welcome to simulation of communication systems (dt001a) [email protected] and...

83
Welcome to Simulation of communication systems (DT001A) [email protected] and [email protected]

Upload: preston-sharp

Post on 17-Dec-2015

218 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Welcome to

Simulation of communication systems (DT001A)

[email protected] and [email protected]

Page 2: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

A project course about MATLAB with SIMULINK and Communications Blockset…

MATLAB = Matrix Laboratory.Tool for numerical calculation and visualization. Commonly used for simulation of the communication system physical layer, signal and image processing research, etc.

SIMULINK: Toolbox in Matlabthat allows graphical data-flow oriented programming.

Page 3: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

…and about Network Simulation using tools such as Opnet, NS/2, etc

Page 4: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Aim of the course To prepare the student for thesis project and work in the

area of telecommunciations development and research. To give experience of performance analysis of communication

systems and algorithms, at the physical layer and datalink layer.

To give experience of simulation tools such as MATLAB, SIMULINK and/or Opnet.

This may include modelling and simulation of traffic sources, channel models, modulation schemes, error coding schemes, equalizers, algorithms, protocols and network topologies.

A real-world project is studied within an application area such as wireless sensor networks, cellular communications, modems for broadband access, wireless networks, short-range communication, digital TV transmission, IP-TV or IP-telephony.

Page 5: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Prerequisites Computer Networks A 7.5 ECTS credits or similar Computer Engineering B, Wireless Internet access (most

important!) Computer Engineering AB-level, 30 ECTS credits TCP/IP networking Mathematical statistics Programming

Other helpful courses: Transform theory, 7.5 ECTS credits. Electrical engineering A, Analog electronics or Circuit theory Electrical Engineering B, Telecommunications, 7.5 ECTS credits. Electrical engineering B, Signals and systems, 7.5 ECTS credits. Markov processes/Queueing theory

Page 6: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Litterature

Matlab, Simulink and Opnet documentation will be provided electronically.

Please repeat physical layer issues and datalink layer issues in basic books in Computer Networks and Wireless Internet Access.

Page 7: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Requirements

All lectures and supervision lessons are mandatory. You should attend 80% of the mandatory lessons. You are expected to devote 20 hours/week to this

course. Quzzes (multiple choice tests): At least 70% correct

answers. Lab: About 20 hours of work. Homework problem. Oral presentations. Project

Page 8: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Requirements on the project Review at least one research paper, and describe some standard and

some existing simulation model. Simulate a communications standard, or check the simulations made

in a research paper. At least modify an existing simulation model, for exampel a Simulink

or Matlab demo, or build a model of your own (more difficult) Produce some plots for several parameter cases, showing for

example BER, bit rate or delay as function of at least two different parameters, for example SNR, facing model, modulation scheme, etc.

The simulation results should be stable (the plots smooth and not jerky), i.e simulate sufficiently long simulation time, or take the average of sufficiently large number of simulations.

Draw some interesting conclusions from this.

Page 9: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Grading is based on

Keeping deadlines.

Quzzes.

Showing good understanding when andwering questions from teachers and other students about your presentations.

Extent of own code.

Research relevance.

Own new results or conclusions.

Page 10: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Assignment 1: Theory repetition The first assignment consists of old exam problems in

Computer Networks A, Wireless Internet access B and Telecommunications B.

Deadline: Friday course week 2. Be prepared to present

your answers on the whiteboard.

Page 11: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Assignment 2: Simulink lab exercize Takes about 10-15 hours to do. Deadline: Course week 3

Page 12: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Assignment 3: Present a standard and an existing simulation modelEssentially chapter 2 (theory) and 3 (existing model that you start out from) of your report. Examples

1. 802.11b PHY Simulink model and adaptive modulation and link control

2. 256 channel ADSL and bit loading.

3. Bluetooth Voice Transmission

4. Bluetooth Full Duplex Voice and Data Transmission – Also describe Bluetooth low energy mode. Can be extended to thesis project.

5. Digital Video Broadcasting Model (DVB-T). Also describe DVB-T2.

6. NFC (Simulink model by previous years students – see Mathworks file archive).

7. IEEE 802.11a WLAN Physical Layer. Also describe newer standards. 802.11n, 802.11ac, ad or v positioning. Stefan, Erik, Andreas Gabriel.

8. CDMA2000 Physical Layer.

9. WCDMA Coding and Multiplexing.

10. WCDMA Spreading and Modulation 

11. WCDMA End-to-end Physical Layer. Hassan, Lamin.

12. Ultrawideband (UWB/wireless USB). See mathworks file archive. Fredrik, Markus, Seb

13. ZigBee Simulink or Prowler model and IEEE 802.15.4g (smart grid). See mathworks file central. Altahra.

14. ZigBee Prowler model and Multihop routing protocols (Prowler model) . You may demonstrate simulink model (see Matlab file central) or Prowler model. Perhaps you can add cooperative diversity. Yuxin Guo , Yu Tang, Suna Yin, Mengjun Qin.

15. Opnet Mac Protocol Mehrzad

16. Mobile Wimax

17. Long-term evolution (LTE) Phy Downlink with spatial modeling. Also describe LTE-A. cheng yang, shixian wen, wei liu

18. Long-term evolution (LTE) and eMBMS19. Line codes. Comparison of RZ, NRZ, AMI, Manchester coding (used in 10 Mbps Ethernet), 4B5B (used in 100Base-TX Ethernet) and PAM5 (used in 1000Base-T Gigabit Ethernet): For a

code demonstrating RZ, NRZ, AMI and Manchester, see   http://apachepersonal.miun.se/~rogols/teaching/mks/lab2/LineEncoding.mdl This code also requires this MATLAB function:   http://apachepersonal.miun.se/~rogols/teaching/mks/lab2/line_encoder.m . During the rest of the project you may further develope the code to deal with 4B5B and PAM5, and to measure the bit error rate.

20. Acoustic modem (new model)

21. Acoustic QR code (continue on project by previous year’s students)

Page 13: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Assignment 3 (cont.)Oral presentation: Course week 3. Talk 5-10 minutes per person.

Everyone should take notes, and everyone should ask questions and discuss the topic.

Present: A standard (mention things like radio frequency, bandwidth, bit rate, modulation, error control method, multiplex

method, multiple-access protocol, new/future versions) New versions of the standard or ongoing development Screen dumps – or demonstration of - an existing simulation Differences between simulation and full standard

For higher grades: Also cite a related research paper or a textbook, for example a simulation method with results. See

scholar.google.com or library.

Within one week after that: Submit report chapter 2 (theory/previous research) and chapter 3 (existing model)

Page 14: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Assignment 4: Quizzes Basic concepts, Matlab and Simulink concepts Requirement: At least 70% correct answers. You can do them over and over again until the deadline.

Page 15: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Assignment 5: Opnet lab Zigbee and multihop simulation in Opnet. Takes about 4 hours to do.

Page 16: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Assignment 6: Present project suggestion Oral presentation course week 6. Present

Problem formulation (chapter 1) – what to parameters to evaluate Cite simulation done in a research paper (if you have not done so) Planned own modification or development of model (chapter 4)

Submit or show report chapters 1 and 4 before christmas.

Page 17: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Assignment 7: Final project presentation Demonstrate simulation code to teacher (and also in report appendice) Oral presentation in mid-January of Results (chapter 5): Plot performance for several cases. Conclusions (chapter 6). Discuss similarities and differences from result in a cited

research paper. Provide a preliminary report when you give your oral presentation.

Page 18: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

19

MATLAB

MATLAB = Matrix Laboratory.Tool for numerical calculation and visualization. Commonly used for simulation of the communication system physical layer, signal and image processing research, etc.

Page 19: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

20

Command window

Workspace

Commandhistory

This is how MATLAB looks like

Page 20: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

21

More MATLAB windows

Figure window

M-file editor

Array editor

Page 21: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

22

How to get help in MATLAB?help functionsname

Shows unformatted text

doc funktionsnamn

Shows HTML documentation in a browser

Page 22: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

SIMULINK

SIMULINK: Toolbox in Matlabthat allows graphical data-flow oriented programming.

Page 23: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Repetition of some basic concepts Frequency spectrum Digitalisation, source coding Error coding Modulation Multiple-access methods Base-band model Distorsion, noise Signal-to-noise ratio Bit-error ratio Statistics

Page 24: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Repetition of some basic concepts

Page 25: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Digitalization

Page 26: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

PCM = Pulse Code Modulation = Digital transmission of analogue signals

SamplerAD-converter

with seerial output

011011010001...

DA-converter

Anti aliasing-filter

Interpolationfilter

Number exemples from PSTN = the public telephone network

300-3400Hzband pass

filter. Stopseverything

over 4000Hz.

8000sampelsper sec

8 bit per sampeli.e. 64000 bpsper phone call

28 = 256voltage levels

0

1

Microphone Loudspeaker

Page 27: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Aliasing

Page 28: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Quantization noice

Page 29: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se
Page 30: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Digital transmission

Page 31: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Distorsion

Page 32: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Effect of attenuation, distortion, and noise on transmitted signal.

Page 33: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Point-to-point communication

Mikrofon Högtalare

Source coding Source decodingDigitalizatingcompression

0110 0110

Error management Error control.

0100010

Bitfel

0110010

Flow control Flow control

Modulation Demodulation

0110010NACKACK

Layer6

Layer2

Layer1

Layer7

Page 34: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Digital modulation methods

Binary signal

ASK = Amplitude Shift Keying (AM)

FSK = Frequency Shift Keying (FM)

PSK = Phase Shift Keying (PSK)

Page 35: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

0 0.005 0.01-2

0

2000

0 0.005 0.01-2

0

2001

0 0.005 0.01-2

0

2011

0 0.005 0.01-2

0

2010

0 0.005 0.01-2

0

2100

0 0.005 0.01-2

0

2101

0 0.005 0.01-2

0

2111

0 0.005 0.01-2

0

2110

8QAM example:Below you find eight symbols used for a so called 8QAM modem (QAM=Quadrature Amplitude Modulation). The symbols in the first row represent the messages 000, 001, 011 and 010 respectively (from left to right). The second row representents 100, 101, 111 and 110.

Page 36: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

a) The signal below is transmitted from the modulator. What bit sequency is transmitted?

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04-2

0

2

Tid [sekunder]

Sp

än

nin

g [V

olt]

Modulatorns utsignal

b) The time axis is graded in seconds. What is the symbol rate in baud or symbols/s?

c) What is the bit rate in bit/s?

Example 2 cont.

Page 37: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Bit rate vs baud rate

Bit rate in bit/s:

Where M is the number of symbols and fs is the symbol rate in baud or symbols/s.

2logb Sf f M

Page 38: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Bit and baud rate comparison

ModulationModulation UnitsUnits BitsBits/symbol/symbol Baud rateBaud rate Bit Rate

ASK, FSK, 2-PSKASK, FSK, 2-PSK Bit 1 N N

4-PSK, 4-QAM4-PSK, 4-QAM Dibit 2 N 2N

8-PSK, 8-QAM8-PSK, 8-QAM Tribit 3 N 3N

16-QAM16-QAM Quadbit 4 N 4N

32-QAM32-QAM Pentabit 5 N 5N

64-QAM64-QAM Hexabit 6 N 6N

128-QAM128-QAM Septabit 7 N 7N

256-QAM256-QAM Octabit 8 N 8N

Page 39: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Figure 5.14 The 4-QAM and 8-QAM constellations

Q (Quadrature phase)

I (Inphase)

Q (Quadrature phase)

I (Inphase)

Page 40: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Sine wave example

I

5 Volt

л/2 radians = 90º

Complex representation

Page 41: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Inphase and quadrature phase signal Sine wave as reference (inphase) signal:

Cosine wave as reference (inphase) signal:

( ) ( )sin(2 ) ( ) cos(2 ).c cs t I t f t Q t f t

( ) ( ) cos(2 ) ( )sin(2 ).c cu t I t f t Q t f t

Page 42: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Complex baseband representation

C = I+jQ

Amplitude:

Phase:

RF signal (physical bandpass signal, if a cosine is reference signal):

2 2C I Q I

jQ

C|C|

Arg C

arctan , if 0arg( )

arctan , if 0

QI

II jQQ

II

( ) cos(2 arg ).cs t C f t C

Page 43: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Equivalent baseband signal

( ) ( )sin(2 ) ( ) cos(2 ).c cs t I t f t jQ t f t

Page 44: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Figure 5.11 The 4-PSK characteristics

Page 45: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Figure 5.12 The 8-PSK characteristics

Page 46: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Figure 5.16 16-QAM constellations

Page 47: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Spectrum of ASK, PSK and QAM signal

Page 48: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se
Page 49: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Figure 3.9 Three harmonics

Page 50: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Figure 3.10 Adding first three harmonics

Page 51: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Example: Square Wave  

Square wave with frequency fo

Component 1:

Component 5:

Component 3:

.

.

.

.

.

.

...}5cos5

13cos

3

1{cos

4)( ttt

Ats ooo

tA

ts o

cos4

)(1

tA

ts o

3cos3

4)(3

tA

ts o

5cos5

4)(5

Page 52: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Figure 3.11 Frequency spectrum comparison

Page 53: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Filtering the Signal Filtering is equivalent to cutting all the frequiencies outside the band of the

filter

High pass

INPUTS1(f)

H(f)

H(f)

OUTPUT S2(f)= H(f)*S1(f)

Low pass

INPUTS1(f)

H(f)

H(f)

f

OUTPUT S2(f)= H(f)*S1(f)

Band pass

INPUTS1(f)

H(f)

H(f)

OUTPUT S2(f)= H(f)*S1(f)

• Types of filters– Low pass

– Band pass

– High pass

f

f

Page 54: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Figure 6.4 FDM (Frequency division multiplex)

Page 55: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Figure 6.5 FDM demultiplexing example

Page 56: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Figure 6.19 Time division multiplex (TDM) in the american telephone network

Page 57: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Multi-path propagation

Page 58: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Multiple access = channel access Several transmitters sharing the same physical medium, for

example wireless network, bus network or bus network.Based on

A physical layer multiplexing scheme A data link layer MAC protocol (medium access control) that avoids

collisions, etc.

Examples: TDMA (time division multiple-access) based on TDM FDMA (frequency division multiple-access) based on FDM CDMA based on spread spectrum multiplexing CSMA (carrier sense multiple-access) based on packet switching =

statistical multiplexing OFDMA

Page 59: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Cellular telephony generations

1G: (E.g. NMT 1981) Analog, FDMA circuit switched.

2G: (E.g. GSM 1991) Digital, FDMA+TDMA, 8 timeslots, circuit switched.

2.5G: (GPRS) Packet switched = statistical multiplexing. The old circuit switched infrastructure is kept.

3G: (e.g. WCDMA) FDMA + CDMA (= spread spectrum).

4G: (E.g. 3gpp LTE) All-IP. OFDM or similar.

Page 60: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Spread spectrum

DS-CDMA = Direct Sequence Code DivisionMultiple Access

Chip sequencies

Page 61: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Figure 13.15 Encoding rules

Page 62: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Figure 13.16 CDMA multiplexer

Page 63: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Figure 13.17 CDMA demultiplexer

Page 64: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Figure 9.1 Discrete Multi Tone (DMT)

Essentially the same thing as OFDMUsed in ADSL modems

Page 65: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Figure 9.2 ADSL Bandwidth division

Page 66: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-1

0

1

Sub

carr

ier

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-1

0

1

Sub

carr

ier

20 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-1

0

1

Sub

carr

ier

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-1

0

1

Sub

carr

ier

4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-5

0

5

Sum

sig

nal

Time [ms]

OFDM modulation

A simple example:4 sub-carriers

8 PSK

-1.5 -1 -0.5 0 0.5 1 1.5-1.5

-1

-0.5

0

0.5

1

1.5

000

001

010

011

100

101

110

111

The 8PSK constellation

cos

-sin

000 100 010 010 111 000 010 000

Page 67: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Technical data for DAB and DVB-T DAB DVB-T

Adopted 1995 1997

Coverage in parts of: Canada, Europe, Australia Europe and Australia

Net bit rate R per frequency channel:

576 - 1152 kbit/s 4.98 - 31.67 Mbit/s

Channel separation B: 1.712 MHz 8 MHz

Link level spectrum efficiency R/B:

0.34 - 0.67 bit/s/Hz 0.62 - 4.0 bit/s/Hz

Freq. range of today’s receivers:

174 – 240 MHz , 1452 – 1492 MHz.

470 - 862 MHz

Maximum speed: About 200 - 600 km/h 36 - 163 km/h

Number of OFDM sub-carriers:

1536, 384, 192 or 768. The 2K mode: 1705 The 8K mode: 6817

Sub-carrier modulation: DQPSK QAM, 16QAM or 64QAM

Inner Forward Error Correction Coding (FEC):

Convolutional coding with code rates 1/4, 3/8 or 1/2.

Convolutional coding with code rates 1/2, 2/3, 3/4, 5/6 or 7/8.

Outer FEC: None RS(204,188,t=8)

Time (outer) interleaving: Convolutional interleaving of depth 384 ms.

Convolutional interleaving of depth 0.6 - 3.5 ms.

Page 68: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Orthogonal Frequency Division Multiplex (OFDM)Summary of advantages Can easily adapt to severe channel conditions without complex equalization Robust against narrow-band co-channel interference Robust against Intersymbol interference (ISI) and fading caused by

multipath propagation High spectral efficiency Efficient implementation using FFT Low sensitivity to time synchronization errors Tuned sub-channel receiver filters are not required (unlike conventional

FDM) Facilitates Single Frequency Networks, i.e. transmitter macrodiversity.

Summary of disadvantages Sensitive to Doppler shift. Sensitive to frequency synchronization problems. Inefficient transmitter power consumption, due to linear power amplifier

requirement.

Page 69: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Bit error rate (BER) = Bit error probability = Pb

Packet error rate (PER) = Packet error probability for packet length N bits:Pp = 1 – (1-Pb)N

Page 70: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Error-correcting codes (ECC), also known as Forward-error correcting codes (FCC)

A block code converts a fixed length of K data bits to a fixed length N codeword, where N > K.

A convolutions code inserts redundant bits into the bit-stream. Code rate ¾ means that for every 3 information bit, totally 4 are transferred, i.e. every forth of the transferred bits is redundant.

Page 71: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Bit rates

Gross bit rate = Transmission rate. Symbol rate = Baud rate ≤ Gross bit rate In spread spectrum: Chip rate ≥ Bit rate ≥

Symbol rate. In FEC: Net bit rate = Information rate =

Useful bit rate ≤ Code rate * Gross bit rate Maximum throughput ≤ Net bit rate Goodput ≤ Throughput

Page 72: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Nyquist formula Gives the gross bit rate,without taking noise into

consideration: Symbol rate < Bandwidth*2 Bit rate < Bandwidth * 2log M

The above can be reached for line coding (base band transmission) and so called single-sideband modulation. Howeverm in practice most digital modulation methods give: Symbol rate = Bandwidth

Page 73: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Signal to noise ratios S/N= SNR = Signal-to-noise ratio. Often same thing as

C/N=CNR = Carrier-to-noise ratio SNR in dB = 10 log10 (S/N)

S/I = SIR = Signal-to-interference ratio. Often the same thing as C/I=CIR = Carrier-to-interference ratio. I is the cross-talk power.

CINR = C/(I+N) = Carrier-to-noise and interference ratio Eb/N0 = Bit-energy (Power in watt divided by bitrate)

divided by Noise density (in Watt per Hertz) Es/N0 = Symbol-energy (Power in Watt divided by

bitrate) divided by Noise density (in Watt per Hertz)

Page 74: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Shannon-Heartly formula

Gives the channel capacity, i.e. the maximum information rate (useful bit rate) excluding bit error rate.

I=B log2 (1+C/N)

Where C/N is carrier-to-noise ratio (sometimes called S/N)

Page 75: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Some statistical distributions

Page 76: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Gaussian noise

Time

Voltage

Page 77: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Gaussian = Normal distributionProbability density funciton

Page 78: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Additive White Gaussian Noise (AWGN) channel White noise = wideband (unfiltered) noise

with constant noise density in Watt/Hertz Pink noise = lowpass-filtered noise. Additive = linear mixing.

+Signal

Noise source

Noisy signal

Page 79: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Channel Noise

Info

Error Rate Calculation

Tx

Rx

Error Rate Calculation

BSC

Binary SymmetricChannel

BernoulliBinary

Bernoulli BinaryGenerator

0

Display

0 1 0 1 1 0 1 0 0 1 0

Bernoulli distribution

Random sequence of independent 0:s and 1:s.

Page 80: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Exponential distribution

Commonly used for time between phone calls and length of phonecalls. Simple model for calculation and simulation, but does not reflect data traffic bursty nature.

Page 81: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Multi-path propagation

Page 82: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

Rayleigh distribution

Model of rayleigh fading, i.e. amplitude gain caused by multi-path propagation with no line-of-sight

Page 83: Welcome to Simulation of communication systems (DT001A) Magnus.Eriksson@miun.se and Filip.Barac@miun.seMagnus.Eriksson@miun.seFilip.Barac@miun.se

More commons distributions

Ricean distribution (fading with line-of-sight)

Poisson distribution (number of phone calls during a phone call)

Self-similar process (bursty data traffic) Rectangular distribution Discrete distributions, for example the

distribution of a dice