week-4_properties and behaviour

Upload: encik-maa

Post on 07-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 Week-4_Properties and Behaviour

    1/34

    En. Muhammad Hanaf BinAsril Rajo Mantari

    Hanaf,JKM,PPD,2015

    DAM 21102ENGINEERING MATERIAL

    ELE!TI"N!HA#TER $ %MATERIAL ENGINEERING

    &THEIR !HARA!TERITI!%

    Mat'rial B'ha(iours

  • 8/19/2019 Week-4_Properties and Behaviour

    2/34

    ME!HANI!AL #R"#ERTIE ANDBEHA)I"*R

    Hanaf,JKM,PPD,2015

    1. INTR"D*!TI"N

    2. !"N!E#T "+ TRE AND TRAIN$. ELATI! DE+"RMATI"N

    ,. #LATI! DE+"RMATI"N

    -. T#E "+ TET/. A+ET +A!T"R

  • 8/19/2019 Week-4_Properties and Behaviour

    3/34

    Hanaf,JKM,PPD,2015

    INTR"D*!TI"N Many material, when in service, are subjected toforces or loads.

    It is necessary to know the characteristics of the

    material from which it is made such that  any resulting deformation will not beexcessive and fracture will not occur.

    Mechanical behavior –the relationship between

    its response or deformation to an applied load orforce.

    Examples : strength, hardness, ductility &stiffness

  • 8/19/2019 Week-4_Properties and Behaviour

    4/34

  • 8/19/2019 Week-4_Properties and Behaviour

    5/34

    Hanaf,JKM,PPD,2015

    Mechanical properties of materials areascertained –it need to perform laboratoryexperiments.

    Standardized testing techniques –to ensure theconsistency in the tests conducted and in theinterpretation of results.

    Examples : ASTM(American Standards forTesting and Materials), ISO

  • 8/19/2019 Week-4_Properties and Behaviour

    6/34

    Hanaf,JKM,PPD,2015

    If the load is ;

    • static or changes relatively slowly with time

    applied uniformly over a cross section orsurface of a member

    the mechanical behavior may beascertained by a simple stress-strain test

    (conducted at room temperature)• Three principle ways of applied load ;

    tensile, compression and shear(torsion)

    !"N!E#T "+ TRE AND

    TRAIN

  • 8/19/2019 Week-4_Properties and Behaviour

    7/34

    Hanaf,JKM,PPD,2015

    Schematic

    illustration of how

    different types of load

    produce an elongationand positive linear strain.

    (a) tensile load.

    (b) compression load.

    (c) Shear strain.

    (d) torsion deformation.

  • 8/19/2019 Week-4_Properties and Behaviour

    8/34

    Hanaf,JKM,PPD,2015

    ELATI! DE+"RMATI"N

    Degree of structure deforms or strains – depends on the magnitude of animposed stress.

    ε σ     E =

    Stress

    (N/m2= Pa)

    Young’s Modulus

    (modulus of elasticity)

    (Pa)

    Strain

    • Elastic deformation – deformation in which stress andstrain are proportional.

      when the applied load is released, the piecereturns to its original shape.

  • 8/19/2019 Week-4_Properties and Behaviour

    9/34

    Hanaf,JKM,PPD,2015

    • Metals deform when subjected to uniaxial tensile force

     – ELASTIC DEFORMATION• Regain original dimensions when force removed• Atoms return to original positions

    Consider acylindrical rodsubjected to uniaxialforce

    Engineering stress,σ:

    σ = F/Ao Engineering strain,ε:

    ε = l – lo = ∆l

      lo  l

    lo

     Ao

    lo

     ___ 

     Δl

     ___ 

     A

  • 8/19/2019 Week-4_Properties and Behaviour

    10/34

    Hanaf,JKM,PPD,2015

    • Example

      A 1.25 cm diameter bar is subjected to a load of 2500kg. calculate the engineering stress on the bar inmegapascals (MPa). Acceleration of gravity is 9.81 ms-2.

    • Solution

      F = ma = (2500 kg)(9.81 ms-2) = 24,500 N

      σ = F/Ao

      = F/(π/4)(d2)

      = 24,500 N / (π/4)(0.0125 m)2

      = 200MPa

     

  • 8/19/2019 Week-4_Properties and Behaviour

    11/34

    Hanaf,JKM,PPD,2015

    • Example

    Pure aluminium 0.5 cm width, 0.040 cmthick and 8 cm length which hasgagemarkings 2 cm apart in the middle of thesample is strained so that the gagemarkings are 2.65 cm apart. Calculateengineering strain elongation which thesample undergoes

    • Solution :

      ε = l – lo 

    lo

      = ∆l = (2.65 cm – 2.00 cm)  lo  2.00 cm

      = 0.65 cm = 0.325

      2.00 cm

    % elongation = 0.325 x 100% = 32.5 %

       8  c  m

       2  c  m

       2 .   6

       5

      c  m

  • 8/19/2019 Week-4_Properties and Behaviour

    12/34

    Hanaf,JKM,PPD,2015

    • Most metallic materials, elastic deformation persists onlyto strains of about 0.005.

    • PLASTIC DEFORMATION ;

     Cannot fully recoverto original dimensions  Atoms permanently displaced and take up new

    positions.- involved the breaking of bonds with original

    atom neighbors and then reforming bonds with

    new neighbors, upon removal of the stress they

    do not return to their original positions.

    #LATI! DE+"RMATI"N

  • 8/19/2019 Week-4_Properties and Behaviour

    13/34

    Hanaf,JKM,PPD,2015

    T#E

      "+TET

  • 8/19/2019 Week-4_Properties and Behaviour

    14/34

    Hanaf,JKM,PPD,2015

    T'nsil' t'st• Purpose – to evaluatestrength of materials

    • Sample is pulled tofailure in a relativelyshort time at aconstant rate

    • Plot of engineeringstress vs. engineeringstrain can be

    constructed

  • 8/19/2019 Week-4_Properties and Behaviour

    15/34

    Hanaf,JKM,PPD,2015

    • From a stress-straindiagram we canobtain

    1) Modulus ofelasticity, E (whereE = σ/ε)

    2) Yield strength at0.2%* offset, σ y

    3) Ultimate tensile

    strength, σUTS

    4) Percent elongationat fracture

    5) Percent reduction

    Stress-strain diagram

  • 8/19/2019 Week-4_Properties and Behaviour

    16/34

    Hanaf,JKM,PPD,2015

    •  Typical stress-straine!a"i#r $#r ametal s!#%in&elastic ' plastic(e$#rmati#ns, t!eyiel( stren&t! σy as

    (etermine( )sin&t!e 0.002 strain#*set met!#(.

    • +tress-straine!a"i#r #$ s#mesteels(em#nstratin& t!eyiel( p#intp!en#men#n.

  • 8/19/2019 Week-4_Properties and Behaviour

    17/34

    Hanaf,JKM,PPD,2015

    i&)re . / Typical en&ineerin& stress-strain e!a"i#r t# $ract)re, p#int . TS is t!etensile stren&t!. T!e circ)lar insets represent t!e &e#metry #$ t!e (e$#rme( specimenat "ari#)s p#ints al#n& t!e c)r"e.

  • 8/19/2019 Week-4_Properties and Behaviour

    18/34

  • 8/19/2019 Week-4_Properties and Behaviour

    19/34

    ##m-Temperat)re lastic an( +!ear M#()li, an( P#iss#ns ati# $#r3ari#)s Metal 4ll#ys

     E l 

    l  E 

    o

      

     

     

     

      ∆==   ε σ  

    where

    ∆l = elongation

    Lo  = original lengthHanaf,JKM,PPD,2015

  • 8/19/2019 Week-4_Properties and Behaviour

    20/34

     True stress :  σt = F/Ai

    • True strain  εt = l∫ ilo (dl/l)

      = ln (li/lo )

      = ln (Ao/Ai )

      (assume the volume isconstant)

    lo- original gage length

    li – instantaneous extendedgage length

     Ao –original area

     Ai – instantaneous minimumcross-sectional area ofsample True stress and Engineering stress

    Hanaf,JKM,PPD,2015

  • 8/19/2019 Week-4_Properties and Behaviour

    21/34

    • Example :

     Load applied to specimen, F = 170Kg

      original specimen length,lo = 80mm

      length of specimen under 170Kg load,li = 100mm

    original specimen diameterd0 =10mm

    Diameter of specimen under 170Kg load,di = 5mm

    • Solution :  Ao = (π/4)do2 = (π/4)(0.01)2 = 7.85x10-5 m2

      Ai = (π/4)di2= (π/4)(0.005)2 =1.96 x10-5 m2

      Eng. Stress,σE = F/ Ao = (170x9.81)/7.85x10-5= 212.446 M N/m-2

      Eng. Strain,εE = ∆l/lo= 100-80/80= 0.25

      True Stress,σ T = F/ Ai=(170x9.81)/1.96 x10-5 =850.867 M N/m-2

      True Strain,ε T = ln(li/lo) = ln( 100/80)=0.22Hanaf,JKM,PPD,2015

  • 8/19/2019 Week-4_Properties and Behaviour

    22/34

    Hardness –the resistance of a metal to permanent(plastic) deformation.

    Four common hardness test :

    1.Brinell

    2.Vickers

    3.Knoop

    4.Rockwell

    Non-destructive test

    Hardn'ss T'st

  • 8/19/2019 Week-4_Properties and Behaviour

    23/34

    ardness Testing Techni!ues

  • 8/19/2019 Week-4_Properties and Behaviour

    24/34

    • To ascertain thefracture characteristics ofmaterials.

    • Fracture – separation of a solid under stress intotwo or more parts.

    • Two types of impact test : IZOD or CHARPY.

    Imat

    T'st

    FRACTURE

    DUCTILE- Slow crack propagation

    BRITTLE- Rapid crack propagation

    DUCTILE + BRITTLE

  • 8/19/2019 Week-4_Properties and Behaviour

    25/34

    " schematic drawing of an impact specimens an testing apparatus

    (b) #harpy specimen

    (c) $%od specimen

    (a) $mpact machine

  • 8/19/2019 Week-4_Properties and Behaviour

    26/34

    *ect #$ temperat)re #n t!e ener&y as#re( )p#n impact y(i*erent types #$ materials.

  • 8/19/2019 Week-4_Properties and Behaviour

    27/34

    Fatigue – failures which occur under dynamic orfluctuating stresses (repeated or cyclic stress).

    Examples : in connecting rods, shafts and gears. Occurring very suddenly and without warning. Usually starts/originates at a point of stressconcentration such as a sharp corner or notch.

    Schematic diagram of fatigue machine

    +atiu' T'st

  • 8/19/2019 Week-4_Properties and Behaviour

    28/34

    + +tress "s. n)mer #$ cycles7 c)r"es $#r $ati&)e$ail)re

  • 8/19/2019 Week-4_Properties and Behaviour

    29/34

    • Creep – deformation under static loador stress at elevated temperature.

    • Examples : in high-pressure steamlines, turbine rotors in jet engines etc.

    • Time-independent and permanentdeformation of materials.

    • For metals – only important when theservice temperature> 0.4Tm (Tm =absolute melting temperature).

    !r'' T'st

  • 8/19/2019 Week-4_Properties and Behaviour

    30/34

     Typical creepc)r"e #$ strain"ers)s time atc#nstant stressan( c#nstantele"ate(

    temperat)re.

    8n9)ence #$stress σ an(temperat)re T#n creep

    e!a"i#r.

    = #reep rate

  • 8/19/2019 Week-4_Properties and Behaviour

    31/34

    A+ET +A!T"R&se to predicting material failure and designing safe product

    'actor of safety

     N 

     y

    w

    σ  

    σ     =

    *hich is

    σw = safety stress + wor,ing stressσ y = material yield stress = safety factors

    (common used number . and /)

  • 8/19/2019 Week-4_Properties and Behaviour

    32/34

    :ample/

    4 tensile apparat)s is t# e c#nstr)cte(%!ic! m)st stan( %it!stan( a ma:im)m

    l#a( 220;. T!e (esi&n calls $#r t%#cylin(rical s)pp#rt p#sts, eac! #$ %!ic! ist# s)pp#rt !al$ #$ t!e ma:im)m l#a(.)rt!erm#re, plain car#n 10

  • 8/19/2019 Week-4_Properties and Behaviour

    33/34

    +>?@T8>

    Ai"en B1.5, t!)s, t!e %#r;in& stress σ% 

     Mpa

     Mpa

     N 

     y

    w

    67.2065.1

    310==

    =

    σ  

    σ  

    w

    o

     F d  A

    σ  

    π   =   

      =

    2

    2

    d is the diameter of the rod and ' is the force applied

    m

     xd 

     F d 

    w

    026.0

    )1067.206(

    1100002

    2

    6

    =

    =

    =

    π 

    πσ  Therefore the diameter

    of rod should be2.6 x10-2m

  • 8/19/2019 Week-4_Properties and Behaviour

    34/34

    ......88+H ......

     THan; y#)

    Hanaf JKM PPD 2015