references · web viewwhere z wasthe numberof electrons transferred per moleof gas product (2 for...

16
© Engineered Science Publisher LLC 2021 Supporting Information A Sustainable Synthesis of Nickel-Nitrogen-Carbon Catalysts for Efficient Electrochemical CO 2 Reduction to CO John Pellessier, Yang Gang, and Ying Li, * J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas, 77843, United States * Corresponding Author E-mail: [email protected] Table of Contents Faradaic Efficiency Calculation Figure S1-S9 Table S1-S4 S1

Upload: others

Post on 12-Aug-2021

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: References · Web viewWhere z wasthe numberof electrons transferred per moleof gas product (2 for CO and H2), P wasthe pressurein the cell which was atmosphericfor these test (1.01

© Engineered Science Publisher LLC 2021

Supporting Information

A Sustainable Synthesis of Nickel-Nitrogen-Carbon Catalysts for Efficient

Electrochemical CO2 Reduction to CO

John Pellessier, Yang Gang, and Ying Li,*

J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas, 77843, United States

* Corresponding Author E-mail: [email protected]

Table of Contents

Faradaic Efficiency Calculation

Figure S1-S9

Table S1-S4

S1

Page 2: References · Web viewWhere z wasthe numberof electrons transferred per moleof gas product (2 for CO and H2), P wasthe pressurein the cell which was atmosphericfor these test (1.01

Faradaic Efficiency Calculation: Faradaic efficiency (FE) of gaseous products at each applied

potential was calculated based on the equation:

FE=z ∙ P ∙ F ∙ V ∙ v i

R ∙ T ∙ J

Where z was the number of electrons transferred per mole of gas product (2 for CO and H2), P

was the pressure in the cell which was atmospheric for these test (1.01 × 105 Pa), F is the Faraday

constant (96500 C mol−1), V was the gas volumetric flow rate of pure CO2 (68 × 10−6 m3/s), vi

was the volume concentration of gas product determined by GC, R is the gas constant (8.314

J/[mol·K]), T was the temperature in the cell which was standard for these test (298.15 K), and J

is the steady-state current measured at each applied potential (A).

Fig. S1 Sample structure of unit from cornstarch.

S2

Page 3: References · Web viewWhere z wasthe numberof electrons transferred per moleof gas product (2 for CO and H2), P wasthe pressurein the cell which was atmosphericfor these test (1.01

Fig. S2 Cyclic voltammograms curves performed at various scan rates (10, 20, 40, 60, 80 and 100 mV·s−1) on (A) CS-N-Ni-500, (B) GO-500, and (C) CS-N-Ni-WI.

S3

Page 4: References · Web viewWhere z wasthe numberof electrons transferred per moleof gas product (2 for CO and H2), P wasthe pressurein the cell which was atmosphericfor these test (1.01

20 40 60 80 100Scan rate (mV/s)

0.5

1

1.5

2

2.5

3

3.5 J

(mA

/cm

2 )CS-N-Ni-500GO-N-Ni-500CS-N-Ni-WI

Cdl=14.3mF/cm2

Cdl=29.2mF/cm2

dCdl=13.8mF/cm2

Fig. S3 The double-layer capacitance Cdl (the slope) of different experimental groups.

0 200 400 600 800 1000

Binding Energy (eV)

Inte

nsity

(a.u

.)

CS

0 200 400 600 800 1000

Binding Energy (eV)

Inte

nsity

(a.u

.)

CS-N

0 200 400 600 800 1000

Binding Energy (eV)

Inte

nsity

(a.u

.)

CS-N-Ni-500

A B

C

Fig. S4 XPS spectra of CS, CS-N, and CS-N-Ni-500.

S4

Page 5: References · Web viewWhere z wasthe numberof electrons transferred per moleof gas product (2 for CO and H2), P wasthe pressurein the cell which was atmosphericfor these test (1.01

Fig. S5. 1H NMR spectra of cathode side electrolyte after 2h electrolysis at - 0.8 V vs RHE over CS-N-Ni-

500.

-1.1-1-0.9-0.8-0.7-0.6-0.5-0.4

V vs RHE

0

20

40

60

80

100

FEH

2(%)

CSCS-NCS-N-Ni-10CS-N-Ni-100CS-N-Ni-500CS-N-Ni-1000

Fig. S6. Faradaic efficiency of H2 production of CS, CS-N, and CS-N-Ni-X catalysts (X = 10 – 1000).

S5

Page 6: References · Web viewWhere z wasthe numberof electrons transferred per moleof gas product (2 for CO and H2), P wasthe pressurein the cell which was atmosphericfor these test (1.01

Fig. S7. 24-hour stability test of CS-N-Ni-500 run under a constant potential of -0.8 V versus

RHE.

S6

Page 7: References · Web viewWhere z wasthe numberof electrons transferred per moleof gas product (2 for CO and H2), P wasthe pressurein the cell which was atmosphericfor these test (1.01

-1.1-1-0.9-0.8-0.7-0.6-0.5-0.4

V vs RHE

-20

-15

-10

-5

0C

urre

nt D

ensi

ty (m

A/c

m2 )

CS-N-Ni-500CS-N-Ni-500-AW

-1.1-1-0.9-0.8-0.7-0.6-0.5-0.4

V vs RHE

0

20

40

60

80

100

FEC

O(%

)

CS-N-Ni-500CS-N-Ni-500-AW

-1.1-1-0.9-0.8-0.7-0.6-0.5-0.4

V vs RHE

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

J CO

(mA

/cm

2 )

CS-N-Ni-500CS-N-Ni-500-AW

A B

C

Fig. S8. (A) Total current density, (B) Faradaic efficiency of CO production, and (C) CO current

density of CS-N-Ni-500 and CS-N-Ni-500-AW.

S7

Page 8: References · Web viewWhere z wasthe numberof electrons transferred per moleof gas product (2 for CO and H2), P wasthe pressurein the cell which was atmosphericfor these test (1.01

-1.1-1-0.9-0.8-0.7-0.6-0.5-0.4

V vs RHE

0

20

40

60

80

100FE

H2(%

)

CS-N-Ni-500GO-N-Ni-500CS-N-Ni-WI

Fig. S9. Faradaic efficiency of H2 production of CS-N-Ni-500, GO-N-Ni-500, and CS-N-Ni-WI.

Table S1 EIS fitting results for different experimental groups.

Catalyst Rs(Ω) RΩ(Ω) RCT(Ω)

CS-N 1.8 1.7 257

CS-N-Ni-500 1.4 2.7 21.2

GO-500 1.7 2 20.7

CS-N-Ni-WI 1.7 1.7 15

S8

Page 9: References · Web viewWhere z wasthe numberof electrons transferred per moleof gas product (2 for CO and H2), P wasthe pressurein the cell which was atmosphericfor these test (1.01

Table S2 Metal concentrations detected by ICP-MS.

Concentration (wt%)

MetalPre-Pyrolysis CS-N-Ni-500

CS-N-Ni-500Pre-Pyrolysis GO-N-Ni-500

GO-N-Ni-500

Nickel 0.1 0.26 1.3 2.8

Table S3 CH4, H2, and CO concentrations measured by GC and total current measured by electrochemical station CS-N, CS-N-Ni-500, CS-N-Ni-WI, and GO-N-Ni-500.

Potential

(V vs.

RHE)

CS-N CS-N-Ni-500 CS-N-Ni-WI GO-N-Ni-500

CH4

(ppm)

H2

(ppm)

CO

(ppm)

Current

(mA)

CH4

(ppm)

H2

(ppm)

CO

(ppm)

Current

(mA)

CH4

(ppm)

H2

(ppm)

CO

(ppm)

Current

(mA)

CH4

(ppm)

H2

(ppm)

CO

(ppm)

Current

(mA)

-0.5 0 1 2 -0.045 0 6 18 -0.25 0 7 13 -0.25 0 36 58 -0.93

-0.6 0 5 6 -0.13 0 9 162 -1.75 0 13 130 -1.4 0 55 348 -3.85

-0.7 0 18 18 -0.4 0 18 633 -6.5 0 25 531 -5.3 0 91 849 -9

-0.8 0 64 59 -1.3 0 36 1305 -12.6 0 55 1045 -10 0 191 1258 -14.2

-0.9 0.18 159 87 -2.45 0.12 86 1445 -15 0.5 209 1216 -13.1 0.19 464 1368 -17.4

-1.0 0.67 604 92 -6.8 0.67 285 1657 -18 2 716 1170 -18.2 0.72 1186 1295 -22.5

S9

Page 10: References · Web viewWhere z wasthe numberof electrons transferred per moleof gas product (2 for CO and H2), P wasthe pressurein the cell which was atmosphericfor these test (1.01

Table S4 Comparison of electrochemical CO2RR performances for CO production between the

catalysts in this work and reported C-N-Ni catalysts.

Catalysts Conc. of KHCO3

(M)

FE COa

(%)

JCOb

(mA/cm2)Potential

(V vs. RHE)

Carbon Precursor Pre- or Post- Treatment

References

CS-N-Ni-500

0.5 92 11.64 -0.77 Cornstarch N/A This work

CS-N-Ni-1000

0.5 93 13.31 -0.76 Cornstarch N/A This work

Ni-N-PC 0.5 97 18 -0.8 Petroleum Coke Acid/ethanol wash

[1]

CB-NGC-2 0.1 91 ~4.5 -0.56 Wood Biomass Acid/ethanol wash

[2]

NiSA-NCNT 0.5 87 13 -0.6 C2H8N2 No [3]

Ni-N-RGO 0.5 97 19 -0.8 NTB Acid/ethanol wash

[4]

Ni-NG 0.5 95 12.5 -0.8 Graphene Oxide Nanosheets

Freeze drying [5]

Ni-N-C 0.1 ~80 12 -0.85 Ketjen600EC Acid/ethanol wash

[6]

Ni-NCB 0.5 97 14 -0.8 Carbon Black Acid/ethanol wash

[7]

Ni SAs/N-C 0.5 71.9 10.48 -1.0 ZIF-8 No [8]

Ni-N-C 0.1 85 <10 -0.78 4,4′-Dipyridyl hydrate

Acid/ethanol wash

[9]

Ni-N-C 0.1 97 7.51 -0.75 Methylimidazole Acid/ethanol wash

[10]

Ni-N-Gr 0.1 80 0.2 -0.65 Graphite Oxides Acid/ethanol wash

[11]

Ni/N-C 0.5 97.5 9 -0.61 p-Phthalaldehyde Acid/ethanol wash

[12]

Ni-N4-C 0.5 99 28.6 -0.81 Dicyandiamide Freeze drying [13]

Ni-N-C 0.5 93 6 -0.8 o-phenylenediamine Acid/ethanol wash

[14]

Ni3N/MCN T-1

0.5 89 1.5 -0.73 Multiwalled CNT Acid/ethanol wash

[15]

Ni3N/MCN T-1

0.5 70 6 -0.83 Multiwalled CNT Acid/ethanol wash

[15]

Ni@NCNTs 0.5 99.1 8.01 -0.8 Dicyandiamide Acid/ethanol wash

[16]

a The maximum FE for CO productionb CO partial current density at the potential where the maximum FE is obtained

S10

Page 11: References · Web viewWhere z wasthe numberof electrons transferred per moleof gas product (2 for CO and H2), P wasthe pressurein the cell which was atmosphericfor these test (1.01

References

[1] H. Yang, Q. Lin, C. Zhang, X. Yu, Z. Cheng, G. Li, Q. Hu, X. Ren, Q. Zhang, J. Liu, C. He, Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities. Nature Communications, 2020,11, 593.

[2] X. Hao, X. An, A. M. Patil, P. Wang, X. Ma, X. Du, X. Hao, A. Abudula, G. Guan, Biomass-Derived N-Doped Carbon for Efficient Electrocatalytic CO2 Reduction to CO and Zn–CO2 Batteries. ACS Applied Materials & Interfaces, 2021,13, 3738-3747.

[3] Y. Cheng, S. Zhao, B. Johannessen, J.-P. Veder, M. Saunders, M. R. Rowles, M. Cheng, C. Liu, M. F. Chisholm, R. D. Marco, H.-M. Cheng, S.-Z. Yang, S. P. Jiang, Atomically Dispersed Transition Metals on Carbon Nanotubes with Ultrahigh Loading for Selective Electrochemical Carbon Dioxide Reduction. Adv. Mater., 2018,30, 1706287.

[4] H.-Y. Jeong, M. Balamurugan, V. S. K. Choutipalli, J. Jo, H. Baik, V. Subramanian, M. Kim, U. Sim, K. T. Nam, Tris(2-benzimidazolylmethyl)amine-Directed Synthesis of Single-Atom Nickel Catalysts for Electrochemical CO Production from CO2. Chemistry – A European Journal, 2018,24, 18444-18454.

[5] K. Jiang, S. Siahrostami, T. Zheng, Y. Hu, S. Hwang, E. Stavitski, Y. Peng, J. Dynes, M. Gangisetty, D. Su, K. Attenkofer, H. Wang, Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci., 2018,11, 893-903.

[6] T. Möller, W. Ju, A. Bagger, X. Wang, F. Luo, T. N. Thanh, A. S. Varela, J. Rossmeisl, P. Strasser, Efficient CO2 to CO electrolysis on solid Ni–N–C catalysts at industrial current densities. Energy Environ. Sci., 2019,12, 640-647.

[7] T. Zheng, K. Jiang, N. Ta, Y. Hu, J. Zeng, J. Liu, H. Wang, Large-Scale and Highly Selective CO2 Electrocatalytic Reduction on Nickel Single-Atom Catalyst. Joule, 2019,3, 265-278.

[8] C. Zhao, X. Dai, T. Yao, W. Chen, X. Wang, J. Wang, J. Yang, S. Wei, Y. Wu, Y. Li, Ionic Exchange of Metal–Organic Frameworks to Access Single Nickel Sites for Efficient Electroreduction of CO2. J. Am. Chem. Soc., 2017,139, 8078-8081.

[9] W. Ju, A. Bagger, G.-P. Hao, A. S. Varela, I. Sinev, V. Bon, B. Roldan Cuenya, S. Kaskel, J. Rossmeisl, P. Strasser, Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO 2. Nature Communications, 2017,8, 944.

[10] F. Pan, H. Zhang, Z. Liu, D. Cullen, K. Liu, K. More, G. Wu, G. Wang, Y. Li, Atomic-level active sites of efficient imidazolate framework-derived nickel catalysts for CO2 reduction. J. Mater. Chem. A, 2019,7, 26231-26237.

[11] P. Su, K. Iwase, S. Nakanishi, K. Hashimoto, K. Kamiya, Nickel-Nitrogen-Modified Graphene: An Efficient Electrocatalyst for the Reduction of Carbon Dioxide to Carbon Monoxide. Small, 2016,12, 6083-6089.

[12] D. Tan, C. Cui, J. Shi, Z. Luo, B. Zhang, X. Tan, B. Han, L. Zheng, J. Zhang, J. Zhang, Nitrogen-carbon layer coated nickel nanoparticles for efficient electrocatalytic reduction of carbon dioxide. Nano Res., 2019,12, 1167-1172.

[13] X. Li, W. Bi, M. Chen, Y. Sun, H. Ju, W. Yan, J. Zhu, X. Wu, W. Chu, C. Wu, Y. Xie, Exclusive Ni–N4 Sites Realize Near-Unity CO Selectivity for Electrochemical CO2 Reduction. J. Am. Chem. Soc., 2017,139, 14889-14892.

S11

Page 12: References · Web viewWhere z wasthe numberof electrons transferred per moleof gas product (2 for CO and H2), P wasthe pressurein the cell which was atmosphericfor these test (1.01

[14] X.-M. Hu, H. H. Hval, E. T. Bjerglund, K. J. Dalgaard, M. R. Madsen, M.-M. Pohl, E. Welter, P. Lamagni, K. B. Buhl, M. Bremholm, M. Beller, S. U. Pedersen, T. Skrydstrup, K. Daasbjerg, Selective CO2 Reduction to CO in Water using Earth-Abundant Metal and Nitrogen-Doped Carbon Electrocatalysts. ACS Catal., 2018,8, 6255-6264.

[15] Z. Wang, P. Hou, Y. Wang, X. Xiang, P. Kang, Acidic Electrochemical Reduction of CO2 Using Nickel Nitride on Multiwalled Carbon Nanotube as Selective Catalyst. ACS Sustainable Chem. Eng., 2019,7, 6106-6112.

[16] W. Zheng, C. Guo, J. Yang, F. He, B. Yang, Z. Li, L. Lei, J. Xiao, G. Wu, Y. Hou, Highly active metallic nickel sites confined in N-doped carbon nanotubes toward significantly enhanced activity of CO2 electroreduction. Carbon, 2019,150, 52-59.

S12