€¦ · web viewenergy changes in systems 6-24 167-172 4-10 conservation and dissipation of energy...

134
Physics Paper 1 Content Booklet Topics P1 – P4 Exam: Tuesday 22 nd May 2019

Upload: others

Post on 31-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Physics Paper 1

Content Booklet

Topics P1 – P4

Exam: Tuesday 22 nd May 2019

Name ________________Class _______________

Page 2: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

pg. 2

Page 3: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

pg. 3

Page 4: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Contents Page

P1 – Energy

Topic Booklet Pages

Revision Guide Pages

Exam Questio

nsEnergy Changes in Systems 6-24 167-172 4-10

Conservation and Dissipation of Energy 25-28 168, 173-174 11-16

National and Global Energy Resources 29-38 175-179 17-23

P2 – Electricity

Topic Booklet Pages

Revision Guide Pages

Exam Questio

nsCircuit Electricity 39-58 180-187 24-33

Domestic Electricity Supply and Safety 59-61, 69-70 188 34-40

Electrical Energy Transfer 62-68 189-191 41-45

P3 – Particle Model of Matter

Topic Booklet Pages

Revision Guide Pages

Exam Questio

nsThe Particle Model and Particle Motion 71-72 193

46-53Density (RP) 73-76 194

Internal Energy and Temperature Changes 77-78 19554-63

State Changes and Latent Heat 79-84 195-196

P4 – Atomic Structure

Topic Booklet Pages

Revision Guide Pages

Exam Questio

nsAtoms and Isotopes 85-89 104, 197-

198 64-67

Nuclear Radiation 90 198 68-71

Decay Equations and Half-Life 91-96 199-200 72-80

pg. 4

Page 5: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Contamination and Irradiation 97-98 201 81-86

Physics Equation Sheet

These are the equations you have to learn

pg. 5

Page 6: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

These are the equations you are given in the exam

How to use a Formula TriangleCover the quantity you are trying to find, then follow the rules in the diagram.<

Quantities and Units

Quantity Quantity Symbol Unit Unit

SymbolEnergyMass

VelocityHeight

Gravitational Field StrengthSpring Constant

ExtensionSpecific Heat Capacity

TemperaturePower

Work DoneTime

Charge FlowCurrent

Potential Difference (Voltage)Resistance

DensityVolume

Specific Latent HeatP1 – Energy Changes and Stores – Revision Guide Pages 167-172

pg. 6

Page 7: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Energy Stores

Object Energy Store Description

pg. 7

Page 8: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Energy Pathways

Energy can move between stores in an object. We call this energy transfer. There are four ways that energy can be transferred - we call these pathways.

Energy Pathway Description

Heating

Radiation

Mechanical

Electrical

Describing Energy Transfers

We always use boxes to show stores of energy and arrows to show pathways. This is called an energy flow diagram. These diagrams show how the energy is being transferred from one store to another

The energy flow diagram for a car speeding up is:

Energy is transferred from the chemical store of the petrol to the kinetic store of the car, along the mechanical pathway.

pg. 8

Page 9: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Task: Complete the other energy flow diagrams in your booklet for the following

1. A ball being thrown upwards

Energy is transferred from the ___________________ store of the _____________ to the

_________________ store of the _________, along the _________________ pathway.

2. A ball being dropped

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

3. A car braking to slow down

…………………………………………………………………………………………………………………..

pg. 9

Page 10: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

4. A car hitting the wall

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

5. Boiling water in an electric kettle.

pg. 10

Page 11: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

pg. 11

Page 12: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Write the equation which links: kinetic energy, mass and velocity

Equation in Words

…………………………………………………………………………………………………………………

Equation in Symbols

…………………………………………………………………………………………………………………

Formula Triangle

Remember: fill in the energy, mass and velocity sections of the quantities table.

Common Conversions

Worked Example

pg. 12

Page 13: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Kinetic Energy, Mass and Velocity – Practise Questions

1. Calculate the kinetic energy of a runner who has a mass of 80 kg and is running at a velocity of 8 m/s.

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

2. A cricketer swings a bat which has a mass of 1400g at a velocity of 15 m/s. How many joules of kinetic energy are transferred to the ball?

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

3. A golf-pro swings her driver at a velocity of 60 m/s. She transfers 1350 J of energy to the kinetic store of the driver, what is the mass of the driver?

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

4. A car has a mass of 1500 kg, it transfers 147,000 J of energy. Calculate the velocity of the car.

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

pg. 13

Page 14: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

…………………………………………………………………………………………………………………..

5. A 400g ball is thrown across a field, 80 J of energy are transferred to the ball’s kinetic store. What is the velocity of the ball?

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

pg. 14

Page 15: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Write the equation which links: gravitational potential energy, mass, gravitational field strength and height

Equation in Words

…………………………………………………………………………………………………………………

Equation in Symbols

…………………………………………………………………………………………………………………

Formula Triangle

Remember: fill in the energy, mass and gravitational field strength and height sections of the quantities table.

Common Conversions

Worked Example

pg. 15

Page 16: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Gravitational Potential Energy, Mass, Gravitational Field Strength and Height – Practise Questions

1. A ball is thrown 10 m into the air. It has a mass of 0.5 kg, what is its maximum gravitational potential energy?

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

2. What is the gravitational potential energy store of an 800 g book resting on top of a 6.5 m shelf?

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

3. What is the mass of a bowling ball that is stationary at the top of a 450 m hill, with a gravitational potential energy store of 10,000 J?

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

4. A space rover has landed on a 100 m high hill on Mars. It has a mass of 210 kg and a store of 77700 J of gravitational potential energy. What is the gravitational field strength on this planet?

…………………………………………………………………………………………………………………..

pg. 16

Page 17: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

5. A 250 g glass is put onto a table, it has 2.35 J of energy in its gravitational potential store. What is the height of the table?

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

Write the equation which links: elastic potential energy, spring constant, extension

Equation in Words

…………………………………………………………………………………………………………………

Equation in Symbols

…………………………………………………………………………………………………………………

Formula Triangle

Remember: fill in the spring constant and extension sections of the quantities table.

Common Conversionspg. 17

Page 18: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Worked Example

Elastic Potential Energy, Spring Constant, Extension – Practise Questions

1. How much energy is stored in a spring with a spring constant of 20 N/m, when extended 0.5m?

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

2. A spring with a spring constant of 42 N/m has been stretched by 52 cm. Calculate the elastic potential store of energy.

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

3. A bungee rope stores 500 J of energy in its elastic potential store when stretched by 12m. What is its spring constant?

pg. 18

Page 19: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

4. A spring with a spring constant of 800N/m is storing 50 J of energy, how much is it compressed by?

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

5. A spring with a spring constant of 140N/m has been extended by 25cm. Calculate the elastic potential energy store.

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

pg. 19

Page 20: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Falling ObjectsWhen an object falls, all the energy it had in its GPE store will be transferred to its kinetic store.

Example: A box with a mass of 5kg falls from a ladder which is 4m high. How much energy will be in its kinetic store just before it hits the ground?…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

Energy is transferred from the box’s GPE store to its KE store, so energy in kinetic store = …………………………………… J

Task – now have a go at these questions.

1. A ball with a mass of 2kg falls from a building which is 25m high. How much energy will be in its kinetic store just before it hits the ground?

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

2. A paperclip with a mass of 1g falls from a desk which is 1.2m high. How much energy will be in its kinetic store just before it hits the ground?

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

3. A ball with a mass of 1.5kg is thrown upwards. At the start of the throw, it has a velocity of 5m/s. How much energy will be in the GPE store of the ball at its highest point before it starts to fall again?

…………………………………………………………………………………………………………………..

pg. 20

Page 21: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

…………………………………………………………………………………………………………………..

4. How high will the ball go?

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

PowerPower is the rate of ___________ transfer. We can also say it is the rate of _________

_________.

This means that more powerful objects will transfer energy ______________ than a less

_______________ object.

Power is measured in _____________

1 watt is the same thing as saying 1 __________ of energy is transferred per

____________

Write the equation which links: power, energy and time

Equation in Words

…………………………………………………………………………………………………………………

Equation in Symbols

…………………………………………………………………………………………………………………

Formula Triangle

pg. 21

Page 22: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Remember: fill in the power, energy, work done and time sections of the quantities table.

pg. 22

Page 23: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Common Conversions

Worked Example

pg. 23

Page 24: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Power, Energy and Time – Practise Questions

1. A bird uses 200J of energy to fly to its nest in 15 seconds. Calculate the power of the bird.

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

2. A crane does 8 kJ of work to lift a crate. It takes 30 s to make the lift. Calculate the power of the crane.

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

3. A motor with a power rating of 500W uses 9000J of energy to lift a box. How long did it take to life the box?

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

4. A weightlifter takes 1.2 seconds to lift a barbell with a power of 1200W. How much work has he done?

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

pg. 24

Page 25: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

…………………………………………………………………………………………………………………..

5. It takes 2 minutes for a lift with a motor with a 5kW rating to reach the 42nd floor of a building. How much energy was required?

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

pg. 25

Page 26: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Energy Transfers during HeatingExample: boiling water in an electric kettle.

Energy is transferred __________________ to the _________________ energy store of the

kettle’s heating element.

Energy is the transferred by __________________ to the water’s __________________

energy store.

So the temperature of the water ___________________.

Specific Heat Capacity

On a hot day at the beach, the sand can feel very hot, but the sea feels

_______________. This is because different materials need different amounts of

__________________ to heat them up.

Materials which need a lot of energy to heat up (like the sea) can _________________ a

lot of energy and can also _____________________ a lot of energy when they cool down.

The amount of energy stored or released during a temperature change depends on

the ___________________ ___________________ ___________________ of the material.

The specific heat capacity is the amount of _____________________ needed to

heat _____________ of a material by ___________.

pg. 26

Page 27: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Write the equation which links: energy, mass, specific heat capacity and change in temperature

Equation in Words

…………………………………………………………………………………………………………………

Equation in Symbols

…………………………………………………………………………………………………………………

Formula Triangle

Remember: fill in the energy, mass, specific heat capacity and temperature sections of the quantities table.

Common Conversions

Worked Example

pg. 27

Page 28: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Energy, mass, specific heat capacity and change in temperature – Practise Questions

1. 1.5 kg of water is heated, increasing its temperature by 10°C. How much energy

has been added to the water? The specific heat capacity of water is 4200 J/kg°C.

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

2. An 800g block of copper cools down by 50°C. How much energy has been released from the copper? The specific heat capacity of copper is 390 J/kg°C.

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

3. 150J of energy is given to a block of 0.5kg of a material which causes it to heat up from 15°C to 20°C. What is the specific heat capacity of the material?

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

4. Water has a specific heat capacity of 4200 J/kg°C. If it takes 1.8kJ of energy to heat some water by 50°C, what mass of water do you have?

…………………………………………………………………………………………………………………..

pg. 28

Page 29: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

5. Glass has a specific heat capacity of 840 J/kg°C. A 2 kg sheet of glass is at 20. If it absorbs 5.8 kJ of energy, what will its final temperature be?

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

pg. 29

Page 30: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Specific Heat Capacity – Required Practical

Calculating Energy Supplied to the Heater To calculate the power of a heater, just multiply the potential difference and

current in the circuit together. Then, to calculate the energy given out by the electrical heater multiply the

power of the heater by the time it has been on for (in seconds).

Example: Calculate how much energy is supplied to a heater in a circuit with a potential difference of 12V and a current of 2.5A and is left on for 2 minutes.Calculate Power: Power = potential difference x current

Power = 12 x 2.5Power = 30W

Now Energy: Energy = power x timeEnergy = 30W x 120 secondsEnergy = 3600 J

Task: Have a go at these.1. Calculate how much energy is supplied to a heater in a circuit with a current of

4A and a potential difference of 8V and is left on for 200 seconds.

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

2. Calculate how much energy is supplied to a heater in a circuit with a potential difference of 10V and a current of 3A is left on for 5 minutes.

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

pg. 30

Page 31: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

3. Calculate how much energy is supplied to a heater with a current of 150mA and a potential difference of 12V. The heater is left on for 3 minutes.

………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

Specific Heat Capacity – Required Practical (video)1. What goes in the two holes in the top of the block?

…………………………………………………………………………………………………………………..

2. Why are a few drops of water added to the thermometer hole?

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

3. What will we be recording?

…………………………………………………………………………………………………………………..

4. What is the equation to calculate specific heat capacity?

…………………………………………………………………………………………………………………..

5. Why don’t we need to measure the mass of the block?

…………………………………………………………………………………………………………………..

6. How will we calculate the power of the heater most accurately?

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

pg. 31

Page 32: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

7. What do we use to measure the current? How about the potential difference?

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

8. Once we know the power, how do we calculate energy?

…………………………………………………………………………………………………………………..

9. Why is the number calculated for SHC in the experiment usually higher than the correct value?

…………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………..

10. What can we do to get more accurate results?

…………………………………………………………………………………………………………………..

P1 – Conservation and Dissipation – Revision Guide Pages 168, 173-174

Conservation of Energy

The conservation of energy principle is that energy is never _________________ or

______________________, it can only be stored, ____________________ or

_____________________.

Dissipated means that energy is transferred to the _______________________ in a way

that is not _____________________.

Energy can be __________________ between stores.

For example, when you use a battery operated toy car, energy is transferred usefully

from the ___________________ store of the battery to the ____________________ store of

pg. 32

Page 33: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

the car. Some energy is dissipated. For example, the surroundings will _______________

_____________ and ______________ waves will be produced.

Dissipating Energy

1. What happens during energy transfers which is not helpful?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. Which store does energy usually dissipate to?

………………………………………………………………………………………………………………..

3. What is another name for this dissipated energy?

………………………………………………………………………………………………………………..

4. Why is friction not helpful in many situations?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

pg. 33

Page 34: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

5. What can we do to reduce friction?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

6. If we said a material had a ‘high thermal conductivity’ what would we mean?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

7. What is another name for a material with a low thermal conductivity?

………………………………………………………………………………………………………………..

8. How can we use these materials to reduce the amount of energy which is dissipated from our homes?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

pg. 34

Page 35: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Efficiency

The efficiency of an energy transfer is a measure of the amount of energy that ends up in the useful energy store.

pg. 35

Page 36: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Task: Have a go at answering these questions.

1. A motor in a remote-controlled car transfer 300J of energy into the car’s energy stores. 225J are transferred to the car’s kinetic store. Calculate the efficiency of the motor.

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. 250,000 J of energy is transferred to a computer. It dissipates 50,000 J to the surroundings.

a. Calculate the amount of energy transferred to the useful energy store.

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

b. Calculate the efficiency of the computer.

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

3. A machine has a useful power output of 900 W and an efficiency of 0.75. Calculate the total power input to the machine.

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

4. A microwave has an efficiency of 0.75. It has a total input of 800W. Calculate the useful power output.

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

5.

pg. 36

Page 37: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

P1 – National and Global Energy Resources – Revision Guide Pages 175- 179

1. Give 4 examples of non-renewable energy resources?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. What do we mean by ‘non-renewable’?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

3. What do we mean by a renewable energy resource?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

4. State the names of the 7 renewable energy resources which you need to know about.

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

5. Give examples of the ways non-renewable energy resources are used in transport.

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

6. Give an example of the way a renewable energy resources are used in transport.

………………………………………………………………………………………………………………..

pg. 37

Page 38: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

7. How are non-renewable energy resources used to heat things such as your home?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

8. How are renewable energy resources used to heat your home?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

Wind, Solar and Geothermal

1. How do wind turbines work?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. Why can we say they are ‘non-polluting’?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

3. Why are they unreliable?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

4. How do solar panels work?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..pg. 38

Page 39: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

………………………………………………………………………………………………………………..

5. What is the problem with making solar panels?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

6. Why are they not useful as the only source of electricity?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

7. Suggest a suitable location for solar panels

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

8. How does geothermal power work?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

9. What are the 2 uses of geothermal power?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

10. Why is geothermal power so reliable?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

pg. 39

Page 40: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Hydroelectric, Waves and Tides

1. Why are hydroelectric power stations damaging to the environment, even though no fossil fuels are burned?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. What are the main benefits of using hydroelectric power?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

3. How do wave turbines work?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

4. What are tidal barrages and how do they work?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

5. Why are tidal barrages so reliable?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

6. Why can they be said to be damaging to the environment?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

pg. 40

Page 41: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Biofuels

1. What are biofuels made from?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. How can they be used?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

3. Why can we say that biofuels do not contribute to greenhouse gases being added to the atmosphere?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

4. Why can biofuels be damaging to the environment?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

5. Why are they so reliable?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

pg. 41

Page 42: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Non-Renewable Resources

1. Why do we use fossil fuels so heavily?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. What is the problem if we do not find alternatives to fossil fuels

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

3. Why do fossil fuels cause global warming?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

4. Why do fossil fuels cause acid rain?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

5. Describe other environmental issues of using fossil fuels.

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

6. Why could it be argued that nuclear power is good for the environment?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

7. Why could it be argued that nuclear power is damaging to the environment?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

pg. 42

Page 43: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

pg. 43

Page 44: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

pg. 44

Page 45: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Switching to Renewables

1. Why did we start to use a lot more electricity in the 1900s?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. Why is the amount of electricity we use starting to fall?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

3. Why do many people want to move to using renewable energy as soon as possible?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

4. What are governments doing to help?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

5. What are car companies doing to help?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

pg. 45

Page 46: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

6. What is the main reasons we are not yet using renewable energy only?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

7. Who will fund the cost of switching to renewable energy?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

8. Why do governments not want to do this?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

9. Why are some people opposed to switching to renewable energy only?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

pg. 46

Page 47: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

P2 – Circuit Electricity – Revision Guide Pages 180-187

Circuit Symbols

Current, Potential Difference and Resistance1. What is electric current?

………………………………………………………………………………………………………………..

2. What are the units of current?

………………………………………………………………………………………………………………..

3. What are the units of charge?

………………………………………………………………………………………………………………..

4. What has to happen to make a charge flow around a circuit?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

5. What is potential difference?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

6. What are the units of potential difference?

………………………………………………………………………………………………………………..

7. What is another name for potential difference?

………………………………………………………………………………………………………………..

pg. 47

Page 48: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

8. What is resistance?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

9. What are the units of resistance?

………………………………………………………………………………………………………………..

10. What can be always true about the current in a single loop circuit?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

11. If the current is increased, what happens to the flow of charge

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

12. If the resistance of a circuit increases, what happens to the current? (assuming the potential difference stays the same)

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

pg. 48

Page 49: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Write the equation which links: charge flow, current and time

Equation in Words

…………………………………………………………………………………………………………………

Equation in Symbols

…………………………………………………………………………………………………………………

Formula Triangle

Remember: fill in the charge flow, current and time sections of the quantities table.

Common Conversions

Worked Example

pg. 49

Page 50: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Charge Flow, Current and Time – Practise Questions

1. A battery passes a current of 5A through a circuit for 30 seconds. How much charge flows during this time?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. What is the charge when a current of 3.2 A flows for 5 minutes?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

3. If a charge of 0.5 C takes 20 seconds to be transferred, what is the current in the circuit?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

4. How long has a circuit been connected for if 60C of charge has been transferred by a current of 2A?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

5. If a charge of 200 C takes 8 minutes to be transferred, what is the current in the circuit?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

6. How long has a circuit been connected for if 3C of charge has been transferred by a current of 5 mA?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

Write the equation which links: potential difference, current and resistancepg. 50

Page 51: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Equation in Words

…………………………………………………………………………………………………………………

Equation in Symbols

…………………………………………………………………………………………………………………

Formula Triangle

Remember: fill in the charge flow, current and time sections of the quantities table.

Common Conversions

Worked Example

Potential Difference, Current and Resistance – Practise Questions

pg. 51

Page 52: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

1. The current through a 12 Ω resistor in an electric circuit is 1.5 A. Calculate the potential difference across the resistor.

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. The resistance of a thermistor is 34 Ω and the current through it is 300 mA. What is the potential difference across the thermistor?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

3. The potential difference across a 50 Ω resistor is 6 V. What is the current through the resistor?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

4. The resistance of an ipod shuffle is 3 kΩ and the current through it is 0.04 A. What is potential difference of its power source?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

5. The potential difference across a woman when she is struck by lightning is 33 MV and the resistance of a human being is around 1 kΩ. What current flows through the woman?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

Ohmic and Non-Ohmic Conductors1. The V=IR equations only works with ohmic conductors. What is an ohmic

conductor?pg. 52

Page 53: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. Give 2 examples of ohmic conductors?

………………………………………………………………………………………………………………..

3. For an ohmic conductor at a fixed temperature, the current is directly proportional to the potential difference. What does this mean?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

4. What is a non-ohmic conductor?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

5. Give 2 examples of non-ohmic conductors.

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

6. What happens to the resistance of a filament lamp if more current is added?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

7. What is a diode?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

8. How does it work?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

Resistance in a Length of Wire – Required Practical (video)1. Why do we tape down the wire?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

pg. 53

Page 54: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

2. What do we use to measure the current and potential difference?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

3. Why do we stop at 30cm?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

4. Why is it important to make sure the wire is taut (kept flat)?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

5. What happens to the resistance as the length of wire gets shorter?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

6. How do we calculate the resistance?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

7. Why do we disconnect the circuit during the experiment?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

pg. 54

Page 55: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Calculating ResistanceComplete the table below, calculating the resistances to 2 significant figures.

Length (cm) Potential Difference (V) Current (A) Resistance (Ω)

100 4.71 0.0890 4.63 0.0880 4.51 0.0970 4.41 0.1060 4.26 0.1250 4.09 0.1440 3.88 0.1630 3.54 0.20

Drawing a Graph

Now plot the data using a pencil onto the graph on the next page, showing the relationship between resistance and length of wire. Include a line of best fit.

Conclusion

1. Write a conclusion for the experiment. Include the key word: directly proportional.

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. How can we tell this from your graph?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

3. Use the graph to calculate the resistance at a length of 120 cm.

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

pg. 55

Page 56: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

pg. 56

Page 57: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Investigating IV Characteristics Draw a circuit diagram to show how to investigate I-V characteristics of a component.Include:

battery variable resistor ammeter component

Investigating IV Characteristics

1. How do we connect the ammeter?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. How do we connect the voltmeter?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

3. What do you have to do to change the direction of the current?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

4. What goes on the x-axis (across)?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

5. What goes on the y-axis (down)?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

pg. 57

Page 58: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

6. For the resistor, what can we conclude about the resistance?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

7. For the lamp, what can we conclude about the graph?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

8. As the current increases, why does the temperature of the wire increase?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

9. For the diode, why do we have a current of 0A at negative potential differences?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

pg. 58

Page 59: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

pg. 59

Page 60: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

LDRs and Thermistors1. What does LDR stand for?

………………………………………………………………………………………………………………..2. What affects the resistance of an LDR?

………………………………………………………………………………………………………………..3. What happens to the resistance in bright light? What effect does this have on

current?

………………………………………………………………………………………………………………..………………………………………………………………………………………………………………..

4. What happens to the resistance in dim light? What effect does this have on current?

………………………………………………………………………………………………………………..………………………………………………………………………………………………………………..

5. Give 3 uses of LDRs.

………………………………………………………………………………………………………………..………………………………………………………………………………………………………………..

6. What affects the resistance of a thermistor?

………………………………………………………………………………………………………………..7. What happens to the resistance in hot conditions? What effect does this have on

current?

………………………………………………………………………………………………………………..………………………………………………………………………………………………………………..

8. What happens to the resistance in cool conditions? What effect does this have on current?

………………………………………………………………………………………………………………..………………………………………………………………………………………………………………..

9. Give 3 uses of thermistors.

………………………………………………………………………………………………………………..………………………………………………………………………………………………………………..Sensing Circuits – Using Thermistors

pg. 60

Page 61: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Explain how the circuit is used to make a fan spin faster when the room is hotter.

As the room gets hotter, the _____________________ of the thermistor __________________.

This means it takes a __________________ share of the potential difference, so the PD

across the fixed resistor ________________________. The PD of the fixed resistor is

__________________ ___________ the PD of the fan. This means the PD of the fan

_____________________ which means the fan will go _____________________.

Sensing Circuits – LDRs

Explain how the circuit is used to make the security light come on when it gets dark.

As it gets darker, the ______________________ of the LDR __________________. This means

it takes a _________________ share of the potential difference. The PD of the security

light is ________________ __________ the PD of the LDR. This means the PD of the

security light __________________ which means the light will _______________ _________.

pg. 61

Page 62: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Series Circuits

1. How are components in a series circuit connected?

………………………………………………………………………………………………………………..

2. What happens if one component breaks?

………………………………………………………………………………………………………………..

3. What can you say about the current in a series circuit?

………………………………………………………………………………………………………………..

4. What happens to the potential difference in a series circuit?

………………………………………………………………………………………………………………..

5. How do you find the total resistance of 2 resistors in a series circuit?

………………………………………………………………………………………………………………..

6. What happens to the current in a series circuit if more resistors are added?

………………………………………………………………………………………………………………..

Series Circuits – Current

1. If the reading on ammeter A1 is 6A, what will the reading be on A2 and A3?

………………………………………………………………………………………………………………..

2. If the reading on ammeter A1 is 0.5A, what will the reading be on A2 and A3?

………………………………………………………………………………………………………………..

pg. 62

Page 63: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Series Circuit – Potential Difference

Assuming each bulb is the same, what will the potential difference across each bulb be?A: _______________________________B: _______________________________C: _______________________________

Series Circuit – Resistance

Calculate the total resistance in each circuit

pg. 63

Page 64: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Parallel Circuits1. How are circuits connected in parallel?

………………………………………………………………………………………………………………..

2. What can be said about potential difference in each branch of a parallel circuit?

………………………………………………………………………………………………………………..

3. What happens to the current as it reaches a junction in a parallel circuit?

………………………………………………………………………………………………………………..

4. What happens to the current when the loops of the circuit re-join?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

5. Explain why adding more resistors into a parallel circuit decreases the overall resistance.

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

Parallel Circuits - Current

Complete the missing current values on the diagrams.

pg. 64

Page 65: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Parallel Circuits – Potential Difference

Complete the missing potential difference values on the diagrams.

pg. 65

Page 66: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Rules of Circuits Summary

Resistors in series add upResistors in parallel have a lower resistance

Voltage is shared in seriesVoltage is not shared in parallel. It is the same in each loop

Current is the same everywhere in seriesCurrent splits between loops in parallel, then joins up again

Resistors in Series and Parallel – Required Practical (video)

1. What is the purpose of the experiment?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. How many loops are there in a series circuit?

………………………………………………………………………………………………………………..

3. How do we connect the voltmeter in the circuit?

………………………………………………………………………………………………………………..

4. How do we calculate the resistance?

………………………………………………………………………………………………………………..

5. How do we calculate the total resistance in a series circuit?

………………………………………………………………………………………………………………..

6. How many loops are there in a parallel circuit?

………………………………………………………………………………………………………………..

7. If you have 2 identical resistors in parallel, what happens to the total resistance?

………………………………………………………………………………………………………………..

P2 – Domestic Electricity Supply and Safety – Revision Guide Pages 188

pg. 66

Page 67: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Electricity in the Home1. What is an alternating current?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. What is a direct current?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

3. What is the potential difference of the UK mains electricity supply?

………………………………………………………………………………………………………………..

4. What is the frequency of the UK mains electricity supply?

………………………………………………………………………………………………………………..

5. What type of current does the UK mains supply?

………………………………………………………………………………………………………………..

6. Name something which provides a direct current.

………………………………………………………………………………………………………………..

7. How are most appliances connected to the mains?

………………………………………………………………………………………………………………..

8. Why are the wires covered in plastic?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

9. Why are all the wires different colours?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

Wires in a PlugLabel the plug and under each wire label, state the colour of that wire.

pg. 67

Page 68: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

1. What colour is the live wire?

………………………………………………………………………………………………………………..2. What is the purpose of the live wire?

………………………………………………………………………………………………………………..3. What is the potential difference of the live wire?

………………………………………………………………………………………………………………..4. What colour is the neutral wire?

………………………………………………………………………………………………………………..5. What is the purpose of the neutral wire?

………………………………………………………………………………………………………………..6. What is the potential difference of the neutral wire?

………………………………………………………………………………………………………………..7. What colour is the earth wire?

………………………………………………………………………………………………………………..8. What is the purpose of the earth wire?

………………………………………………………………………………………………………………..………………………………………………………………………………………………………………..

9. What is the potential difference of the earth wire?

………………………………………………………………………………………………………………..The Live Wire and the Earth WireIf you touch the live wire (which is at _______V), then a _______________ will flow

through your body (which is at _______ V).pg. 68

Page 69: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

This can give you an _____________ ____________, even if the switch is turned off. It can

also cause a ____________.

The earth wire is a safety feature because it takes the current to the

___________________, instead of going through the _______________.

pg. 69

Page 70: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

P2 – Electrical Energy Transfer – Revision Guide Pages 189-191

Electrical Energy TransfersIn a kettleComplete the energy transfer diagram for the kettle.

When a ________________ moves round a circuit, it does ____________ against the

______________________ of the circuit. This means that appliances (such as kettles)

transfer ___________________ when a current flows.

A kettle transfers energy from the ____________________ pathway to the

____________________ energy store of the heater in the kettle.

In a battery-powered fanComplete the energy transfer diagram for the battery-powered fan.

When a _________________ moves round a circuit, it does ________________ against the

_____________________ of the circuit. This means that appliances (such as battery

operated fans) transfer ___________________ when a current flows.

A fan transfers energy from the ____________________ energy store of the battery to the

______________________ energy store of the motor in the fan.

Write the equation which links: energy, charge flow and potential differencepg. 70

Page 71: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Equation in Words

…………………………………………………………………………………………………………………

Equation in Symbols

…………………………………………………………………………………………………………………

Formula Triangle

Remember: fill in the energy, charge flow and potential difference sections of the quantities table.

Common Conversions

Worked Example

Energy, Charge Flow and Potential Difference – Practise Questions

pg. 71

Page 72: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

1. A charge of 3C passes a point in a circuit with a 1.5V cell. How much energy is transferred?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. A charge of 15C passes a point in a circuit connected to the UK mains supply. How much energy is transferred?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

3. Calculate the charge passing a point in a circuit with a potential difference of 12V when 80 J of energy is transferred

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

4. Calculate the energy transferred in a circuit with a potential difference of 200V when 10000 C of charge flows.

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

5. Calculate the charge passing a point in a circuit with a potential difference of 0.5 kV when 3 MJ of energy is transferred

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

pg. 72

Page 73: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Write the equation which links: power, current and potential difference

Equation in Words

…………………………………………………………………………………………………………………

Equation in Symbols

…………………………………………………………………………………………………………………

Formula Triangle

Remember: fill in the power, current and potential difference sections of the quantities table.

Common Conversions

Worked Example

pg. 73

Page 74: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Power, Current and Potential Difference – Practise Questions

1. A current of 0.5A flows through a bulb with a potential difference of 6V what is the power rating of the bulb?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. A current of 250 mA flows in a circuit containing a 1.5V cell. What is the power of the circuit?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

3. A microwave has a power rating of 800W. When plugged into the UK mains supply, what current flows? hint: you will need to remember the PD of the UK mains supply

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

4. What current flows through a 2W bulb connected to a 12V battery?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

5. A kettle has a power rating of 1.8 kW. When plugged into the UK mains supply, what current flows?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

pg. 74

Page 75: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Write the equation which links: power, current and resistance

Equation in Words

…………………………………………………………………………………………………………………

Equation in Symbols

…………………………………………………………………………………………………………………

Formula Triangle

Remember: fill in the power, current and resistance sections of the quantities table.

Common Conversions

Worked Example

pg. 75

Page 76: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Power, Current and Resistance – Practise Questions 1. A bulb with a resistance of 12 Ω is connected to a circuit with a current of

2 A. Calculate the power of the bulb.

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. A current of 340 mA flows through a mobile phone circuit with a resistance of 10 Ω. Calculate the power of the appliance.

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

3. Calculate the resistance of a circuit component with a 40W power rating when a current of 3A flows

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

4. Calculate the current flowing through a 800W appliance with a resistance of 200Ω.

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

5. Calculate the current flowing through a 1.6kW appliance with a resistance of 0.4 kΩ.

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

pg. 76

Page 77: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

National Grid1. What is the National Grid?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. Suggest when peak energy demand occurs in a day.

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

3. Why can’t power stations operate at maximum capacity?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

4. Why is it a bad idea to transmit electricity with a high current?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

5. How does increasing the potential difference of the electricity make the National Grid more efficient?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

6. What is used to make changes to the potential difference of the electricity supply?

………………………………………………………………………………………………………………..

pg. 77

Page 78: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Label each stage of the national grid

When electricity leaves the power station, the potential difference needs to be

____________________. This is to lower the __________________ because current has a

__________________ effect which means energy would be __________________ by heating

the cables.

To increase the potential difference, we use a

________________ _____________ __________________________.

When the electricity reaches our homes, the potential difference needs to be

____________________ to a _______________ level.

To decrease the potential difference, we use a

________________ _____________ __________________________.

pg. 78

Page 79: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

P3 – Particle Model and Particle Motion – Revision Guide Page 193

pg. 79

Page 80: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Gas Pressure1. How do particles in gas cause pressure?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. What does the temperature of a gas depend on?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

3. As you heat a gas up, what happens to the average kinetic energy of the particles?

………………………………………………………………………………………………………………..

4. Describe the movement of particles in hotter gases

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

5. Why do hotter gases cause more pressure?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

6. Explain the highlighted section of the deodorant can warning label.

……………………………………………………………………

……………………………………………………………………

……………………………………………………………………

……………………………………………………………………

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..pg. 80

Page 81: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

P3 – Density (RP) – Revision Guide Page 194

1. What does density measure?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. What does the density of an object depend on?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

3. Describe the arrangement of particles in a dense solid like copper

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

4. List the different states of matter in order of decreasing density

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

pg. 81

Page 82: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Write the equation which links: density, mass and volume

Equation in Words

…………………………………………………………………………………………………………………

Equation in Symbols

…………………………………………………………………………………………………………………

Formula Triangle

Remember: fill in the density, mass and volume sections of the quantities table.

Common Conversions

Worked Example

pg. 82

Page 83: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Density, Mass and Volume – Practise Questions 1. A student measures the mass of an 8cm3 block of brown sugar to be 32g.

What is the density of the brown sugar?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. A chef fills 50 cm3 container with 250 g of cooking oil. What is the density of the oil?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

3. A piece of cork has a mass of 24g and a density of 6g/cm3. What is the volume of the piece of cork?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

4. A box has a volume of 55 cm3 and a density of 5g/cm3. What is the mass of the box?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

5. An ice block measuring 5cm by 5 cm by 5cm has a density of 5g/cm3. What is the mass of the ice block?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

6. A wooden cylinder has a density of 4 g/cm3 and a mass of 0.048kg. What is the volume of the wooden cylinder?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

Density – Required Practical (video)

pg. 83

Page 84: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

1. What are regular objects?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. What is density?

………………………………………………………………………………………………………………..

3. How do we calculate density?

………………………………………………………………………………………………………………..

4. What is the unit of mass?

………………………………………………………………………………………………………………..

5. What is the unit of volume?

………………………………………………………………………………………………………………..

6. What is the unit of density?

………………………………………………………………………………………………………………..

7. Why do we “tare” or “zero” the scales before finding the mass?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

8. How do we find the volume of a regular object?

………………………………………………………………………………………………………………..

9. How can we find the volume of an irregular object?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

10. Why do slowly drop the object into the water?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

P3 – Internal Energy and Temperature Changes – Revision Guide Pages 195

Internal Energypg. 84

Page 85: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

1. How is energy stored in a system?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. Name the 2 stores where energy is found in particles.

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

3. What is the definition of internal energy?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

4. Why does heating an object increase its internal energy?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

5. What 2 things can happen when you increase the internal energy of an object?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

6. The size of the change in temperature depends on 3 things. What are they?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

pg. 85

Page 86: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

7. Which equation do we use to find the change in temperature?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

8. When does a change of state happen?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

9. Why do we say a change of state is a physical change?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

10. Why is the mass of a substance the same before and after a change of state?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

pg. 86

Page 87: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

P3 – State Changes and Latent Heat – Revision Guide Pages 195-196

Changes of State

Complete the diagram with the names of each change of state.

When energy is transferred to a material, the material will either ____________________

in temperature or will change ___________________.

During a change of state, the __________________________ of the material does not

change. This is because the _________________ is being used to ________________ the

bonds between the particles, not to raise the temperature. Once the change of state

is finished, the temperature will ____________________ again.

During ______________________, energy is transferred away from a material. When a

material ______________________ or freezes, energy is released as ______________ form,

but the _______________________ does not change.

pg. 87

Page 88: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Heating Graphs

Describe what is happening at each stage of the graph.

What state is the water in? Is it getting hotter? Is a change of state happening? If so, which one? Is anything happening to the bonds between particles?

What is happening?

A

B

C

D

E

Cooling Graphspg. 88

Page 89: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Describe what is happening at each stage of the graph.

What state is the water in? Is it getting hotter? Is a change of state happening? If so, which one? Is anything happening to the bonds between particles?

What is happening?

A

B

C

D

E

State Changes

pg. 89

Page 90: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

1. What is the name for the energy transferred during a change of state?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. During heating, is energy gained or released?

………………………………………………………………………………………………………………..

3. During cooling, is energy gained or released?

………………………………………………………………………………………………………………..

4. What is the definition of specific latent heat?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

5. What is the name for the specific latent heat for changing between a solid and a liquid?

………………………………………………………………………………………………………………..

6. What is the name for the specific latent heat for changing between a liquid and a gas?

………………………………………………………………………………………………………………..

pg. 90

Page 91: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Write the equation which links: energy, mass and specific latent heat

Equation in Words

…………………………………………………………………………………………………………………

Equation in Symbols

…………………………………………………………………………………………………………………

Formula Triangle

Remember: fill in the energy, mass and specific latent heat sections of the quantities table.

Common Conversions

Worked Example

pg. 91

Page 92: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Energy, Mass and Specific Latent Heat – Practise Questions 1. How much energy is needed to melt 6 kg of lead? Lead has a specific latent

heat of fusion of 22400 J/kg

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. How much energy is needed to boil 750 g of water? Water has a specific latent heat of vaporisation of 2260000 J/kg

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

3. When 5 g of oxygen condenses, 213000 J of energy is released. What is the specific latent heat of vaporisation of oxygen?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

4. The specific latent heat of fusion of water is 334000J/kg. How much energy is needed to melt 3 kg of ice?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

5. The specific latent heat of fusion of copper is 205000 J/kg. How much energy is needed to melt 20 g of copper?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

6.

pg. 92

Page 93: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

P4 – Atoms and Isotopes – Revision Guide Pages 104, 197-198

History of the Atom

Atomic Model Scientist Contribution to Model

pg. 93

Page 94: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Plum Pudding ModelLabel the diagram of the Plum Pudding Model

Describe the plum pudding model in words.………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

Alpha Scattering Experiment

In this experiment, _____________ particles were passed

through thin gold foil. Most passed straight through,

some _____________ back and some were

____________________.

This showed that most of the atom was

_______________ _______________ but there must be something

making some of the particles reflect back. This was the _________________.

The nucleus was also deflecting some particles, making their paths

____________________.

This experiment showed that the ______________ ___________________ model was wrong

as this model could not explain why some particles reflected back.

pg. 94

Page 95: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Models of the Atom1. What is the name of the current model of the atom which we use?

………………………………………………………………………………………………………………..

2. What is the radius of an atom?

………………………………………………………………………………………………………………..

3. Where is most of the mass of an atom found?

………………………………………………………………………………………………………………..

4. What subatomic particles are found in the nucleus?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

5. Explain why a nucleus is positively charged.

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

6. What are energy levels?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

7. Explain why atoms have no overall charge

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

pg. 95

Page 96: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Energy Levels

1. If an electron is in an energy level which is further from the nucleus, it will have

________________ energy.

2. Electrons can move up to higher energy levels by ________________________

electromagnetic radiation.

3. Electrons can move to lower energy levels by ________________________

electromagnetic radiation.

4. If an electron in the outer shell of an atom absorbs radiation, it can

_________________ the atom and the atom will become an __________________.

Isotopes

1. What is an isotope?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. What does the atomic number of an atom tell you?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

3. What does the mass number of an atom tell you?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

4. What is the definition of an element?

pg. 96

Page 97: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

5. Compare these two isotopes of carbon:

6. What can happen if an isotope is unstable?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

7. What is this process called?

………………………………………………………………………………………………………………..

8. There are 4 types of nuclear radiation. Name them.

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

9.

pg. 97

Page 98: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

P4 – Nuclear Radiation – Revision Guide Pages 198

1. What is ionising radiation?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. Write the symbol for the 3 types of ionising radiation.

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

3. What does ionising power mean?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

4. Complete the table:

Type of Radiati

onWhat is it made of? Ionising Power Range in Air Stopped by

Alpha

Beta

Gamma

P4 – Decay Equations and Half-Life – Revision Guide Pages 199-200 pg. 98

Page 99: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Alpha Radiation (α)

1. What is alpha decay?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. What is an alpha particle?

………………………………………………………………………………………………………………..

3. Why is it true to say that an alpha particle is the same as a helium nucleus?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

4. What happens to the atomic number of a nucleus when it emits an alpha particle?

………………………………………………………………………………………………………………..

5. What happens to the mass number of a nucleus when it emits an alpha particle?

………………………………………………………………………………………………………………..

6. How can we write the alpha particle in a nuclear equation?

………………………………………………………………………………………………………………..

7. Complete the equations below.

pg. 99

Page 100: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Beta Radiation (α)

1. What is beta decay?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. What changes take place in the nucleus during beta decay?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

3. What happens to the electron which is made?

………………………………………………………………………………………………………………..

4. What happens to the atomic number of a nucleus during beta decay?

………………………………………………………………………………………………………………..

5. What happens to the mass number of a nucleus during beta decay?

………………………………………………………………………………………………………………..

6. How can we write the beta particle in a nuclear equation?

………………………………………………………………………………………………………………..

7. Complete the equations below.

Half-Lifepg. 100

Page 101: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

1. What is meant by the ‘activity’ of the source?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. What equipment is needed to measure the activity?

………………………………………………………………………………………………………………..

3. What is the count-rate of a sample?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

4. What unit do we use to measure activity?

………………………………………………………………………………………………………………..

5. Nuclear decay is random. What does this mean for predicting which nuclei will decay?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

6. What is the ‘half-life’ of a sample?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

7. The half-life of one sample of carbon-14 is 5700 years. What would the half-life of a different sample be?

………………………………………………………………………………………………………………..

8.

pg. 101

Page 102: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Calculating Half-Lives – Graphs

Task: Use the graphs to calculate the half-lives of each sample.

pg. 102

Page 103: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

pg. 103

Page 104: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Calculating Half-Lives

1. A 50.0 g sample of N-16 decays to 12.5 g in 14 seconds. What’s the half-life?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. A sample of strontium-90 has an activity of 5000 Bq. After 120 years the activity has fallen to 625 Bq. What is the half-life of strontium-90?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

3. A sample of cobalt-60 has an activity of 2000 Bq. What will the activity be after 10 years? Cobalt-60 has a half-life of 5 years.

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

4. How much of a 100.0g sample of Au-198 is left after 8 days if its half-life is 2 days?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

pg. 104

Page 105: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

P4 – Contamination and Irradiation – Revision Guide Pages 201

Contamination and Irradiation1. Why do you need to protect yourself when working with sources of radiation?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

2. What does it mean when we say an object has been irradiated?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

3. How can you reduce the level of irradiation?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

4. What does it mean when we say an object has been contaminated?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

5. Why is contamination often more dangerous than irradiation?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

6. How can you stop contamination?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

Extended Writing Task

pg. 105

Page 106: €¦ · Web viewEnergy Changes in Systems 6-24 167-172 4-10 Conservation and Dissipation of Energy 25-28 168, 173-174 11-16 National and Global Energy Resources 29-38 175-179 17-23

Justify which is the most dangerous type of radiation. In your answer, consider the following:

How far can each type of radiation travel? How easy is it to stop? Does it matter whether the radiation source is inside or outside the body?

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..…

pg. 106