wfhss conference 2009 lecture - modelling the inactivation

22
Modelling the inactivation of Bacillus subtilis spores by ethylene oxide processing Gisela Cristina Mendes Teresa Ribeiro da Silva Brandão Cristina Luisa Miranda Silva CBQF - Centro de Biotecnologia e Química Fina Escola Superior de Biotecnologia Universidade Católica Portuguesa, Rua Dr. António Bernardino de Almeida 4200-072 Porto, Portugal This study was supported by Bastos Viegas, S.A.

Upload: others

Post on 27-Feb-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: WFHSS Conference 2009 Lecture - Modelling the inactivation

Modelling the inactivation of Bacillus subtilis spores by ethylene oxide processing

Gisela Cristina Mendes

Teresa Ribeiro da Silva Brandão

Cristina Luisa Miranda Silva

CBQF - Centro de Biotecnologia e Química FinaEscola Superior de BiotecnologiaUniversidade Católica Portuguesa,Rua Dr. António Bernardino de Almeida4200-072 Porto, Portugal

This study was supported by Bastos Viegas, S.A.

Page 2: WFHSS Conference 2009 Lecture - Modelling the inactivation

ETHYLENE OXIDE IS CURRENTLY A DOMINANT STERILIZATION AGENT USED IN MEDICAL DEVICES INDUSTRY

EO sterilization consumption for

medical devices

0

20406080

100

70's80's

90's

Nowadays

Decade

%

Page 3: WFHSS Conference 2009 Lecture - Modelling the inactivation

Advantages / Disadvantages

Advantages

Effectiveness DiffusivityBactericidal, fungicidal and virucidal properties

Compatibility with most materials

Process flexibility Low temperature sterilization

Page 4: WFHSS Conference 2009 Lecture - Modelling the inactivation

Disadvantages

Toxicity of the sterilizing agent

Process complexity

Process cost

Processing time

Advantages / Disadvantages

Page 5: WFHSS Conference 2009 Lecture - Modelling the inactivation

Objectives

Understanding the full dynamics of the sterilization allows design optimization / efficient control of the process -

Parametric release

Screen the most significantvariables on B. subtilis

inactivation by EO sterilizationModel the inactivation kinetics

of B. subtilis, including the variables’ effects

Provide a method of integrating lethality

Page 6: WFHSS Conference 2009 Lecture - Modelling the inactivation

Modelling microorganisms inactivation

Experimental design

Bacillus subtilis, var. niger or Bacillus atrophaeus spores (ATCC 9372) inoculated in strips (biological indicators, BIs)

Matrix: Drapes

Temperature and humidity sensorsEO sensor (Infrared analyser in the sterilizer chamber headspace) Sterilization cycles

Page 7: WFHSS Conference 2009 Lecture - Modelling the inactivation

Modelling microorganisms inactivation - Conditions defined according to the 23 factorial design -

Sterilization cycles

- Target exposure conditions –

40 and 60 ºC 50 and 90 %RH

250 and 1000 mg(EO)/L

Page 8: WFHSS Conference 2009 Lecture - Modelling the inactivation

Modelling microorganisms inactivation

Survival curves construction

1st order kinetics Gompertz model

Gompertz function has the ability of modelling both linear and asymmetrical sigmoidal data

( )

+−λ

−−⋅=

1t

Aek

expexpANNlog max

00Nlogt.kNlog +−=

Page 9: WFHSS Conference 2009 Lecture - Modelling the inactivation

Inactivation of B. subtilis spores by EO sterilization - Conditions defined according to the 23 factorial design -

-8

-7

-6

-5

-4

-3

-2

-1

0

0 500 1000 1500 2000 2500 3000

U (s)

log

(N/N 0)

-8

-7

-6

-5

-4

-3

-2

-1

0

0 1000 2000 3000 4000 5000 6000 7000

U (s)

log

(N/N

0)

-8

-7

-6

-5

-4

-3

-2

-1

0

0 2000 4000 6000 8000 10000 12000 14000

U (s)

-8

-7

-6

-5

-4

-3

-2

-1

0

0 500 1000 1500 2000 2500 3000 3500

U (s)

log

(N/N

0)

-8

-7

-6

-5

-4

-3

-2

-1

0

0 500 1000 1500 2000 2500 3000

U (s)

log

(N/N

0)

-8

-7

-6

-5

-4

-3

-2

-1

0

0 1000 2000 3000 4000 5000 6000

U (s)

log

(N/N

0)

-8

-7

-6

-5

-4

-3

-2

-1

0

0 300 600 900 1200 1500 1800

U (s)

log

(N/N

0)

Legend

⁰ Experimental data

___ Fitted Gompertz model

___ Predicted data

- - - Upper and lower limits of predicted data (considering the maximum fluctuations of temperature and EO concentration)

T=60 °C; EO=233 mg/L;

RH=63 %

T=44 °C; EO=257 mg/L; RH=86 %

T=34 °C; EO=222 mg/L; RH=60 %

T=40 °C; EO=980 mg/L;

RH=90 % T=59 °C; EO=266 mg/L; RH=85 %

T=33 °C; EO=940 mg/L; RH=61 %

T=59 °C; EO=1004 mg/L; RH=98 %

Page 10: WFHSS Conference 2009 Lecture - Modelling the inactivation

Data analysis

The non-linear regression analysis was carried in

Statistica© 6.0 software (StatSoft, USA), using the Levenberg-

Marquardt algorithm to minimize the sum of the squares of the

differences between the predicted and experimental values.

Page 11: WFHSS Conference 2009 Lecture - Modelling the inactivation

Data analysis

The experimental inactivation data were successfully fitted with

the Gompertz model:

- High precision of kmax and λ estimates, since low errors were

attained (SHW95%);

- Residuals randomness and normality;

- Coefficient of determination (R2>0.98);

Page 12: WFHSS Conference 2009 Lecture - Modelling the inactivation

Data analysis and planning future work

The analysis of variance (ANOVA) allowed to identify the most

significant parameters affecting B. subtilis inactivation -

temperature and EO concentration

Additional experiments considering intermediate conditions of

these parameters were defined in order to model their effects

and combined effects on the lethality (runs 9 to 15)

Page 13: WFHSS Conference 2009 Lecture - Modelling the inactivation

Inactivation of B. subtilis spores by EO sterilization at the additional experimental conditions

-7

-6

-5

-4

-3

-2

-1

00 1000 2000 3000 4000

U (s)

log (

N/N

0)

Legend

⁰ Experimental data ___ Fitted Gompertz model

Run 9 to Run 15

Page 14: WFHSS Conference 2009 Lecture - Modelling the inactivation

Estimated kmax and l parameters of B. subtilis inactivation at the temperature, EO concentration and relative humidity conditions tested

Page 15: WFHSS Conference 2009 Lecture - Modelling the inactivation

EO concentration influence on kmax and λ

kmax = 3.22x10-6[EO] + 2.74x10-4

kmax = 4.25x10-6[EO] + 2.18x10-3

kmax = 4.46x10-6[EO] + 3.53x10-3

0

1

2

3

4

5

6

7

8

0 500 1000 1500

[EO] (mg/L)

k max

x 1

03 (s

-1)

37.0 ºC

50.5 ºC

60.0 ºC

λ = -88.076ln[EO] + 853.05

λ = -229.66ln[EO] + 1733.7

λ = -446.4ln[EO] + 3570.8

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

[EO] (mg/L)λ

(s)

38.0 ºC

50.5 ºC

60.0 ºC

Influence of EO concentration on kmax at 37.0, 50.5 e 60.0 °C

Influence of EO concentration on λ at 38.0, 50.5 and 60.0 °C

Page 16: WFHSS Conference 2009 Lecture - Modelling the inactivation

T influence on parameters ak/bk and aλ/bλ

ak = 1.42x10 -4T - 4.96x10 -3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 10 20 30 40 50 60 70

T (ºC)

a k x 1

03 (s

-1)

bk = 5.54x10 -8T + 1.25x10 -6

3.0

3.5

4.0

4.5

5.0

0 10 20 30 40 50 60 70

T (ºC)

b k x 1

06 (L

mg-1

s-1)

aλ = 16.34T - 1063.61

-500

-400

-300

-200

-100

0

0 20 40 60 80

T (ºC)

a λ (s

)

bλ = -124.74T + 8227.00

0

500

1000

1500

2000

2500

3000

3500

4000

0 20 40 60 80

T (ºC)

b λ (s

)

Influence of T on ak e bk parameters Influence of T on ak e bk parameters

Page 17: WFHSS Conference 2009 Lecture - Modelling the inactivation

Data analysis

T and EO concentration have a negative effect on λ and a

positive effect on kmax:

- Higher temperatures and EO concentration imply narrow

shoulder times and higher inactivation rates;

- Lower inactivation rates and more evident shoulder phases

were observed at the lowest temperature and EO

concentration;

Page 18: WFHSS Conference 2009 Lecture - Modelling the inactivation

Mathematical model resulting from the integration of the T and EO concentration parameters for lethality calculation of the EO sterilization process

[ ]

×

−×+−×+

−×−−×−

−−=

7.5-

eEO6101.25T8105.543104.96T4101.42exp7.5)exp(

0NN

log

[ ]

+

×+×−+

×−×× 1U3108.23T2101.25)EOln(3101.06T1101.63

Page 19: WFHSS Conference 2009 Lecture - Modelling the inactivation

Inactivation of B. subtilis spores by EO sterilization - Conditions defined according to the 23 factorial design -

-8

-7

-6

-5

-4

-3

-2

-1

0

0 500 1000 1500 2000 2500 3000

U (s)

log

(N/N 0)

-8

-7

-6

-5

-4

-3

-2

-1

0

0 1000 2000 3000 4000 5000 6000 7000

U (s)

log

(N/N

0)

-8

-7

-6

-5

-4

-3

-2

-1

0

0 2000 4000 6000 8000 10000 12000 14000

U (s)

-8

-7

-6

-5

-4

-3

-2

-1

0

0 500 1000 1500 2000 2500 3000 3500

U (s)

log

(N/N

0)

-8

-7

-6

-5

-4

-3

-2

-1

0

0 500 1000 1500 2000 2500 3000

U (s)

log

(N/N

0)

-8

-7

-6

-5

-4

-3

-2

-1

0

0 1000 2000 3000 4000 5000 6000

U (s)

log

(N/N

0)

-8

-7

-6

-5

-4

-3

-2

-1

0

0 300 600 900 1200 1500 1800

U (s)

log

(N/N

0)

Legend

⁰ Experimental data

___ Fitted Gompertz model

___ Predicted data

- - - Upper and lower limits of predicted data (considering the maximum fluctuations of temperature and EO concentration)

T=60 °C; EO=233 mg/L;

RH=63 %

T=44 °C; EO=257 mg/L; RH=86 %

T=34 °C; EO=222 mg/L; RH=60 %

T=40 °C; EO=980 mg/L;

RH=90 % T=59 °C; EO=266 mg/L; RH=85 %

T=33 °C; EO=940 mg/L; RH=61 %

T=59 °C; EO=1004 mg/L; RH=98 %

Page 20: WFHSS Conference 2009 Lecture - Modelling the inactivation

In conclusion

[ ]

×

−×+−×+

−×−−×−

−−=

7.5-

eEO6101.25T8105.543104.96T4101.42exp7.5)exp(

0N

Nlog

A mathematical inactivation model expressed only in terms of the

relevant process variables (T and EO concentration) was

achieved.

The conventional design of EO sterilization cycles usually involves

a significant amount of experimental work, which is time

consuming and also expensive. The results of this work are

certainly a contribution for an efficient control, design and

optimization of the EO sterilization process.

[ ]

+

×+×−+

×−×× 1U3108.23T2101.25)EOln(3101.06T1101.63

Page 21: WFHSS Conference 2009 Lecture - Modelling the inactivation

Thanks’

Page 22: WFHSS Conference 2009 Lecture - Modelling the inactivation