/mm (y direc-

    tion) on both beams

    Included angle = 45Beam 2:

    E2 = 2e5 MPa

    This UDL is applied as an

    edge force on each beam

    2 = 0

    2 = 7.85e-6 kg/mm3

    with magnitude = -5 (2 x

    3.14 x 105) / 8 = -412.334

    N

    Analysis

    The deflection in the y direction is in the direction of the applied force F and is given by:

    =

    + +

    +

    10 142699 0 29289 0 039232

    1

    1

    3 2 4

    2

    3

    E IFr Mr r

    E IFr

    [ ( . ) ( . ) ( . )]

    [ (( . ) ( . ( . )]0 642699 0 707 0 2935642472 4+ +

    Mr r

    where:

    = deflection at free end in the y direction

    I = moment of inertia of the cross-section of both beams

    Results Comparison

    Error (%)MechanicalTargetResults

    0.619-8.4688-8.416664Minimum Y Deformation

    (mm)

    Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.58

    WBVMMECH023

  • WBVMMECH024: Harmonic Response of a Single Degree of Freedom System for

    Beams

    Overview

    Any basic Vibration Analysis bookReference:

    Harmonic AnalysisAnalysis

    Type(s):

    BeamElement

    Type(s):

    Test Case

    Two collinear beams form a spring-mass system. The density of the longer beam is kept very low so that it

    acts as a massless spring and the smaller beam acts as a mass. The end vertex of the longer beam (acting

    as a spring) is fixed. A Harmonic force F is applied on the free vertex of the shorter beam in z direction. Both

    beams have hollow circular cross-sections, as indicated below.

    Scenario 1: Damping ratio = 0

    Scenario 2: Damping ratio = 0.05

    Find the z directional deformation of the vertex where force is applied at frequency F = 500 Hz for the above

    scenarios with solution intervals = 25 and a frequency range of 0 to 2000 Hz. Use both Mode Superposition

    and Full Method.

    Figure: Schematic

    Material Properties

    (kg/m3)E (Pa)Material

    1e-80.341.1e11Spring

    7.85e502e11Mass

    LoadingGeometric Properties

    Harmonic force F = 1 e6 N

    (z-direction)

    Cross-section of each

    beam:

    Outer radius = 10 mm

    Inner radius = 5 mm

    Length of longer beam

    = 100 mm

    59Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Length of shorter beam

    = 5 mm

    Results Comparison

    Er-

    ror

    (%)

    Mechan-

    ical

    TargetResults

    -0.8594.078e-34.11332e-

    3

    Maximum z directional deforma-

    tion without damping (m)

    Mode Superposi-

    tion

    -0.8764.0765e-

    3

    4.11252e-

    3

    Maximum z directional deforma-

    tion with damping (m)

    -0.0034.1132e-

    3

    4.11332e-

    3

    Maximum z directional deforma-

    tion without damping (m)

    Full Method

    -1.0464.0695e-

    3

    4.11252e-

    3

    Maximum z directional deforma-

    tion with damping (m)

    Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.60

    WBVMMECH024

  • WBVMMECH025: Stresses Due to Shrink Fit Between Two Cylinders

    Overview

    Stephen P.Timoshenko, Strength of Materials, Part 2 - Advanced

    Theory and Problems, 3rd Edition, pg. 208-214

    Reference:

    Linear Static Structural AnalysisAnalysis

    Type(s):

    SolidElement

    Type(s):

    Test Case

    One hollow cylinder is shrink fitted inside another. Both cylinders have length L and both the flat faces of

    each cylinder are constrained in the axial direction. They are free to move in radial and tangential directions.

    An internal pressure of P is applied on the inner surface of the inner cylinder. To get accurate results, apply

    a global element size of 0.8 inches.

    Find the maximum tangential stresses in both cylinders.

    Note

    Tangential stresses can be obtained in the Mechanical application using a cylindrical coordinate

    system.

    To simulate interference, set Contact Type to Rough with interface treatment set to add offset

    with Offset = 0.

    Figure: Schematic

    LoadingGeometric PropertiesMaterial Properties

    P = 30000 psiInner Cylinder:Both cylinders are made

    of the same material ri = 4

    E = 3e7psi ro = 6.005

    = 0 Ri = 6

    = 0.28383 lbm/in3

    Ro = 8

    61Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Length of both cylinders

    = 5

    Results Comparison

    Error (%)MechanicalTargetResults

    0.9593573635396.67Maximum normal y stress, inner cylin-

    der (psi)

    0.0024228242281.09Maximum normal y stress, outer cyl-

    inder (psi)

    Note

    Here y corresponds to direction of a cylindrical coordinate system.

    Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.62

    WBVMMECH025

  • WBVMMECH026: Fatigue Analysis of a Rectangular Plate Subjected to Edge

    Moment

    Overview

    Any standard Machine Design and Strength of Materials bookReference:

    Fatigue AnalysisAnalysis

    Type(s):

    ShellElement

    Type(s):

    Test Case

    A plate of length L, width W, and thickness T is fixed along the width on one edge and a moment M is applied

    on the opposite edge about the z-axis.

    Find the maximum Bending Stress (Normal X Stress) and maximum Total Deformation of the plate. Also find

    the part life and the factor of safety using Goodman, Soderberg, & Gerber criteria. Use the x-stress component.

    Consider load type as fully reversed and a Design Life of 1e6 cycles, Fatigue Strength factor of 1, and Scale

    factor of 1.

    Figure: Schematic

    Material Properties

    E = 2e11 Pa

    = 0.0

    Ultimate tensile strength = 1.29e9 Pa

    Endurance strength = 1.38e8 Pa

    Yield Strenth = 2.5e8 Pa

    Alternating Stresses (Pa)No. of Cycles

    1.08e91000

    1.38e81e6

    LoadingGeometric Properties

    Moment M = 0.15 Nm

    (counterclockwise @ z-axis)

    Length L = 12e-3 m

    Width W = 1e-3 m

    Thickness T = 1 e-3 m

    63Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Results Comparison

    Er-

    ror

    (%)

    Mechan-

    ical

    TargetResults

    0.0009e89e8Maximum normal x-stress (Pa)

    0.3116.5002e-

    4

    6.48e-4Maximum total deformation (m)

    0.0200.153330.1533Safety factorSN-Goodman

    0.0051844.41844.3Life

    0.0200.153330.1533Safety factorSN-Soderberg

    0.0051844.41844.3Life

    0.0200.153330.1533Safety FactorSN-Gerber

    0.0051844.41844.3Life

    Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.64

    WBVMMECH026

  • WBVMMECH027: Thermal Analysis for Shells with Heat Flow and Given

    Temperature

    Overview

    Any standard Thermal Analysis bookReference:

    Thermal Stress AnalysisAnalysis

    Type(s):

    ShellElement

    Type(s):

    Test Case

    A plate of length (L), width (W), and thickness (T) is fixed along the width on one edge and heat flow (Q) is

    applied on the same edge. The opposite edge is subjected to a temperature of 20 C. Ambient temperature

    is 20 C. To get accurate results, apply a sizing control with element size = 2.5e-2 m.

    Find the maximum temperature, maximum total heat flux, maximum total deformation, and heat reaction

    at the given temperature.

    Figure: Schematic

    LoadingGeometric PropertiesMaterial Properties

    Heat flow Q = 5 WLength L = 0.2 mE = 2e11 Pa

    Given Temperature = 20CWidth W = 0.05 m = 0.0

    Thickness T = 0.005 mCoefficient of thermal

    expansion = 1.2e-5/C

    Thermal conductivity k

    = 60.5 W/mC

    Analysis

    Heat Reaction = -(Total heat generated)

    Heat flow due to conduction is given by:

    Q kAT T

    lh l=

    ( )

    where:

    65Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Th = maximum temperature

    T1 = given temperature

    Total heat flux is:

    qQ

    A=

    Temperature at a variable distance z from the fixed support is given by:

    T TT T z

    lz h

    h=

    ( )1

    Thermal deformation in the z-direction is given by:

    z zl

    T T dz= ( )10

    Results Comparison

    Er-

    ror

    (%)

    Mechan-

    ical

    TargetResults

    0.00086.11686.1157Maximum Temperature (C)

    0.0002e42e4Maximum Total Heat Flux (W/m2)

    0.7817.9958e-

    5

    7.93386e-

    5

    Maximum Total Deformation (m)

    0.000-5-5Heat Reaction (W)

    Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.66

    WBVMMECH027

  • WBVMMECH028: Bolt Pretension Load Applied on a Semi-Cylindrical Face

    Overview

    Any standard Strength of Materials bookReference:

    Static Structural AnalysisAnalysis

    Type(s):

    SolidElement

    Type(s):

    Test Case

    A semi-cylinder is fixed at both the end faces. The longitudinal faces have frictionless support. A bolt preten-

    sion load is applied on the semi-cylindrical face. To get accurate results, apply sizing control with element

    size of 0.01 m.

    Find the Z directional deformation and the adjustment reaction due to the bolt pretension load.

    Figure: Schematic

    LoadingGeometric PropertiesMaterial Properties

    Pretension as preload =

    19.635 N (equal to adjust-

    ment of 1e-7 m)

    Length L = 1 mE = 2e11 Pa

    Diameter D = 0.05 m = 0.0

    Analysis

    The bolt pretension load applied as a preload is distributed equally to both halves of the bar. Therefore the

    z-directional deformation due to pretension is given by:

    PretensionPretension Load

    =L

    AE

    / 2

    Adjustment Pretension= 2

    67Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Results Comparison

    Er-

    ror

    (%)

    Mechan-

    ical

    TargetResults

    0.004-0.50002e-

    7

    -0.5e-7Minimum z-directional deformation

    (m)

    0.0001e-71e-7Adjustment Reaction (m)

    Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.68

    WBVMMECH028

  • WBVMMECH029: Elasto-Plastic Analysis of a Rectangular Beam

    Overview

    Timoshenko S., Strength of Materials, Part II, Advanced Theory and

    Problems,Third Edition, Article 64, pp. 349

    Reference:

    Static Plastic AnalysisAnalysis

    Type(s):

    SolidElement

    Type(s):

    Test Case

    A rectangular beam is loaded in pure bending. For an elastic-perfectly-plastic stress-strain behavior, show

    that the beam remains elastic at M = Myp = ypbh2 / 6 and becomes completely plastic at M = Mult = 1.5

    Myp. To get accurate results, set the advanced mesh control element size to 0.5 inches.

    Figure: Stress-Strain Curve

    Figure: Schematic

    LoadingGeometric PropertiesMaterial Properties

    M = 1.0 Myp to 1.5 MypLength L = 10E = 3e7 psi

    (Myp = 24000 lbf - in)Width b = 1 = 0.0

    Height h = 2yp = 36000 psi

    69Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Analysis

    The load is applied in three increments: M1 = 24000 lbf-in, M2 = 30000 lbf-in, and M3 = 36000 lbf-in.

    Results Comparison

    Error

    (%)

    MechanicalTargetM/Myp

    Equivalent Stress

    (psi)

    StateEquivalent Stress

    (psi)

    State

    0.16436059fully

    elastic

    36000fully

    elastic

    1

    0.80036288elastic-

    plastic

    36000elastic-

    plastic

    1.25

    -solution not con-

    verged

    plasticsolution not con-

    verged

    plastic1.5

    Release 12.0 - 2009 SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.70

    WBVMMECH029

  • WBVMMECH030: Bending of Long Plate Subjected to Moment - Plane Strain