why do green’s functions? - github...

69
reactions and structure Why do Green’s functions? Properly executed --> answers an old question from Sir Denys Wilkinson: “What does a nucleon do in the nucleus?” Nucleon self-energy —> think of potential but energy dependent Nucleon self-energy —> elastic nucleon scattering data --> input for the analysis of many nuclear reactions Nucleon self-energy —> bound-state overlap functions with their normalization --> also used in the analysis of nuclear reactions --> for exotic nuclei only strongly interacting probes available Nucleon self-energy—>density distribution & E/A from V NN Self-energy <--> data --> dispersive optical model (DOM)

Upload: others

Post on 18-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Why do Green’s functions?• Properly executed --> answers an old question from Sir Denys

Wilkinson: “What does a nucleon do in the nucleus?”

• Nucleon self-energy —> think of potential but energy dependent • Nucleon self-energy —> elastic nucleon scattering data --> input

for the analysis of many nuclear reactions • Nucleon self-energy —> bound-state overlap functions with their

normalization --> also used in the analysis of nuclear reactions --> for exotic nuclei only strongly interacting probes available

• Nucleon self-energy—>density distribution & E/A from VNN

• Self-energy <--> data --> dispersive optical model (DOM)

Page 2: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Location of single-particle strength in closed-shell

(stable) nuclei

SRC

SRC theory

For example: protons in 208Pb

NIKH

EF (e,e’p) dataL. Lapikás

Nucl. Phys. A

553,297c (1993)JLab E97-006

Phys. Rev. Lett. 93, 182501 (2004) D. Rohe et al.

Elastic nucleon scattering

Reviewed in Prog. Part. Nucl. Phys. 52 (2004) 377-496

Page 3: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Remarks

• Given a Hamiltonian, a perturbation expansion can be generated for the single-particle propagator

• Dyson equation determines propagator in terms of nucleon self-energy

• Self-energy is causal and obeys dispersion relations relating its real and imaginary part

• Data constrained self-energy acts as ideal interface between ab initio theory and experiment

Page 4: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Propagator / Green’s function• Lehmann representation

• Any other single-particle basis can be used

• Overlap functions --> numerator

• Corresponding eigenvalues --> denominator

• Spectral function

• Spectral strength in the continuum

• Discrete transitions

• Positive energy —> see later

G`j(k, k0;E) =

X

m

h A0 | ak`j | A+1

m i h A+1m | a†k0`j | A

0 iE (EA+1

m EA0 ) + i

+X

n

h A0 | a

†k0`j | A1

n i h A1n | ak`j | A

0 iE (EA

0 EA1n ) i

S`j(k;E) =1

Im G`j(k, k;E) E "F

=X

n

h A1n | ak`j | A

0 i2(E (EA

0 EA1n ))

qSn`j n

`j(k) = h A1n | ak`j | A

0 i

S`j(E) =

Z 1

0dk k2 S`j(k;E)

Page 5: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

En = EA0 EA1

n

Sn`j =

Zdk k2

h A1n | ak`j | A

0 i2 < 1

reactions and structure

Propagator from Dyson Equation and “experiment”Equivalent to …

Self-energy: non-local, energy-dependent potential With energy dependence: spectroscopic factors < 1 ⇒ as extracted from (e,e’p) reaction

Schrödinger-like equation with:

Dyson equation also yields for positive energies

Elastic scattering wave function for protons or neutrons Dyson equation therefore provides: Link between scattering and structure data from dispersion relations

Spectroscopic factor

elE`j (r)

= h A+1

elE | a†r`j | A0 i

k2

2mn`j(k) +

Zdq q2

`j(k, q;En ) n

`j(q) = En n

`j(k)

Page 6: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

How is it done in practice?• Dyson equation for discrete states

• with

• Work with so only 2nd derivative • Put coordinate on equidistant grid • Approximate 2nd derivative for i>1 by

• First point • Use “continuity” for r<0: for parity • using bc —> then diagonalize etc.

p2r2m

+~2`(`+ 1)

2mr2

n`j(r) +

Zdr0 r02`j(r, r

0; "n ) n`j(r

0) = "n n`j(r)

pr = i

~

@

@r+

1

r

un`j(r) = r n

`j(r)d2

dr2ri = (i 1/2) i = 1, 2, ...

u00(ri) = [u(ri+1) + u(ri1) 2u(ri)]/2

u00(r1) = [u(r2) + u(r0) 2u(r1)]/2

±1 ) u(r) = ±u(r)

u00(r1) = [u(r2) u(r1)]/2 ) +

u00(r1) = [u(r2) 3u(r1)]/2 )

Page 7: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Propagator• Same discretization

• Use matrix inversion now • Then spectral amplitude

• Spectral function

• and so on

G`j(r, r0;E) = G(0)

`j (r, r0;E) +

Zdr r2

Zdr0 r02G(0)

`j (r, r;E)`j(r, r0;E)G`j(r

0, r0;E)

S`j(r, r0;E) =

1

Im G`j(r, r

0;E)

S`j(r;E) =1

Im G`j(r, r;E)

Page 8: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Recent local DOM analysis --> towards

global0 50 100 150

R

uth

!/!

−210

1

210

410

610

810

1010

Sn112p+

Sn114p+

Sn116p+

0 50 100 150

Sn118p+

<10 MeVlabE

<20 MeVlab

10<E

<40 MeVlab

20<E

<100 MeVlab

40<E

0 50 100 150

Sn120

p+

0 50 100 150

Sn122p+

Sn124p+

[deg]cm"

0 50 100 150

#/d

!d

10

410

710

1010

1310

1510

Sn116n+

Sn118n+

0 50 100 150

Sn120n+

Sn124n+

0 50 100 150

#/d

!d

410

910

1410

1910

2410

Pb208n+

0 50 100 150

Pb208n+

[deg]cm"

[deg]cm"

0 50 100 150

R

uth

!/!

210

710

1210

1710

2210

2510

Pb208

p+

J. Mueller et al. PRC83,064605 (2011), 1-32

Page 9: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Elastic scattering data for protons and neutrons• Abundant for stable targets

[deg]cmθ0 50 100 150

Ω/d

σd

310

810

1310

1810

2310Fe54n+

0 50 100 150

Ω/d

σd

210

610

1010

1410

1810

2210

Ca40n+

0 50 100 150

Ca40n+

Ca48n+

[deg]cmθ0 50 100 150

1

210

410

610

810

1010

Mo92n+

0 50 100 150

210

510

810

1110

1410

1710

Ni58n+

0 50 100 150

Ni60n+

0 50 100 150

R

uth

σ/σ

210

710

1210

1710

2210

2510

Ca40p+

0 50 100 150

Ca42p+

Ca44p+

0 50 100 150

Ca48p+

<10 MeVlabE

<20 MeVlab10<E

<40 MeVlab20<E<100 MeVlab40<E

>100 MeVlabE

0 50 100 150

Rut

hσ/

σ

10

510

910

1310

1710

1910

Ni58p+

0 50 100 150

Ni60p+

0 50 100 150

Ni62p+

0 50 100 150

Ni64p+

<10 MeVlabE

<20 MeVlab10<E

<40 MeVlab20<E

<100 MeVlab40<E

0 50 100 150

R

uth

σ/σ

1

310

610

910

1210

1510

Fe54p+

0 50 100 150

Cr52p+

Ti50p+

[deg]CMθ0 50 100 150

210

710

1210

1710

2210

2610

Zr90p+

0 50 100 150

Mo92p+

[deg]cmθ

Page 10: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Local DOM ingredients and transfer reactions• Overlap function

• p and n optical potential

• ADWA (developed by Ron Johnson)

• MSU-WashU:-->

• 40,48Ca,132Sn,208Pb(d,p)

E 2 13

19.3 56

CH+ws

0.94 0.82 0.77 1.1

DOM

0.72 0.67 0.68 0.70

N. B. Nguyen, S. J. Waldecker, F. M. Nuñes, R. J. Charity, and W. H. Dickhoff

Phys. Rev. C84, 044611 (2011), 1-9

“SPECTR

OSC

OPIC

FACTO

RS”

Page 11: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

132Sn(d,p)• Does it work when the potentials are extrapolated?

• Data: K.L. Jones et al., Nature 465, 454 (2010)

• Ed = 9.46 MeV 132Sn(d,p)133Sn

• CH89+ws --> S1f7/2 =1.1

• DOM --> S1f7/2 =0.72

Page 12: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Propagator in principle generates• Elastic scattering cross sections for p and n

• Including all polarization observables

• Total cross sections for n

• Reaction cross sections for p and n

• Overlap functions for adding p or n to bound states in Z+1 or N+1

• Plus normalization --> spectroscopic factor

• Overlap function for removing p or n with normalization

• Hole spectral function including high-momentum description

• One-body density matrix; occupation numbers; natural orbits

• Charge density

• Neutron distribution

• p and n distorted waves

• Contribution to the energy of the ground state from VNN

Page 13: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

Understanding/Calculating Self-energy

DOM improvements

• Replace local energy-dependent HF potential by non-local (energy-independent potential) in order to calculate more properties below the Fermi energy like the charge density and spectral functions --> PRC82, 054306 (2010)

DOModel --> DOMethod-->DSelf-energyMethod

Page 14: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

Understanding/Calculating Self-energy

40Ca spectral functionRecent theoretical development: nonlocal “HF” self-energy --> below the Fermi energy WD, Van Neck, Charity, Sobotka, Waldecker, PRC82, 054306 (2010)

Old (p,2p) data from Liverpool

Below εF

Page 15: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

Understanding/Calculating Self-energy

Spectral functions and momentum distributions• 40Ca

0 1 2 3 4 5

k [fm-1

]

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

S(k

;E)

[MeV

-1 f

m3] s

1/2

0 1 2 3 4 5

k [fm-1

]

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

S(k

;E)

[MeV

-1 f

m3] d

3/2

0 1 2 3 4 5

k [fm-1

]

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

n(k

) [f

m3]

0 1 2 3 4 5

k [fm-1

]

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

k2 n

(k)

[fm

]

PRC 82, 054306 (2010)

Page 16: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

Nucleon correlations

Charge density

Not a good reproduction of charge density even though mean square radius was fitted.

Related to local representation of the imaginary part of the self-energy --> independent of angular momentum --> must be abandoned to represent particle number correctly as well.

Page 17: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

Understanding/Calculating Self-energy

DOM extensions linked to ab initio FRPA

• Employ microscopic FRPA calculations of the nucleon self-energy to gain insight into future improvements of the DOM -->

• FRPA = Faddeev RPA --> Barbieri for a recent application see e.g. PRL103,202502(2009)

• Most important conclusions – Ab initio self-energy has imaginary part with a substantial non-locality

– Tensor force already operative for low-energy imaginary part

– Absorption above and below Fermi energy not symmetric

Phys. Rev. C84, 034616 (2011), 1-11S. J. Waldecker, C. Barbieri and W. H. Dickhoff

Page 18: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

Understanding/Calculating Self-energy

Volume integrals from microscopic FRPA relevant up to ~ 75 MeV

Volume integral for local imaginary potentials

Microscopic potentials: nonlocal --> depend strongly on l Here averaged

JW (E) = 4

Zdr r2 W (r, E)

Page 19: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

Understanding/Calculating Self-energy

Tensor force

Page 20: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

Understanding/Calculating Self-energy

Comparison with DOM for 40,48Ca

0

100

200

-100 0 100 200E - EF [MeV]

0

100

200

| JW

/ A

| [M

eV fm

3 ]

40Ca (p)

48Ca (p)

Page 21: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

DOM extensions linked to ab initio treatment of SRC

• Employ microscopic calculations of the nucleon self-energy to gain insight into future improvements of the DOM -->

• CDBonn --> self-energy in momentum space for 40Ca • Most important conclusions

– Volume absorption below the Fermi energy is also nonlocal

– Reaction cross section comparable with DOM above ~ 80 MeV

H. Dussan, S. J. Waldecker, W. H. Dickhoff, H. Müther, and A. PollsPhys. Rev. C84, 044319 (2011), 1-16

Page 22: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

Understanding/Calculating Self-energy

Ab initio with CDBonn for 40Ca

• Dussan et al. PRC84, 044319 (2011); spectral functions available

0 1 2 3 4 5

k [fm-1

]

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

k2n(k

) [f

m]

DOM

CDBonn

4

Zdk k2 n(k) = 1

Page 23: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

Understanding/Calculating Self-energy

Non-locality of imaginary part• Fit non-local imaginary part for =0

• Integrate over one radial variable

• Predict volume integrals for higher Parameters

WNL(r, r0) = W0

pf(r)

pf(r0)H

r r0

`

`

Page 24: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

Understanding/Calculating Self-energy

Ab initio description of elastic scattering• Must be done much better

0.001

0.01

0.1

1

10

100

1000

0 20 40 60 80 100 120 140 160 180

/Ω [

mb

/sr]

θc.m. [deg]

Elab=95 MeV

Full DOM

0.001

0.01

0.1

1

10

100

1000

0 20 40 60 80 100 120 140 160 180

/Ω [

mb

/sr]

θc.m. [deg]

Elab=65 MeV

Full DOM

0.1

1

10

100

1000

0 20 40 60 80 100 120 140 160 180

/Ω [

mb

/sr]

θc.m. [deg]

Elab=26 MeVFull DOM

1

10

100

1000

0 20 40 60 80 100 120 140 160 180

/Ω [

mb/s

r]

θcm [deg]

Elab=11 MeV

DOM full

Page 25: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

Understanding/Calculating Self-energy

Ab initio calculation of elastic scattering n+40Ca

• ONLY treatment of short-range and tensor correlations

DOM & data

DOM l≤4

CDBonn l≤4

Page 26: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

DOM predictions

• Use non-local “HF” potential and dispersive DOM potential to extrapolate to unstable Sn isotopes and predict (e.g.) properties of the last proton (based on the analysis of elastic scattering data on STABLE Sn nuclei)

Page 27: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Asymmetry dependence of imaginary potentials

• Volume –> small asymmetry dependence determined in 208Pb

• Neutron surface –> no strong dependencies on A or (N-Z)/A

• Proton surface absorption –> increases with increasing neutron number

Wvolume = W 0volume ±

N Z

AW 1

volume

W [

MeV

]

0

5

10

15Ca

48(a)

[MeV]FE−E−100 0 100 200

W [

MeV

]

0

5

10

15Ca

40(d)

Sn124(b) p

n

[MeV]FE−E−100 0 100 200

Sn116

(e)

volumesurface

[MeV]FE−E−100 0 100 200

Pb208

(c)

[MeV]FE−E−100 0 100 200

Mo92

(f)

Page 28: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Last proton in Sn nuclei (g9/2)Spectral function for different Sn isotopes

Sn 102 106 112 124 130 132

S 0.80 0.68 0.63 0.50 0.48 0.56

n 0.91 0.85 0.83 0.78 0.78 0.81

Page 29: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

People involved

Wim Dickhoff Bob Charity

Lee Sobotka Helber Dussan Seth Waldecker Hossein Mahzoon Dong Ding

Carlo Barbieri, Surrey Arnau Rios, Surrey Arturo Polls, Barcelona Dimitri Van Neck, Ghent Herbert Müther, Tübingen

N.B. Nguyen & F. Nuñes

Page 30: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Dispersive Optical Model• Claude Mahaux 1980s

– connect traditional optical potential to bound-state potential

– crucial idea: use the dispersion relation for the nucleon self-energy

– smart implementation: use it in its subtracted form

– applied successfully to 40Ca and 208Pb in a limited energy window

– employed traditional volume and surface absorption potentials and a local energy-dependent Hartree-Fock-like potential

– Reviewed in Adv. Nucl. Phys. 20, 1 (1991)

• Radiochemistry group at Washington University in St. Louis: Charity and Sobotka propose to use it for a sequence of Ca isotopes —> data-driven extrapolations to the drip line - First results 2006 PRL

- Subsequently —> attention to data below the Fermi energy related to ground-state properties —> Dispersive Self-energy Method (DSM)

Page 31: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Optical potential <--> nucleon self-energy• e.g. Bell and Squires --> elastic T-matrix = reducible self-energy • Mahaux and Sartor

– relate dynamic (energy-dependent) real part to imaginary part

– employ subtracted dispersion relation

General dispersion relation for self-energy:

Calculated at the Fermi energy

Subtract

F = 12

(EA+1

0 EA0 ) + (EA

0 EA10 )

Re (E) = HF 1

PZ 1

E+T

dE0 Im (E0)

E E0 +1

PZ E

T

1dE0 Im (E0)

E E0

Re (F ) = HF 1

PZ 1

E+T

dE0 Im (E0)

F E0 +1

PZ E

T

1dE0 Im (E0)

F E0

Re (E) = Re gHF (F )

1

(F E)P

Z 1

E+T

dE0 Im (E0)

(E E0)(F E0)+

1

(F E)P

Z ET

1dE0 Im (E0)

(E E0)(F E0)

Adv. Nucl. Phys. 20, 1 (1991)

Page 32: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Nonlocal DOM implementation PRL112,162503(2014)

• Particle number --> nonlocal imaginary part • Microscopic FRPA & SRC --> different nonlocal properties above

and below the Fermi energy • Include charge density in fit • Describe high-momentum nucleons <--> (e,e’p) data from JLab

Implications

• Changes the description of hadronic reactions because interior nucleon wave functions depend on non-locality

• Consistency test of the interpretation of (e,e’p) possible • Independent “experimental” statement on size of three-body

contribution to the energy of the ground state--> two-body only:

E/A =1

2A

X

`j

(2j + 1)

Z 1

0dkk2

k2

2mn`j(k) +

1

2A

X

`j

(2j + 1)

Z 1

0dkk2

Z "F

1dE ES`j(k;E)

Page 33: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Differential cross sections and analyzing powers

0 50 100 150

A0

5

10

15

20

25

Ca40p+

0 50 100 150

Ca40n+

[deg]cmθ

0 50 100 150

[mb/

sr]

Ω/d

σd

510

1210

1910

2610

3310Ca40n+

< 10lab 0 < E < 20lab10 < E < 40lab20 < E < 100lab40 < E

> 100labE

0 50 100 150

Ca40p+

[deg]cmθ

Page 34: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Reaction (p&n) and total (n) cross sections

[MeV]LabE0 50 100 150 200

[mb]

σ

0

1000

2000

3000

4000

Ca40n+

totσreactσ

[mb]

σ

0

500

1000

1500

Ca40p+

totσ

Page 35: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

Nonlocal imaginary self-energy: proton number --> 19.88 neutron number -> 19.79 S0d3/2= 0.76 S1s1/2 = 0.78 0.15 larger than NIKHEF analysis!

` 5

reactions and structure

40Ca spectral function

Old (p,2p) data from Liverpool or (e,e’p) from Saclay

Below εF

-140 -120 -100 -80 -60 -40 -20 0

-310

-210

-110

1

1/2s

-140 -120 -100 -80 -60 -40 -20 0

1/2p

-140 -120 -100 -80 -60 -40 -20 0

]-1

Spec

tral

func

tion[

MeV

-310

-210

-110

1

3/2d

-140 -120 -100 -80 -60 -40 -20 0

3/2p

E [MeV]-140 -120 -100 -80 -60 -40 -20 0

-310

-210

-110

1

5/2d

E [MeV]-140 -120 -100 -80 -60 -40 -20 0

7/2f

Not part of fit!!

Page 36: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Correlations from nuclear reactions

Different optical potentials --> different reduction factors for transfer reactions Spectroscopic factors > 1 ??? PRL 93, 042501 (2004) HI PRL 104, 112701 (2010) Transfer

(e,e’p)

Recent summary —> Jenny Lee

Different reactions different results???

In (e,e’p) proton still has to get out of the nucleus —> optical potential Nucl. Phys. A553,297c (1993)

Consistency study in progress

Linking nuclear reactions and nuclear structure —> DOM

Page 37: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

• Extracting information on correlations beyond the independent particle model requires optical potentials in (e,e’p), (d,p),(p,d),(p,pN), etc.

• Quality of ab initio to describe elastic scattering or optical potentials should be improved substantially and urgently

Linking nuclear reactions and nuclear structure

Coupled cluster calculation using overlap functions PRC86,021602(R)(2012) Probably limited to low energy

Green’s function result —> optical potential with emphasis on SRC only PRC84,044319(2011)

40Ca

Page 38: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

High-momentum protons have been seen in nuclei!Jlab E97-006 Phys. Rev. Lett. 93, 182501 (2004) D. Rohe et al.

12C

• Location of high-momentum components • Integrated strength agrees with theoretical prediction Phys. Rev. C49, R17 (1994)

⇒ ~0.6 protons for 12C ⇒ ~10%

Page 39: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

High-momentum componentsRohe, Sick et al. JLab data for Al and Fe (e,e’p) per proton

0 0.1 0.2 0.3 0.4 0.5Em [GeV]

10-14

10-13

10-12

10-11S no

rm( E

m, p

m )

[MeV

-4sr

-1] 0.650

0.5700.4900.4100.3300.250

pm (GeV / c)

Page 40: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Jefferson Lab data per proton• Pion/isobar contributions cannot be described • Rescattering contributes some cross section (Barbieri, Lapikas)

[MeV]mE0 100 200 300 400 500

]-1

sr

-4) [

MeV

m,p

mS(

E

-1410

-1310

-1210

-1110

-1010= 250 [MeV/c]mp= 330 [MeV/c]mp= 410 [MeV/c]mp= 490 [MeV/c]mp= 570 [MeV/c]mp= 650 [MeV/c]mp

Page 41: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

0 2 4 6

r [fm]

0

0.02

0.04

0.06

0.08

0.1

0.12

!ch(r

) [f

m-3

]

Local version Charge density 40Ca radius correct… Non-locality essential PRC82,054306(2010) PRL112,162503(2014)

High-momentum nucleons —> JLab can also be described —> E/A

reactions and structure

Critical experimental data

r [fm]0 2 4 6 8

]-3

[fm

ρ

0

0.02

0.04

0.06

0.08

0.1experimentcalculated

Page 42: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Historical perspective...• The following authors identify the single-particle propagator (or

self-energy) as central quantities in many-body systems

• but apart from qualitative features, they don’t answer what it looks like for a real system like a nucleus!

Abrikosov, Gorkov, Dzyaloshinski (Methods of Quantum Field Theory in Statistical Physics, 1963 Dover Revised edition 1975),

Pines (The Many-body Problem, 1961 Addison Wesley reissued 1997),

Nozieres (Theory of Interacting Fermi Systems, 1964 Addison-Wesley reissued 1997),

Thouless (The Quantum Mechanics of Many-body Systems, 1972 Dover reissue of second edition, 2014),

Anderson (Concepts in Solids, Benjamin 1963; World Scientific reissued 1998),

Schrieffer (Theory of Superconductivity, 1964 Benjamin revised 1983),

Migdal (Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Interscience, 1967),

Fetter and Walecka (Quantum Theory of Many-particle Systems, 1971 Dover reissued 2003)

Page 43: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Energy of the ground state• Energy sum rule (Migdal, Galitski & Koltun)

• Not part of fit because it can only make a statement about the two-body contribution

• Result: – DOM ---> 7.91 MeV/A T/A ---> 22.64 MeV/A

– 10% of particles (momenta > 1.4 fm-1) provide ~⅔ of the binding energy!

– Exp. 8.55 MeV/A

– Three-body ---> 0.64 MeV/A “attraction” —> 1.28 MeV/A “repulsion”

– Argonne GFMC ~ 1.5 MeV/A attraction for three-body <--> Av18

E/A =1

2A

X

`j

(2j + 1)

Z 1

0dkk2

k2

2mn`j(k) +

1

2A

X

`j

(2j + 1)

Z 1

0dkk2

Z "F

1dE ES`j(k;E)

EN0 = h N

0 | H | N0 i

=1

2

Z "F

1dE

X

↵,

h↵|T |i+ E ↵, Im G(,↵;E) 1

2h N

0 | W | N0 i

with three-body interaction

Page 44: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Do elastic scattering data tell us about correlations? • Scattering T-matrix

• Free propagator

• Propagator

• Spectral representation

• Spectral density at positive energy

• Coordinate space

• Elastic scattering explicit

`j(k, k0;E) =

`j(k, k0;E) +

Zdqq2

`j(k, q;E)G(0)(q;E)`j(q, k0;E)

G(0)(q;E) =1

E ~2q2/2m+ i

Gp`j(k, k

0;E) =X

n

n+`j (k)

hn+`j (k0)

i

E EA+1n + i

+X

c

Z 1

Tc

dE0cE0

`j (k)hcE0

`j (k0)i

E E0 + i

G`j(k, k0;E) =

(k k0)

k2G(0)(k;E) +G(0)(k;E)`j(k, k

0;E)G(0)(k;E)

Sp`j(r, r

0;E) =X

c

cE`j (r)

cE`j (r

0)

elE`j (r) =

2mk0~2

1/2 j`(k0r) +

Zdkk2j`(kr)G

(0)(k;E)`j(k, k0;E)

Sp`j(k, k

0;E) =i

2

hGp

`j(k, k0;E+)Gp

`j(k, k0;E)

i=

X

c

cE`j (k)

cE`j (k

0)

Page 45: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

How is it done?• Solve

• with

• See discussion by Arturo Polls • Note: irreducible self-energy is a complex quantity • Cross section as shown in first lecture

`j(k, k0;E) =

`j(k, k0;E) +

Zdqq2

`j(k, q;E)G(0)(q;E)`j(q, k0;E)

G(0)(q;E) =1

E ~2q2/2m+ i

Page 46: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

QMPT 540

Elastic nucleon scattering• Scattering from potential

• Potential real —> phase shift real

• Scattering amplitude

• Elastic nucleon scattering – Involves reducible self-energy (see also later)

– Scattering amplitude

– Phase shift now includes imaginary part when potential is absorptive

hk0| S`j(E) |k0i e2i`j = 1 2i

mk0~2

hk0|`j(E) |k0i

k0|S(E)|k0 =1 2i

mk0

2

k0|T (E)|k0

e2i

fm0s,ms(,) = 4m2

~2 hk0m0s|(E)|kmsi

f(,) =

l

2l + 1k0

mk0

2

k0|T (E)|k0P(cos )

=

2 + 1k0

ei sin P(cos )

Page 47: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

QMPT 540

Spin-orbit physics included• Scattering amplitude

• Rewrite – with

– then

– Unpolarized differential cross section

fm0s,ms(,) = 4m2

~2 hk0m0s|(E)|kmsi

[f(,)] = F()I + · nG()

F() =1

2ik

1X

`=0

(`+ 1)

e2i`+ 1

+ `

e2i` 1

P`(cos )

G() = sin

2k

1X

`=1

e2i`+ e2i`

P 0`(cos )

d

d

unpol

= |F|2 + |G|2

n =k k0

|k k0| =k k0

sin

Page 48: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

0

50

1000 1 2 3 4 5 6 7

0

0.05

0.1

0.15

0.2

0.25

r [fm]

E [MeV]

S −

|χ |2 [

MeV

−1 fm

−1]

• Inelastically! • Zero when there is no absorption!

reactions and structure

Adding an s1/2 neutron to 40Ca

Multiplied by r2

Page 49: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

d3/2

• One node now

0

50

1000 1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

r [fm]

l = 2

E [MeV]

S−| χ

|2 [MeV

−1 fm

−1]

Page 50: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

No nodes• Asymptotically determined by inelasticity

0

50

100

150 0 1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

0.6

r [fm]

l = 4 ( g92)

E [MeV]

S −

| χ

|2 [M

eV−1

fm−1

]

Page 51: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Determine location of bound-state strength• Fold spectral function with bound state wave function

• —> Addition probability of bound orbit • Also removal probability

• Overlap function

• Sum rule

Sn+`j (E) =

Zdr r2

Zdr0 r02n

`j (r)Sp`j(r, r

0;E)n`j (r0)

Sn`j (E) =

Zdrr2

Zdr0r02n

`j (r)Sh`j(r, r

0;E)n`j (r0)

qSn`j

n`j (r) = h A1

n | ar`j | A0 i

1 = nn`j + dn`j=

Z "F

1dE Sn

`j (E)+

Z 1

"F

dE Sn`j (E)

Page 52: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Spectral function for bound states• [0,200] MeV —> constrained by elastic scattering data

-100 -50 0 50 100

E [MeV]

10-4

10-3

10-2

10-1

100

Sn(E

) [M

eV-1

]0s

1/2

0p3/2

0p1/2

0d5/2

0d3/2

1s1/2

0f7/2

0f5/2

εF

40Ca

proton number --> 19.88 neutron number -> 19.79 S0d3/2= 0.76 S1s1/2 = 0.78 0.15 larger than NIKHEF analysis!

PRC90, 061603(R) (2014)

Page 53: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Compared with ab initio —> SRC only• CDBonn probably too soft • SRC relevant at higher energy

0 20 40 60 80 100 120 140 160 180 200E [MeV]

10-4

10-3

10-2

Sn(E

) [

MeV

-1]

0s1/2

0p3/2

0p1/2

0d5/2

0d3/2

1s1/2

DOM

CDBonn

PRC90, 061603(R) (2014)

Page 54: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

• Orbit closer to the continuum —> more strength in the continuum

• Note “particle” orbits

• Drip-line nuclei have valence orbits very near the continuum

reactions and structure

Quantitatively

Table 1: Occupation and depletion numbers for bound orbits in 40Ca.dnlj [0, 200] depletion numbers have been integrated from 0 to 200 MeV. Thefraction of the sum rule that is exhausted, is illustrated by nn`j + dn`j ["F , 200].Last column dnlj [0, 200] depletion numbers for the CDBonn calculation.

orbit nn`j dn`j [0, 200] nn`j + dn`j ["F , 200] dn`j [0, 200]DOM DOM DOM CDBonn

0s1/2 0.926 0.032 0.958 0.0350p3/2 0.914 0.047 0.961 0.0361p1/2 0.906 0.051 0.957 0.0380d5/2 0.883 0.081 0.964 0.0401s1/2 0.871 0.091 0.962 0.0380d3/2 0.859 0.097 0.966 0.0410f7/2 0.046 0.202 0.970 0.0340f5/2 0.036 0.320 0.947 0.036

PRC90, 061603(R) (2014)

Page 55: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Neutron spectral function in 48Ca• Neutrons in 48Ca less correlated <-> 40Ca but qualitatively similar

Preliminar

y!

Page 56: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Proton spectral function in 40Ca• Learning how to deal with Coulomb in momentum space

Preliminar

y!

Page 57: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Protons in 48Ca• Protons in 48Ca more correlated than in 40Ca

Preliminar

y!

Page 58: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Quantitative comparison of 40Ca and 48Ca

Spectroscopic factors

40Ca p 48Ca n 48Ca

0d3/2 0.76 0.65 ↓ 0.80 ↑

1s1/2 0.78 0.71 ↓ 0.83 ↑

0f7/2 0.73 0.59 ↓ 0.84 ↑

Page 59: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Comparison for d3/2 and s1/2 protons

d3/2

Page 60: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

In progress• 48Ca —> charge density has been measured • Recent neutron elastic scattering data —> PRC83,064605(2011) • Local DOM OLD Nonlocal DOM NEW

0 50 100 150

Ω/d

σd

510

1210

1910

2610

3310Ca48n+

0 < Elab < 1010 < Elab < 2020 < Elab < 4040 < Elab < 100Elab > 100

0 50 100 150

Ca48p+

[deg]cmθ

Page 61: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

0 2 4 6 8r [fm]

0

0.02

0.04

0.06

0.08

0.1

ρ

DOM p-foldedExp chargeDOM n-folded

48Ca

reactions and structure

Results for 48Ca• Density distributions • DOM —> neutron distribution —> Rn-Rp

0 2 4 6 80

0.02

0.04

0.06

0.08Neutron matter distributionDOMExperiment

48Ca nuclear charge distribution

r [fm]

Page 62: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

48Ca Densities

Eur. Phys. J. A (2014) C.J. Horowitz, K.S. Kumar, and R. Michaels

DOM 0.249±0.023

Page 63: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Rn-Rp for 48Ca

• Charge density for 40Ca • Charge density for 48Ca • Neutrons in 40Ca well constrained • 8 extra neutrons in 48Ca constrained by new elastic scattering

data at low energy and total cross sections up to 200 MeV, level structure, and particle number

• neutron skin “large” • neutron distribution smooth like the charge density

Question • How important is the “straightjacket effect” for the relation

between the slope of the symmetry energy and Rn-Rp?

Page 64: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Page 65: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Hagen et al. based on PRL109,032502(2012)• Coupled-cluster ab initio

• Chiral forces have limitations

• Coupled-cluster method also

• 48Ca

Page 66: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Can we get L from the DOM?• Perhaps…

• We could calculate energy density as a function of r for both nuclei…

• Identify the normal density part from the interior…

0 2 4 6 80

0.02

0.04

0.06

0.08Neutron matter distributionDOMExperiment

48Ca nuclear charge distribution

40Ca 48Ca

Page 67: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Mean-field for 208Pb neutrons B. Shufang, C J Horowitz and R Michaels J. Phys. G: Nucl. Part. Phys. 39 (2012) 015104

Page 68: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

Conclusions• It is possible to link nuclear reactions and nuclear structure • Vehicle: nonlocal version of Dispersive Optical Model (Green’s

function method) pioneered by Mahaux —> DSM • Can be used as input for analyzing nuclear reactions • Can predict properties of exotic nuclei • “Benchmark” for ab initio calculations: e.g. VNNN —> binding • Can describe ground-state properties

– charge density & momentum distribution

– spectral properties including high-momentum Jefferson Lab data

• Elastic scattering determines depletion of bound orbitals

• Outlook: reanalyze many reactions with nonlocal potentials... • For N ≷ Z exhibits sensitivity to properties of neutrons —> weak

charge —> neutron skin and perhaps more

Page 69: Why do Green’s functions? - GitHub Pagesnucleartalent.github.io/Course2ManyBodyMethods/doc/pub/... · 2015. 7. 29. · reactions and structure Elastic scattering data for protons

reactions and structure

M. van Batenburg & L. Lapikás from 208Pb (e,e´p) 207Tl NIKHEF 2001 data (one of the last experiments)

Up to 100 MeV missing energy and 270 MeV/c missing momentum

Covers the whole mean-field domain!!

Occupation of deeply-bound proton levels from EXPERIMENT

Confirms predictions for depletion

SRC LRC

n(0) ⇒ 0.85 Reid 0.87 Argonne V18 0.89 CDBonn/N3LO

Nuclear matter