weak lensing tomography sarah bridle university college london

Download Weak Lensing Tomography Sarah Bridle University College London

If you can't read please download the document

Upload: isabel-berry

Post on 16-Dec-2015

217 views

Category:

Documents


0 download

TRANSCRIPT

  • Slide 1
  • Weak Lensing Tomography Sarah Bridle University College London
  • Slide 2
  • 3d vs 2d (tomography) Non-Gaussian -> higher order statistics Low redshift -> dark energy versus
  • Slide 3
  • Weak Lensing Tomography 1.In principle (perfect zs) Hu 1999 astro-ph/9904153 2.Photometric redshifts Csabai et al. astro-ph/0211080 3.Effect of photometric redshift uncertainties Ma, Hu & Huterer astro-ph/0506614 4.Intrinsic alignments 5.Shear calibration
  • Slide 4
  • 1. In principle (perfect zs) Qualitative overview Lensing efficiency and power spectrum Dependence on cosmology Power spectrum uncertainties Cosmological parameter constraints
  • Slide 5
  • 1. In principle (perfect zs) Core reference Hu 1999 astro-ph/9904153 See also Refregier et al astro-ph/0304419 Takada & Jain astro-ph/0310125
  • Slide 6
  • Cosmic shear two point tomography
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • (Hu 1999)
  • Slide 11
  • Slide 12
  • Lensing efficiency (Hu 1999) Equivalently: g i (z l ) = z l n i (z s ) D l D ls / D s dz s i.e. g is just the weighted D l D ls / D s
  • Slide 13
  • Can you sketch g 1 (z) and g 2 (z)? (Hu 1999) g i (z) = z s n i (z s ) D l D ls / D s dz s
  • Slide 14
  • Lensing efficiency for source plane?
  • Slide 15
  • Slide 16
  • (Hu 1999)
  • Slide 17
  • Sensitivity in each z bin
  • Slide 18
  • NOT
  • Slide 19
  • (Hu 1999) Why is g for bin 2 higher? A. More structure along line of sight B. Distances are larger g i (z d ) = z s 1 n i (z s ) D d D ds / D s dz s
  • Slide 20
  • Slide 21
  • * *
  • Slide 22
  • Lensing power spectrum (Hu 1999)
  • Slide 23
  • Lensing power spectrum Equivalently: P ii (l) = g i (z l ) 2 P(l/D l,z) dD l /D l 2 i.e. matter power spectrum at each z, weighted by square of lensing efficiency (Hu 1999)
  • Slide 24
  • Slide 25
  • Measurement uncertainties 1/2 = rms shear (intrinsic + photon noise) n i = number of galaxies per steradian in bin i (Hu 1999) Cosmic Variance Observational noise
  • Slide 26
  • (Hu 1999)
  • Slide 27
  • Sensitivity in each z bin
  • Slide 28
  • NOT
  • Slide 29
  • (Hu 1999)
  • Slide 30
  • Dependence on cosmology Refregier et al SNAP3 ?? A. m = 0.35 w=-1 B. m = 0.30 w=-0.7
  • Slide 31
  • Approximate dependence Increase 8 A. P B. P Increase z s A. P B. P Increase m A. P B. P Increase DE ( K =0) A. P B. P Increase w A. P B. P Huterer et al
  • Slide 32
  • Effect of increasing w on P Distance to z A. Decreases B. Increases
  • Slide 33
  • Perlmutter et al.1998 Fainter Further away Decelerating Accelerating m =1, no DE m =1, DE =0) == ( m = 0.3, DE = 0.7, w DE =0)
  • Slide 34
  • Perlmutter et al.1998 EdS OR w=0 w=-1 Fainter, further Brighter, closer
  • Slide 35
  • Effect of increasing w on P Distance to z A. Decreases B. Increases When decrease distance, lensing effect decreases Dark energy dominates A. Earlier B. Later
  • Slide 36
  • Slide 37
  • Slide 38
  • Effect of increasing w on P Distance to z A. Decreases B. Increases When decrease distance, lensing decreases Dark energy dominates A. Earlier B. Later Growth of structure A. Suppressed B. Increased Lensing A. Increases B. Decreases Net effects: Partial cancellation decreased sensitivity Distance wins
  • Slide 39
  • Approximate dependence Increase 8 A. P B. P Increase z s A. P B. P Increase m A. P B. P Increase DE ( K =0) A. P B. P Increase w A. P B. P Huterer et al
  • Slide 40
  • Approximate dependence Increase 8 A. P B. P Increase z s A. P B. P Increase m A. P B. P Increase DE ( K =0) A. P B. P Increase w A. P B. P Huterer et al Note modulus
  • Slide 41
  • Which is more important? Distance or growth? Simpson & Bridle
  • Slide 42
  • Dependence on cosmology Refregier et al SNAP3 ?? A. m = 0.35 w=-1 B. m = 0.30 w=-0.7
  • Slide 43
  • (Hu 1999)
  • Slide 44
  • See Heavens astro-ph/0304151 for full 3D treatment (~infinite # bins)
  • Slide 45
  • (Hu 1999)
  • Slide 46
  • Parameter estimation for z~2 (Hu 1999)
  • Slide 47
  • Predict the direction of degeneracy in w versus m plane
  • Slide 48
  • Refregier et al SNAP3
  • Slide 49
  • (Hu 1999)
  • Slide 50
  • Takada & Jain
  • Slide 51
  • (Hu 1999)
  • Slide 52
  • Covariance matrix P 12 is correlated with P 11 and P 22 (ignoring trispectrum contributions) Takada & Jain
  • Slide 53
  • Slide 54
  • How many redshift bins to use? Ma, Hu & Huterer 5 is enough Modified from
  • Slide 55
  • Higher order statistics
  • Slide 56
  • Takada & Jain
  • Slide 57
  • Slide 58
  • Geometric information Jain & Taylor; Kitching et al. Slide stolen from Tom Kitching www.astro.dur.ac.uk/Cosmology/SISCO/edin_talks/Kitching.PPT
  • Slide 59
  • Slide stolen from presentation by Andy Taylor www.shef.ac.uk/physics/idm2004/talks/monday/originals/taylor_andy.ppt
  • Slide 60
  • Slide stolen from presentation by Andy Taylor www.shef.ac.uk/physics/idm2004/talks/monday/originals/taylor_andy.ppt
  • Slide 61
  • Slide stolen from presentation by Andy Taylor www.shef.ac.uk/physics/idm2004/talks/monday/originals/taylor_andy.ppt
  • Slide 62
  • Slide stolen from presentation by Andy Taylor www.shef.ac.uk/physics/idm2004/talks/monday/originals/taylor_andy.ppt
  • Slide 63
  • Some additional tomographic methods Cross-correlation cosmography Bernstein & Jain astro-ph/0309332 Galaxy-lensing cross correlation Hu & Jain astro-ph/0312395 Reconstruction of distance and growth Song; Knox & Song