whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/farymilnortheorem.pdfjohn%milnor....

63
Scott Taylor Carleton College January 16, 2011 When is a knot not knotted?

Upload: others

Post on 30-Mar-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

Scott TaylorCarleton CollegeJanuary 16, 2011

When  is  a  knot  not  knotted?

Page 3: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

Harold  Tucker

Not

ices

, (42

) 10

Page 4: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

Harold  Tucker

Not

ices

, (42

) 10

Karol  BorsukM

acTu

tor

Page 5: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

Harold  Tucker

Not

ices

, (42

) 10

Karol  BorsukM

acTu

tor

Ralph  FoxM

acTu

tor

Page 6: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

The way math is done at Princeton.

cine

plex

.com

Page 7: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

The total curvature of a plane curve is at least 2π.

Fenchel’s Theorem

Page 8: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

The total curvature of a knotted curve in R3 is at least 4π.

Borsuk’s Conjecture (1947)

Solved by Fáry (1949) and Milnor (1950)

Page 9: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

C(t) =

x(t)y(t)z(t)

Curvature

.

Page 10: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

C(t) =

x(t)y(t)z(t)

Curvature

C�(t) =

x�(t)y�(t)z�(t)

.

Page 11: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

C(t) =

x(t)y(t)z(t)

Curvature

C�(t) =

x�(t)y�(t)z�(t)

κ(t) = |C��(t)||C�(t)| = 1If then curvature is defined to be

.

Page 12: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

κ(C) =

� b

aκ(t) dt

Total Curvature

The total curvature of a smooth curve

C(t) a ≤ t ≤ b

is defined to be

Page 13: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

C(t) =

�R cos(t/R)R sin(t/R)

�0 ≤ t ≤ 2πR

R

An example

Page 14: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

C(t) =

�R cos(t/R)R sin(t/R)

�0 ≤ t ≤ 2πR

C�(t) =

�− sin(t/R)cos(t/R)

R

An example

Page 15: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

C(t) =

�R cos(t/R)R sin(t/R)

�0 ≤ t ≤ 2πR

C�(t) =

�− sin(t/R)cos(t/R)

C��(t) =1

R

�− cos(t/R)− sin(t/R)

�R

An example

Page 16: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

C(t) =

�R cos(t/R)R sin(t/R)

�0 ≤ t ≤ 2πR

C�(t) =

�− sin(t/R)cos(t/R)

C��(t) =1

R

�− cos(t/R)− sin(t/R)

κ(t) = |C��(t)| = 1/R

R

An example

Page 17: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

C(t) =

�R cos(t/R)R sin(t/R)

�0 ≤ t ≤ 2πR

C�(t) =

�− sin(t/R)cos(t/R)

C��(t) =1

R

�− cos(t/R)− sin(t/R)

κ(t) = |C��(t)| = 1/R

R

An example

κ(C) =

� 2πR

0

1

Rdt = 2πTotal Curvature:

Page 18: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

The total curvature of a plane curve is at least 2π.

Fenchel’s Theorem

The total curvature of a knotted curve in R3 is at least 4π.

Borsuk’s Conjecture

Page 19: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

Knottedness

A (smooth or polygonal) closed curve in R3 is knotted if it cannot be deformed into the unit circle in the xy-plane.

unknotted knotted (?)

Page 20: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

Knottedness

A (smooth or polygonal) closed curve in R3 is knotted if it cannot be deformed into the unit circle in the xy-plane.

unknotted knotted (?)

When is a knot not knotted?

Page 21: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

Detecting unknottedness

Theorem: If a closed curve has a single maximum (along some axis), then it is unknotted.

Page 22: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

Detecting unknottedness

Theorem: If a closed curve has a single maximum (along some axis), then it is unknotted.

Page 23: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

Bridge number in a direction X

Let X be a unit vector in R3. The bridge number of C in the direction X is the total number of maxima of the function C(t)⋅X. Denote it by b(X).

Page 24: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

Bridge number in a direction X

Let X be a unit vector in R3. The bridge number of C in the direction X is the total number of maxima of the function C(t)⋅X. Denote it by b(X).

Page 25: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

Bridge number in a direction X

Let X be a unit vector in R3. The bridge number of C in the direction X is the total number of maxima of the function C(t)⋅X. Denote it by b(X).

i

j

Page 26: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

Bridge number in a direction X

Let X be a unit vector in R3. The bridge number of C in the direction X is the total number of maxima of the function C(t)⋅X. Denote it by b(X).

i

j

b(j) = 4

Page 27: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

Bridge number in a direction X

Let X be a unit vector in R3. The bridge number of C in the direction X is the total number of maxima of the function C(t)⋅X. Denote it by b(X).

i

j

b(j) = 4b(i) = 2

Page 28: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

Bridge number in a direction X

Let X be a unit vector in R3. The bridge number of C in the direction X is the total number of maxima of the function C(t)⋅X. Denote it by b(X).

i

j

b(j) = 4b(i) = 2

Note:

•Some  directions  may  be  degenerate,  •b(X) also equals the number of minima.

Page 29: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

|X|=1b(X) dA = 2κ(C).

The genius

Theorem (Milnor): If C is a smooth closed curve in R3, then:

Page 30: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

2κ(C) =�|X|=1 b(X) dA

≥ 2�|X|=1 dA

= 8π.

κ(C) ≥ 4π.

The total curvature of a knotted curve in R3 is at least 4π.

Borsuk’s Conjecture proof:

Assume C is knotted. Then b(X) ≥ 2 for all X. Hence, by Milnor’s theorem:

Consequently,

Page 31: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

|X|=1b(X) dA = 2κ(C).

Theorem (Milnor): If C is a smooth closed curve in R3, then:

Page 32: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

|X|=1b(X) dA = 2κ(C).

Theorem (Milnor): If C is a smooth closed curve in R3, then:

proof:

1. Convert to polygonal curves.

2. Prove theorem for polygonal curves.

3.Prove that the polygonal theorem implies the smooth theorem.

Page 33: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

Polygonal Approximations

Page 34: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

Polygonal Approximations

Page 35: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

Polygonal Approximations

Page 36: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

vj

vj-1

vj+1

Polygonal Curvature

Page 37: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

vj

vj-1

vj+1

Polygonal Curvature

θj exterior angle

Page 38: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

κ(C) =�

j

θj

vj

vj-1

vj+1

Polygonal Curvature

θj exterior angle

Page 39: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

2π/3

κ(C) = 2π

2π/3

2π/3

Polygonal Curvature

Page 40: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

Theorem (Milnor):Let C be a polygonal curve in R3. Then�

|X|=1b(X) dA = 2κ(C).

Page 41: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

|X|=1b(X) dA = 2κ(C).To Prove:

Page 42: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

Note: If  X is nondegenerate:

•the maxima and minima of C⋅X are at vertices.  •varying  X slightly doesn’t change b(X).

|X|=1b(X) dA = 2κ(C).To Prove:

Page 43: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

Note: If  X is nondegenerate:

•the maxima and minima of C⋅X are at vertices.  •varying  X slightly doesn’t change b(X).

Thus: the sphere of directions {X : |X| = 1} is

divided into finitely many regions where b(X) is constant.

|X|=1b(X) dA = 2κ(C).To Prove:

Page 44: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

Note: If  X is nondegenerate:

•the maxima and minima of C⋅X are at vertices.  •varying  X slightly doesn’t change b(X).

Thus: the sphere of directions {X : |X| = 1} is

divided into finitely many regions where b(X) is constant.

Define:

Areaj = Area of { X| vj is a max/min of C(t) ⋅X}.

|X|=1b(X) dA = 2κ(C).To Prove:

Page 45: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

Areaj = Area on sphere where vj is a max/min.

Consequently:

2

|X|=1b(X) dA =

j

Areaj

Page 46: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

What is Areaj?

Page 47: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

What is Areaj?

Page 48: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

What is Areaj?

Page 49: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

What is Areaj?

Page 50: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

What is Areaj?

Page 51: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

What is Areaj?

Page 52: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

What is Areaj?

Areaj = 2 · 4π · θj2π

Page 53: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

Areaj = 4θj .

Putting it all together:

Since:

.

Page 54: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

Areaj = 4θj .

Putting it all together:

Since:

2

|X|=1b(X) dA =

j

Areaj

We have:

.

Page 55: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

Areaj = 4θj .

Putting it all together:

Since:

2

|X|=1b(X) dA =

j

Areaj

We have:

.

= 4�

j

θj

Page 56: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

Areaj = 4θj .

= 4κ(C).

Putting it all together:

Since:

2

|X|=1b(X) dA =

j

Areaj

We have:

.

= 4�

j

θj

Page 57: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

Areaj = 4θj .

= 4κ(C).

Putting it all together:

Since:

2

|X|=1b(X) dA =

j

Areaj

We have:

.

= 4�

j

θj

|X|=1b(X) dA = 2κ(C)

Consequently,

Page 58: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

Dirk

Fer

us, 1

980,

Obe

rwol

fach

John  Milnor

Page 59: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

The ideas live on...

• Topology  and  Geometry  are  intricately  related  in  low  dimensions.• Bridge  number  is  an  important  invariant  in  modern  knot  theory.• Total  curvature  plays  an  important  role  in  applications  of  knot  theory  to  chemistry.• The  interplay  between  the  continuous  and  the  discrete  is  a  prevalent  theme  in  modern  mathematics.

Page 60: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

http://www.math.sunysb.edu/~jack/OSLO/PHOTOS/ORIG/cmonu.jpg

John  Milnor  lives  on...

Page 61: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

http://www.m

ath.su

nysb

.edu

/~jack

/OSL

O/PHOTO

S/ORIG

/jack

-abe

l7.jp

g

John  Milnor

Page 62: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

Sources and References

“On the total curvature of knots” J.W. Milnor. Annals 1950.

“A brief report on John Milnor’s brief excursions into differential geometry” M. Spivak. Topological Methods in Modern Mathematics. Publish or Perish, Inc. 1993.

“Curves of Finite Total Curvature” J. Sullivan. Discrete Differential Geometry. Birkhäuser. preprint: arXiv 2007.

Page 63: Whenisaknotnotknotted?personal.colby.edu/personal/s/sataylor/math/FaryMilnorTheorem.pdfJohn%Milnor. Sources and References “On the total curvature of knots” J.W. Milnor. Annals

What is Area(Vi)?

κ(C) =�

j

θj

θj

vj

vj-1

vj+1