welcome to the 31 meeting of the chemical reaction...

21
INDUSTRIAL SPONSORS 2005/06 IFP Innovene Johnson Matthey Sasol Shell Statoil Syntroleum Total UOP Welcome to the 31 st Meeting of the Chemical Reaction Engineering Laboratory (CREL) with Industry October 25, 2006 With participation of the Heterogeneous, Kinetics and Particle Chemistry Laboratory (HKPCL) Sponsors Partners Sponsors Partners Sponsors Partners ADM Air Products BP Chevron--Texaco ConocoPhillips DuPont Eastman EniTecnologie Exxon-Mobil http://crelonweb.che.wustl.edu Dr. M.P. Dudukovic Director 314-935-6021 (phone) [email protected] Dr. M. Al-Dahhan Co-Director 314-935-7187 [email protected] Dr. P.A. Ramachandran Professor 314-935-6531 [email protected] Theme: Energy: From Molecular Transformations to Systems

Upload: vuongkhanh

Post on 28-Apr-2018

215 views

Category:

Documents


1 download

TRANSCRIPT

INDUSTRIAL SPONSORS 2005/06

IFPInnoveneJohnson MattheySasolShellStatoilSyntroleumTotalUOP

Welcome to the 31st Meeting of theChemical Reaction Engineering

Laboratory (CREL) with IndustryOctober 25, 2006

With participation of the Heterogeneous, Kinetics and Particle Chemistry

Laboratory (HKPCL)

��

SponsorsPartnersSponsorsPartnersSponsorsPartners

ADMAir ProductsBPChevron--TexacoConocoPhillipsDuPontEastmanEniTecnologieExxon-Mobil

http://crelonweb.che.wustl.edu

Dr. M.P. DudukovicDirector314-935-6021 (phone)[email protected]

Dr. M. [email protected]

Dr. P.A. [email protected]

Theme: Energy: From Molecular Transformations to Systems

Raw Materials ��������

Non Renewable:• Petroleum• Coal• Ores• Minerals

Renewable:• Plants• Animals

FuelsMaterialsPlasticsPharmaceuticalsFoodFeedetc.

Chemical andPhysical

Transformations

Pollution

The domain of chemical engineering consists of chemical (biological) and physical transformations of starting materials to products

Challenges: Cleaner, sustainable processes; increased atom and energy efficient; improved safety; ability to scale-upTunca, Ramachandran, Dudukovic “Role of CRE in Sustainable Development”, Sustainable Engineering Principles, M. Abraham, et. al, Ed., Elsevier (2006)��

Energy

Chemical Engineering Department

Energy Environmental and Chemical Engineering Department

),()( bbb TCRCL η=

� η∆−=j

bbjjRbh TCRHTLj

),()()(

( )transport;kineticsf=ηηηη00 P,C,T

P,C,T

product, QREACTOR PERFORMANCE = f ( input & operating variables ; rates ; mixing pattern )

������� ���������������� ���������feed, Q

�� ������� ������ ���� ����������������������������������������������������������� ���������������

��

�������������!����"����#

�������$�% ������ ���&����%'���( ���%�����$��� �

������������

�)������ ������ �"��&���%�����*������(���

��� ������������������+�����

�+���"��% ������ �����%�)��*��(���

������������

����($�����'������� �$��%����(�������������,� ��%�-�����

./�./%

./0 %

./�.1!�#

./2 !�#

�"������

Scale-up of bench scale discoveries to full scale systems is the key to success of new processes

Multiphase Reactor Technology

Dudukovic, Mills, Larachi, Catalysis Reviews, 44(1), 123-246 (2002)

G

G

S

S

S

G

G

G

G L+S

G

G

L

L

G

G

L

Petroleum Refining

PolymerManufacture

EnvironmentalRemediation

Syn & Natural Gas Conversion

BulkChemicals

Fine Chemicals, Pharmaceuticals, Materials

Value of Shipments:$US 650,000 Million

BiomassConversion

��

EnergyCoal, Gas, Oil, Solar, Nuclear

MeOh, DME, MTBE, Parafins, Olefins, Higher alcohols,….

HDS, HDN, HDM, Dewaxing Fuels, Aromatics, Olefins

Aldehydes, Alcohols, Amines, Acids, Esters, LAB’s, Inorg Acids, …

Polycarbonates, PPO, Polyolefins, Special plastics

Ag Chem, Dyes, Fragrances, Flavors, Nutraceuticals….

Syngas, Methanol, Ethanol, Oils, High Value

Added Products

De-Nox, De-Sox, HCFC’s, DPA, “Green”

Processes…..

�������� ������ ����������������� ���a) capturing the physics of flow by experimental means

b) doing CFD models and validating the results experimentallyc) completing physically based engineering models for flow and mixing..

G

G

S

S

G

G

LS

G

G

G

G L+S

G

G

L

L

������ !�"�� ���#$%��!�$��&�'"�()*"�(+,-+��*...�

������ !�"��/�/�0!"��!11�"�/�/1#�!���& !&2���)++)�"�33�*�"�*)(,)34

REACTOR SCALE MODELS FOR CONTACTING OF TWO MOVING PHASESIdeal Reactor Concepts:

A) Plug Flow (PFR)

B) Stirred Tank (CSTR)U1

U2

K1

2C) Axial Dispersion Model

D) Need More Accurate Flow & Mixing Description ViaPhenomenological models based on: 1) CFD Models (Euler-Euler Formulation)2) Experimental Validation: Holdup Distribution and Velocity Field

U1

U2K

1

2

��

Validation of CFD for Multiphase Systems and ImprovedModel Development for Scale-Up, Design and Troubleshooting

• Bubble columns (slurry) • Liquid-solid risers• Moving beds• Ebulated beds

Advances in CARPT-CT technology

Computer Automated Radioactive Particle Tracking (CARPT) and Gamma Ray Computed Tomography (CT) yield the flow map of phase distribution and velocity in various systems

Computer Automated Radioactive Particle Tracking (CARPT)

High Pressure Bubble Column

• Gas-solid riser• Stirred tanks• Trickle beds• Monoliths with two phase flow• Fluidized beds

Process Applications

Computed Tomography (CT)

Normal Pressure Bubble Column��

CHEMICAL REACTION ENGINEERING LABORATORYS7

Bubble Column ExampleCARPT-CT and other measurements are used to develop an appropriate phenomenological reactor flow and mixing model. CFD generated data are used to assess model parameters at pilot plant or plant conditions. Reactor flow and mixing model are coupled with the kinetic information.Degaleesan et al., Chem. Eng. Sci., 51, 1967(1996); I&EC Research, 36,4670 (1997); Gupta et al., Chem. Eng. Sci., 56, 1117 (2001)

Dzz

Drr

uz(r)

1-εεεεL(r)

0-R R

� �����

����

5��6�������

5��7�

�����7��

�5��

0 100 200 300 400

1

0.8

0.6

0.4

0.2

0

Detector Level 1

0 100 200 300 400

1

0.8

0.6

0.4

0.2

0

Detector Level 6

Run 14.6

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100

Time (sec)

No

rmal

ized

Res

po

nse

Sim_L1Exp_L1Sim_L4Exp_L4Sim_L7Exp_L7

Pressure = 50 atmTemperature =250 Deg. CUg = 25 cm/s

0 20 40 60 80 100

1

0.8

0.6

0.4

0.2

07

6

5

4

3

2

1

Liquid Tracer

Gas TracerGas

Gas

DET.

Data

ModelPrediction

time (s)

time (s)

time (s)

S8

GAS-SOLID RISER Gas-Solid Riser

Gas-Liquid or Liquid Fluidized Bed CARPT Detectors on Gas-Solid Riser

S9�3�������������+�+4�+����+4��'������

CHEMICAL REACTION ENGINEERING LABORATORY

Evaluation of Residence Time and First Passage Time DistributionEvaluation of Residence Time and First Passage Time Distributionss

Time spent by the tracer between B-C should not be counted in the residence time

Solids from Solids from hopperhopper

Air inlet

Riser

Solids + air into Solids + air into disengagement sectiondisengagement section

D

O

W

N

C

O

M

ER

Lead shields

Solids from Solids from hopper

Air inlet

Riser

Solids + air into Solids + air into disengagement sectiondisengagement section

D

O

W

N

C

O

M

ER

Lead shields

Typical trajectory of the tracer

BCA

D

20 30 40 50 600

200

400

600

800

Time (sec)

Cou

nts

(#)

Part of raw data from 3 detectors

���������

��������

� � ��������

( 1 ) A ( 1 ) A ( 1 ) A ( 1 ) A

(2 ) B (2 ) B (2 ) B (2 ) B

( 3 ) C ( 3 ) C ( 3 ) C ( 3 ) C D D D D

����� ��������

20 30 40 50 600

200

400

600

800

Time (sec)

Cou

nts

(#)

Part of raw data from 3 detectors

���������

��������

� � ��������

( 1 ) A ( 1 ) A ( 1 ) A ( 1 ) A

(2 ) B (2 ) B (2 ) B (2 ) B

( 3 ) C ( 3 ) C ( 3 ) C ( 3 ) C D D D D

����� ��������

��������������������������

��� �

Bhusarapu et al., Chem. Eng. Sci., 59/22-23, 5381-5387, 2004

S10

CHEMICAL REACTION ENGINEERING LABORATORY

Bhusarapu et al., Ind. & Eng. Chem. Res., 44, 9739-9749, 2005

What is the true Dz?

FPTD versus Actual RTDFPTD versus Actual RTD

0 1 4 50

0.05

0.1

0.15

θ (τ = 13.52 )

Ε (θ

)

0

0.5

1� ��������� � ������������� �������������������� ���������

F - c

urve

0

0.01

0.03

0.04

Ε (θ

)

0 1 4 50

0.5

1� �������� � ������������� ����������������� ���������

θ (τ = 39.7 )F

-cur

ve

� ����� ���� � �!�"#$%&����

� ����� ���� � �!�##$'������

σ2 = 6.2 � (�!�&$"�&)��

����

� ����� ��� � �!�#*$+����

� ����� ��� � �!�%*$*,�����

σ2 = 2.3 � (�!�-$.�&)��

����

12

/ ����

FPTD and RTD in FF regime (shown)

Differences in mean residence time of 66%:

Differences in

Dimensionless variance by 170%

Dispersion coefficient by 163%

FPTD and RTD in DPT

( not shown)

Differences:Dimensionless variance by 195%Dispersion coefficient by 207%

Ugriser = 3.2 m.s-1 ; Gs = 30.1 kg.m-2.s-1

S11

CREL Objectives• Education and training of students• Advancement of reaction engineering methodology• Transfer of state-of-the-art reaction engineering to

industrial practice

CREL Funding• General industrial CREL participation fees• Federal grants• Industrial mini-consortia• Federal contracts or subcontracts• Specific research contract work from industry• Specific service contract work to industry

CHEMICAL REACTION ENGINEERING LABORATORY���

CREL Deliverables to CREL Consortium Sponsors

• Annual report• Annual meeting• Copies of theses and reports prior to publication• Training of personnel on CREL premises• Networking with high quality institutions• Access to unique experimental facilities• Contract research work and reports• Troubleshooting and consulting• Opportunity to leverage resources

CHEMICAL REACTION ENGINEERING LABORATORY���

Consortium fees are vital to CREL existence. For $20,000/year the participating company gets direct access and input to over $1,000,000 of research, to unique facilities and unique expertise.

N. Devanathan - CARPT - Bubble ColumnsY. Yang - CARPT - Bubble ColumnsB.S. Zou - CARPT - Bubble ColumnsS. Kumar - CT-CARPT - Bubble ColumnsS. Limtrakul - CT-CARPT - Ebulated BedsB. Sannaes - CARPT - Slurry Bubble ColumnsS. Degaleesan - CARPT - Bubble ColumnsJ. Chen - CARPT-CT - Bubble Columns, Packed BedsS. Roy - CARPT-CT - Liquid-Solid RiserA. Kemoun - CARPT-CT - Riser, Stirred TankA. Rammohan - CARPT-CT - Stirred TankN. Rados - CARPT-CT - Slurry Bubble ColumnsB.C. Ong - CARPT-CT - Bubble ColumnsS. Bhusarapu - CARPT-CT - Gas-Solid Riser

Acknowledgement of Significant Past CREL ContributorsAcknowledgement of Significant Past CREL Contributors

K. Myers - Bubble ColumnsR. Holub - Trickle BedsB.S. Zhou - Tap Reactor ModelS. Pirooz - Plasma ReactorsV. Kalthod - BioreactorsH. Erk - Phase Change RegeneratorsA. Basic - Rotating Packed BedM. Al-Dahhan - Trickle BedsJ. Turner - Fly Ash and Pollution AbatementS. Karur - Computational CREM. Kulkarni - Reverse Flow in REGAS

CARPT-CT

CFD, Reactor Models & ExperimentsQ. Wang - Bubble ColumnsZ. Xu - Photocatalytic DistillationK. Balakrishnan - Computational CREM. Khadilkar - CFD, Models, Trickle BedsY. Jiang - CFD, Models, Trickle BedsJ-H. Lee - Models, Catalytic DistillationY. Wu - Models (Trickle Beds,

Bubble Column)Y. Pan - CFD (Bubble Columns)P. Gupta - Models (Bubble Columns)P. Chen - Bubble Columns

���

Houston

Saint LouisChicago

New Jersey (2006)

Bangkok

TokyoTokyo City

Beijing

Lausanne

Lund

Madrid

CardiffeBelfast

Lyon

DelftEindhoven

Ghent

BerlinBochum

LeipzigBarcelona

Washington University in St. LouisDepartment of Chemical Engineering Energy, Environmental and Chemical EngineeringHeterogeneous Kinetics and Particle Chemistry Laboratory

International Research Applications1. Alternative energy sources: hydrogen production, synthesis gas, biomass conversion2. Environmental research: autoexhaust catalysis, NOx reduction, chemically benign processing3. Nanoscale research: catalytic nanofactories, atomic tailoring of particle surfaces4. Advanced industrial processes: high selectivity conversion of alkanes to useful chemicals

TAP (Temporal Analysis of Products) Reactor System Worldwide Installations: Current increase = 2 new installations/year

John T. Gleaves

Gregory Yablonsky

Atomic Beam Deposition

Reactive “self-assembly” of mono-layered composites

Sub-nanoscale layers of metal-metal oxide composites

Bulk preparation of Catalytic Substrate

QMS Vacuum = 10-8 torr

TC

Steady-Flow Pulsed Input

Catalyst

Tubular Microreactor Vol = 0.33 cc

Inert Packing

Reaction Products

Slide Valve

TAP Experiments

Combining TAP and Atomic Beam Deposition

Nanoscale Fabrication

CREL HKPCL

Center for Engineering of Molecular Transformations and Multi-Scale

Process Analysis

Center for Environmentally Center for Environmentally Beneficial CatalysisBeneficial Catalysis

Designing environmentally responsible molecules, products, and processes –from the molecular scale to the plant scale.

Lead Institution: University of Kansas (KU)

Core Partners: University of Iowa (UI); Washington University in St. Louis (WUStL); Prairie View A&M University (PVAMU)

Director: Bala Subramaniam (KU); Deputy Director: Daryle Busch (KU)

Associate Directors: John Rosazza (UI); Milorad Dudukovic (WUStL); Irvin Osborne-Lee (PVAMU)

���

CHEMICAL REACTION ENGINEERING LABORATORY���

Environmentally BeneficialCatalytic Engineered Systems

TG1: Catalyst Design and Preparation

TG2: Media and Catalyst Supports

TG3: Experimental Design and Advanced Measurements

TG4: Multi-scale Process Model- Quantum effects- Molecular dynamics- Rate theories- Solvent thermodynamics and

kinetic effect- Micromixing- Multi-component transport- Turbulence- Mixing- Computational fluid dynamics- Reactor simulation- Plant simulation- Control- Optimization

CEBC – U. of Kansas, U. of Iowa, CREL-WU

Near-Term (5 Yr) Goals

Develop transformational catalytic technologies using CEBC’s strategic research concept for the following classes of reaction systems (termed as testbeds)– Selective oxidations

– Oxidative biocatalysis

– Hydroformylations of olefins

– Solid acid catalyzed alkylations & acylations

���

2006 CREL ANNUAL MEETING Energy: From Molecular Transformations to Systems

AGENDA Wednesday, October 25th, 2006

Place: Washington University – Danforth Campus (Knight Executive Center)

Time Title Speaker Institution 7:30 – 8:15 a.m. Breakfast and Registration

8:15 – 8:30 a.m. Welcome Remarks M. P. Dudukovic Washington University

8:30 – 9:00 a.m. Renewable Hydrogen and Chemicals in Millisecond Autothermal Reactors Lanny Schmidt University of Minnesota

9:00 – 9:30 a.m. Reactive Chromatography for Producing Biodiesel Ahmad Hilaly ADM World

9:30 – 10:00 a.m. Recent Research and Perspectives on Lignocellulose Conversion into Ethanol Bruce Dien USDA

10:00 – 10:20 a.m. Coffee Break

10:20 – 10:50 a.m. Heterogeneous Catalysis Research at Argonne National Laboratory Chris Marshall Argonne National

Laboratory

10:50 – 11:20 a.m. The AlkyClean® Alkylation Process – New Technology Eliminates Liquid Acids

Anne Gaffney ABB Lummus

11:20 – 11:50 p.m. Coal: Energy for the 21st Century and Beyond Chris Hagedorn / Martin Considine Peabody Energy

11:50 – 1:00 p.m. Lunch

1:00 – 2:00 p.m. Poster Introductions Students Washington University

2:00 – 3:30 p.m. Poster Viewing Session + Introductions to CFD and Coal Conversion Robert Tachau Sandia National

Laboratory, SIUC

3:30 – 3:50 p.m. Strategies for Fabricating Nanoscale Catalytic Circuits John Gleaves Washington University

3:50 – 4:10 p.m. Culturing Microalgae in Photobioreactors: Advanced Modeling and Experimentation M. Al-Dahhan Washington University

4:10 – 4:30 p.m. Citrus-Based Biorefinery – Challenges and Opportunities

Patrick Mills Texas A&M University

4:30 – 4:50 p.m. NSF Support of Energy Research through

Chemical, Bioengineering, Environmental and Transport Systems

Judy Raper NSF

4:50 – 5:30 p.m. Discussion of CREL’s Future Directions and Industrial Needs All Participants

5:30 – 6:15 p.m. Reception

6:15 – 8:00 p.m. Dinner

8:00 – 9:00 p.m. Making Friends with Chemical Reactors O. Levenspiel Oregon State University

Note: October 26, Thursday: 1) Day open for discussions, planning of future research and networking 2) CREL Advisory Board Meets