widespread occurrence and genetic diversity of marine...

17
Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata) L. Guillou, 1 * M. Viprey, 1 A. Chambouvet, 1 R. M. Welsh, 2 A. R. Kirkham, 3 R. Massana, 4 D. J. Scanlan 3 and A. Z. Worden 2 1 Station Biologique de Roscoff, UMR7144, CNRS et Université Pierre et Marie Curie, BP74, 29682 Roscoff Cedex, France. 2 Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA. 3 Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK. 4 Institut de Ciències del Mar, CMIMA, Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain. Summary Syndiniales are a parasitic order within the eukaryotic lineage Dinophyceae (Alveolata). Here, we analysed the taxonomy of this group using 43655 18S rRNA gene sequences obtained either from environmental data sets or cultures, including 6874 environmental sequences from this study derived from Atlantic and Mediterranean waters. A total of 5571 out of the 43655 sequences analysed fell within the Dinophyceae. Both bayesian and maximum likelihood phylogenies placed Syndiniales in five main groups (I–V), as a monophyletic lineage at the base of ‘core’ dinoflagel- lates (all Dinophyceae except Syndiniales), although the latter placement was not bootstrap supported. Thus, the two uncultured novel marine alveolate groups I and II, which have been highlighted previ- ously, are confirmed to belong to the Syndiniales. These groups were the most diverse and highly represented in environmental studies. Within each, 8 and 44 clades were identified respectively. Co-evolutionary trends between parasitic Syndiniales and their putative hosts were not clear, suggesting they may be relatively ‘general’ parasitoids. Based on the overall distribution patterns of the Syndiniales- affiliated sequences, we propose that Syndiniales are exclusively marine. Interestingly, sequences belong- ing to groups II, III and V were largely retrieved from the photic zone, while Group I dominated samples from anoxic and suboxic ecosystems. Nevertheless, both groups I and II contained specific clades prefer- entially, or exclusively, retrieved from these latter ecosystems. Given the broad distribution of Syndini- ales, our work indicates that parasitism may be a major force in ocean food webs, a force that is neglected in current conceptualizations of the marine carbon cycle. Introduction The Alveolata, one of the major eukaryotic lineages, is composed of four protist classes: the Ciliophora, the Apicomplexa, the Perkinsea and the Dinoflagellata. Alveolata have adopted a large range of trophic modes and habitats. They can be important marine primary producers. For instance, about half of dinoflagellates are photosynthetic (Lessard and Swift, 1986), with some being responsible for toxic algal blooms. Ciliates and dinoflagellates can also be active predators; others are coral symbionts (e.g. the dinoflagellate Symbiodinium spp.) and some ciliates even reside in mammalian guts (Williams and Coleman, 1992). Finally, a large number of species are parasites, broadly distributed throughout these Alveolata classes. For instance, Apicomplexa is composed solely of obligate parasites. In addition to phy- logenetic relatedness based on gene sequence compari- sons, Alveolata are unified by specific morphological characters. These include the presence of membrane- bound flattened vesicles, termed alveoli (Cavalier-Smith, 1993; Patterson, 1999), distinct pores called micropores that pierce the outer membrane and the presence of a more or less developed apical complex apparatus used by alveolate parasites to enter their host (reviewed by Leander and Keeling, 2003). The discovery of novel marine alveolate (MALV) lin- eages in marine planktonic communities by culture- independent techniques, specifically MALV groups I and II (Díez et al., 2001a; López-García et al., 2001; Moon-van der Staay et al., 2001), has raised questions regarding functional roles of these diverse populations. Phyloge- netic analyses showed MALV Group II belongs to the Syndiniales, a dinoflagellate order exclusively composed of marine parasites. This assignment was based on the close phylogenetic relatedness of the environmental 18S Received 17 April, 2008; accepted 29 June, 2008. *For correspondence. E-mail [email protected]; Tel. (+33) 2 98 29 23 79; Fax (+33) 2 98 29 23 24. Environmental Microbiology (2008) 10(12), 3349–3365 doi:10.1111/j.1462-2920.2008.01731.x Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd No claim to original French government works

Upload: others

Post on 03-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Widespread occurrence and genetic diversity of marineparasitoids belonging to Syndiniales (Alveolata)

    L. Guillou,1* M. Viprey,1 A. Chambouvet,1

    R. M. Welsh,2 A. R. Kirkham,3 R. Massana,4

    D. J. Scanlan3 and A. Z. Worden21Station Biologique de Roscoff, UMR7144, CNRS etUniversité Pierre et Marie Curie, BP74, 29682 RoscoffCedex, France.2Monterey Bay Aquarium Research Institute, 7700Sandholdt Road, Moss Landing, CA 95039, USA.3Department of Biological Sciences, University ofWarwick, Coventry CV4 7AL, UK.4Institut de Ciències del Mar, CMIMA, Passeig Marítimde la Barceloneta 37-49, 08003 Barcelona, Catalonia,Spain.

    Summary

    Syndiniales are a parasitic order within the eukaryoticlineage Dinophyceae (Alveolata). Here, we analysedthe taxonomy of this group using 43655 18S rRNAgene sequences obtained either from environmentaldata sets or cultures, including 6874 environmentalsequences from this study derived from Atlantic andMediterranean waters. A total of 5571 out of the 43655sequences analysed fell within the Dinophyceae.Both bayesian and maximum likelihood phylogeniesplaced Syndiniales in five main groups (I–V), as amonophyletic lineage at the base of ‘core’ dinoflagel-lates (all Dinophyceae except Syndiniales), althoughthe latter placement was not bootstrap supported.Thus, the two uncultured novel marine alveolategroups I and II, which have been highlighted previ-ously, are confirmed to belong to the Syndiniales.These groups were the most diverse and highlyrepresented in environmental studies. Within each,8 and 44 clades were identified respectively.Co-evolutionary trends between parasitic Syndinialesand their putative hosts were not clear, suggestingthey may be relatively ‘general’ parasitoids. Based onthe overall distribution patterns of the Syndiniales-affiliated sequences, we propose that Syndiniales areexclusively marine. Interestingly, sequences belong-ing to groups II, III and V were largely retrieved from

    the photic zone, while Group I dominated samplesfrom anoxic and suboxic ecosystems. Nevertheless,both groups I and II contained specific clades prefer-entially, or exclusively, retrieved from these latterecosystems. Given the broad distribution of Syndini-ales, our work indicates that parasitism may be amajor force in ocean food webs, a force that isneglected in current conceptualizations of the marinecarbon cycle.

    Introduction

    The Alveolata, one of the major eukaryotic lineages, iscomposed of four protist classes: the Ciliophora, theApicomplexa, the Perkinsea and the Dinoflagellata.Alveolata have adopted a large range of trophic modesand habitats. They can be important marine primaryproducers. For instance, about half of dinoflagellates arephotosynthetic (Lessard and Swift, 1986), with somebeing responsible for toxic algal blooms. Ciliates anddinoflagellates can also be active predators; others arecoral symbionts (e.g. the dinoflagellate Symbiodiniumspp.) and some ciliates even reside in mammalian guts(Williams and Coleman, 1992). Finally, a large number ofspecies are parasites, broadly distributed throughoutthese Alveolata classes. For instance, Apicomplexa iscomposed solely of obligate parasites. In addition to phy-logenetic relatedness based on gene sequence compari-sons, Alveolata are unified by specific morphologicalcharacters. These include the presence of membrane-bound flattened vesicles, termed alveoli (Cavalier-Smith,1993; Patterson, 1999), distinct pores called microporesthat pierce the outer membrane and the presence of amore or less developed apical complex apparatus usedby alveolate parasites to enter their host (reviewed byLeander and Keeling, 2003).

    The discovery of novel marine alveolate (MALV) lin-eages in marine planktonic communities by culture-independent techniques, specifically MALV groups I and II(Díez et al., 2001a; López-García et al., 2001; Moon-vander Staay et al., 2001), has raised questions regardingfunctional roles of these diverse populations. Phyloge-netic analyses showed MALV Group II belongs to theSyndiniales, a dinoflagellate order exclusively composedof marine parasites. This assignment was based on theclose phylogenetic relatedness of the environmental 18S

    Received 17 April, 2008; accepted 29 June, 2008. *Forcorrespondence. E-mail [email protected]; Tel. (+33) 2 98 29 2379; Fax (+33) 2 98 29 23 24.

    Environmental Microbiology (2008) 10(12), 3349–3365 doi:10.1111/j.1462-2920.2008.01731.x

    Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing LtdNo claim to original French government works

    mailto:[email protected]

  • rRNA gene sequences (Moon-van der Staay et al., 2001;Skovgaard et al., 2005) with three previously describedgenera: Amoebophrya spp., Hematodinium spp. and Syn-dinium spp. More recently, 18S rRNA gene sequencesderived from Ichthyodinium chaberladi (Gestal et al.,2006) and Duboscquella sp. (Harada et al., 2007), twoparasitic Syndiniales genera, showed an affiliation withMALV Group I.

    MALV groups I and II have been retrieved from variousmarine habitats, mainly from the picoplankton fraction (< 2or < 3 mm size fractionated samples). These groups fre-quently form the majority of sequences within marineenvironmental clone libraries (see López-García et al.,2001; Moon-van der Staay et al., 2001; Massana et al.,2004; Romari and Vaulot, 2004; Not et al., 2007). This hasled to a large increase in the number of MALV sequencesdeposited in GenBank over the last few years. In a previ-ous study, Groisillier and colleagues (2006) detected fivedistinct clades within MALV Group I, and 16 clades withinMALV Group II. However, in that study, many sequencescould not be clearly assigned to a specific clade, suggest-ing further discrete lineages might exist. Interestingly,some clades comprised sequences retrieved only fromvery specific habitats, such as anoxic environments ordeep sea hydrothermal vents, while other clades con-tained sequences obtained from widely varying habitats.

    In the present work our aims were (i) to broaden repre-sentation of the different environments in which membersof the Alveolata are potentially encountered by construct-ing and sequencing 18S rRNA gene libraries; (ii) to clarifythe phylogeny of the Alveolata using recently publishedand the new 18S rRNA gene sequences for this group; (iii)to undertake a rigorous review of clade organizationwithin the above mentioned MALV groups I and II; (iv)to compare the genetic diversity of environmentalsequences derived from culture-independent PCRsurveys (targeting the 18S rRNA gene) to our presentknowledge of the taxonomy of Syndiniales; and (v) toextract general information on the preferred habitats anddistribution of specific members of the Syndiniales.

    Results

    Sample sites and environmental conditions

    Most of the novel environmental sequences obtained inthis study were retrieved from coastal and oceanic watersin the Atlantic Ocean and Mediterranean Sea (Table 1).The collection sites varied in terms of season, depth andlevel of oligotrophy. For example, the Bermuda AtlanticTime-series Station (BATS) is relatively oligotrophic, andat the time of sampling was already strongly stratified. Incontrast, the northern Sargasso Sea Station, althoughrelatively close to BATS, was likely still influenced by deep

    winter mixing that occurs in this area, bringing nutrients tosurface waters (see Cuvelier et al., 2008 for furtherdiscussion). The Florida Straits sites represent three dis-tinct water types. Station 1, on the western side of theFlorida Straits, was relatively coastal. Station 4 representsthe core of the Gulf Stream Current-forming waters, whichare highly oligotrophic, while Station 14 is also olig-otrophic but a shallow setting on the eastern side of theFlorida Straits (see Cuvelier et al., 2008). Other environ-mental sequences from the Atlantic Ocean were obtainedduring the Atlantic Meridional Transect (AMT 15, see alsoZwirglmaier et al., 2007), which extended from 48°N[south-west (SW) of the UK] to 40°S (SW of Cape Town,South Africa). Environmental sequences from the Medi-terranean Sea were collected in late summer along aMediterranean transect sampled during the PROSOPEcruise in 1999 (Garczarek et al., 2007), from high nutrientlevels in the Morocco upwelling to strong phosphoruslimitation in the eastern most basin. Although half of thegenetic libraries were built using a PCR approach biasedtowards green algae, dinoflagellate sequences wereretrieved in both data sets (the majority of them wereretrieved using general eukaryotic primers). We also useda PCR approach biased towards MALV Group II (usingthe specific primer ALV01) that we compared with the useof general eukaryotic primers from a coastal site (EnglishChannel, France). Most of genetic libraries were built onvery small size fractions (less than 2–3 mm), althoughsome were processed on larger size fractions and evenafter incubations (see genetic libraries from coastal sitesfrom the Mediterranean Sea). This heterogeneous dataset offered us a very large range of environmentalsequence origins. In total, 6874 new environmentalsequences were generated and screened for dinoflagel-late sequences.

    Alveolate 18S rRNA gene sequence data set

    The completed data set comprised 43655 eukaryotic 18SrRNA gene sequences obtained either from GenBank orfrom the environmental clone libraries described above.From marine environments, 351 environmental clonelibraries were analysed with major contribution from sites(Table 2) in the Atlantic (Díez et al., 2001a; Countwayet al., 2007; Not et al., 2007), Indian (Not et al., 2008),Arctic (Lovejoy et al., 2006; Stoeck et al., 2007) andPacific (Moon-van der Staay et al., 2001) Oceans, Medi-terranean Sea (Viprey et al., 2008), Antarctic (López-García et al., 2001), as well as several coastal sites(Massana et al., 2004; Romari and Vaulot, 2004; Medlinet al., 2006; Worden, 2006). These encompassed a rangeof marine habitats including the photic zone, sediments,hydrothermal vents and anoxic ecosystems (Table 2). Ter-restrial and continental ecosystems were also included

    3350 L. Guillou et al.

    Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 10, 3349–3365No claim to original French government works

  • Tab

    le1.

    Des

    crip

    tion

    ofth

    esa

    mpl

    ing

    site

    san

    dch

    arac

    teris

    tics

    ofcl

    one

    libra

    ries

    cons

    truc

    ted

    for

    this

    stud

    y.

    Env

    ironm

    ent

    and

    crui

    seS

    tatio

    nan

    dS

    iteC

    oord

    inat

    esD

    ate

    Cod

    elib

    rary

    Dep

    th(m

    )P

    rimer

    Sam

    ple

    deta

    ils(m

    m)

    Tota

    lnum

    ber

    ofcl

    ones

    with

    inse

    rtsc

    reen

    ed

    Med

    iterr

    anea

    nS

    eaP

    RO

    SO

    PE

    Oce

    anic

    euph

    otic

    zone

    Acc

    essi

    onnu

    mbe

    rsfr

    omE

    U79

    2921

    toE

    U79

    3941

    +E

    U84

    8494

    toE

    U84

    8495

    See

    also

    Vip

    rey

    etal

    .(2

    008)

    St

    1S

    trai

    tof

    Gib

    ralta

    r38

    °08′

    N05

    °18′

    W14

    -Sep

    -99

    C1-

    3030

    Euk

    328f

    -CH

    LO02

    <3

    246

    E1-

    3030

    Euk

    328f

    -Euk

    329r

    <3

    135

    C1-

    8080

    Euk

    328f

    -CH

    LO02

    <3

    195

    E1-

    8080

    Euk

    328f

    -Euk

    329r

    <3

    69S

    t3

    Alg

    eria

    nB

    asin

    37°9

    8′N

    03°8

    3′E

    16-S

    ep-9

    9C

    3-5

    5E

    uk32

    8f-C

    HLO

    02<

    316

    5E

    3-5

    5E

    uk32

    8f-E

    uk32

    9r<

    346

    C3-

    2525

    Euk

    328f

    -CH

    LO02

    <3

    23E

    3-25

    25E

    uk32

    8f-E

    uk32

    9r<

    356

    C3-

    9595

    Euk

    328f

    -CH

    LO02

    <3

    173

    E3-

    9595

    Euk

    328f

    -Euk

    329r

    <3

    27S

    t5

    Str

    ait

    ofS

    icily

    36°4

    7′N

    13°3

    2′E

    18-S

    ep-9

    9C

    5-25

    25E

    uk32

    8f-C

    HLO

    02<

    315

    1E

    5-25

    25E

    uk32

    8f-E

    uk32

    9<

    316

    8C

    5-55

    55E

    uk32

    8f-C

    HLO

    02<

    318

    5E

    5-55

    55E

    uk32

    8f-E

    uk32

    9r<

    313

    1S

    tM

    IOIo

    nian

    Bas

    in33

    °98′

    N22

    °02′

    E20

    -Sep

    -99

    CM

    -55

    Euk

    328f

    -CH

    LO02

    <3

    173

    EM

    -55

    Euk

    328f

    -Euk

    329r

    <3

    62C

    M-5

    050

    Euk

    328f

    -CH

    LO02

    <3

    171

    EM

    -50

    50E

    uk32

    8f-E

    uk32

    9r<

    310

    2C

    M-1

    1011

    0E

    uk32

    8f-C

    HLO

    02<

    313

    4E

    M-1

    1011

    0E

    uk32

    8f-E

    uk32

    9r<

    311

    5S

    t9

    Tyrr

    heni

    anB

    asin

    41°8

    8′N

    10°4

    3′E

    28-S

    ep-9

    9C

    9-5

    5E

    uk32

    8f-C

    HLO

    02<

    310

    1E

    9-5

    5E

    uk32

    8f-E

    uk32

    9r<

    314

    4C

    9-65

    65E

    uk32

    8f-C

    HLO

    02<

    322

    3E

    9-65

    65E

    uk32

    8f-E

    uk32

    9r<

    311

    9S

    tD

    YF

    Ligu

    rian

    Bas

    in43

    °38′

    N07

    °82′

    E30

    -Sep

    -99

    CD

    -15

    15E

    uk32

    8f-C

    HLO

    02<

    317

    2E

    D-1

    515

    Euk

    328f

    -Euk

    329r

    <3

    118

    CD

    -50

    50E

    uk32

    8f-C

    HLO

    02<

    320

    1E

    D-5

    050

    Euk

    328f

    -Euk

    329r

    <3

    196

    Eng

    lish

    Cha

    nnel

    ,F

    ranc

    eC

    oast

    aleu

    phot

    iczo

    neA

    cces

    sion

    num

    bers

    from

    EU

    7850

    54to

    EU

    7852

    55

    Ast

    an48

    °45′

    N04

    °00′

    W21

    -Aug

    -01

    RA

    1S

    urfa

    ceE

    uk52

    8f-E

    uk32

    9r>

    1218

    3

    RA

    2S

    urfa

    ceA

    LV01

    -E

    uk32

    9r0.

    2–3

    96

    RA

    3S

    urfa

    ceA

    LV01

    -E

    uk32

    9r>

    1296

    Cat

    alan

    ,M

    edite

    rran

    ean

    Sea

    ,S

    pain

    Coa

    stal

    euph

    otic

    zone

    Acc

    essi

    onnu

    mbe

    rsfr

    omE

    U78

    5256

    toE

    U78

    5301

    Bar

    celo

    naH

    arbo

    ur41

    °23′

    N2°

    09′E

    28-F

    eb-0

    1B

    AF

    RA

    CT

    pico

    Sur

    face

    Euk

    A-E

    ukB

    0.6–

    138

    BA

    FR

    AC

    Tna

    noS

    urfa

    ceE

    ukA

    -Euk

    B1–

    1029

    BA

    FR

    AC

    Tm

    icro

    Sur

    face

    Euk

    A-E

    ukB

    10–5

    027

    Cat

    alan

    ,M

    edite

    rran

    ean

    Sea

    ,S

    pain

    Coa

    stal

    euph

    otic

    zone

    Acc

    essi

    onnu

    mbe

    rsfr

    omE

    U78

    5302

    toE

    U78

    5340

    See

    also

    Mas

    sana

    etal

    .(2

    006)

    Bla

    nes

    Bay

    41°4

    0′N

    02°4

    8′E

    06-N

    ov-0

    1B

    LEN

    Rin

    f2S

    urfa

    ceE

    K-1

    A-5

    16-G

    C<

    215

    BLE

    NR

    D2T

    4S

    urfa

    ceE

    K-1

    A-5

    16-G

    CIn

    cuba

    tion

    afte

    rfil

    trat

    ion

    <2

    15

    BLE

    NR

    L2T

    4S

    urfa

    ceE

    K-1

    A-5

    16-G

    CIn

    cuba

    tion

    afte

    rfil

    trat

    ion

    <2

    21

    Atla

    ntic

    Oce

    anP

    RO

    SO

    PE

    Coa

    stal

    euph

    otic

    zone

    Acc

    essi

    onnu

    mbe

    rsfr

    omE

    U79

    3942

    toE

    U79

    3987

    See

    also

    Vip

    rey

    etal

    .(2

    008)

    St

    UP

    WM

    oroc

    coup

    wel

    ling

    31°0

    2 ′N

    10°0

    3′W

    09-S

    ep-9

    9C

    U-3

    030

    Euk

    328f

    -CH

    LO02

    <3

    53

    EU

    -30

    30E

    uk32

    8f-E

    uk32

    9r<

    312

    6

    Atla

    ntic

    Mer

    idio

    nalT

    rans

    ect

    (AM

    T15

    )O

    cean

    iceu

    phot

    iczo

    neA

    cces

    sion

    num

    bers

    from

    EU

    7805

    89to

    EU

    7806

    36S

    eeal

    soZ

    wirg

    lmai

    eret

    al.

    (200

    7)

    Nor

    ther

    nco

    asta

    lS

    tatio

    n1

    48°7

    4′N

    7°08

    ′W19

    -Sep

    t-04

    AM

    T15

    -110

    Euk

    328f

    -Euk

    329r

    <3

    217

    Upw

    ellin

    gS

    tatio

    n15

    17°8

    3′N

    20°8

    9′W

    04-O

    ct-0

    4A

    MT

    15-1

    510

    Euk

    328f

    -Euk

    329r

    <3

    207

    Sou

    ther

    ngy

    reS

    tatio

    n27

    23°5

    6′S

    17°4

    9′W

    18-O

    ct-0

    4A

    MT

    15-2

    730

    Euk

    328f

    -Euk

    329r

    <3

    119

    Sou

    ther

    nte

    mpe

    rate

    Sta

    tion

    3337

    °83′

    S1°

    23′E

    24-O

    ct-0

    4A

    MT

    15-3

    35

    Euk

    328f

    -Euk

    329r

    <3

    234

    Diversity of parasitic Syndiniales 3351

    Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 10, 3349–3365No claim to original French government works

  • Tab

    le1.

    cont

    .

    Env

    ironm

    ent

    and

    crui

    seS

    tatio

    nan

    dS

    iteC

    oord

    inat

    esD

    ate

    Cod

    elib

    rary

    Dep

    th(m

    )P

    rimer

    Sam

    ple

    deta

    ils(m

    m)

    Tota

    lnum

    ber

    ofcl

    ones

    with

    inse

    rtsc

    reen

    ed

    Flo

    rida

    Str

    aits

    ,Atla

    ntic

    Oce

    anC

    oast

    aleu

    phot

    iczo

    neA

    cces

    sion

    num

    bers

    from

    EU

    8185

    67to

    EU

    8186

    91an

    dE

    U83

    6584

    toE

    U83

    6597

    Sta

    tion

    125

    °30′

    N80

    °04′

    W31

    -Mar

    -05

    FS

    01B

    5E

    uk32

    8f-E

    uk32

    9r<

    290

    25°3

    0′N

    80°0

    4′W

    31-M

    ar-0

    5F

    S01

    C70

    Euk

    328f

    -Euk

    329r

    <2

    85

    25°3

    0′N

    80°0

    3′W

    01-A

    ug-0

    5F

    S01

    A5

    Euk

    328f

    -Euk

    329r

    <2

    85

    25°3

    0′N

    80°0

    3′W

    01-A

    ug-0

    5F

    S01

    D65

    Euk

    328f

    -Euk

    329r

    <2

    85

    Flo

    rida

    Str

    aits

    ,Atla

    ntic

    Oce

    anO

    cean

    iceu

    phot

    iczo

    neA

    cces

    sion

    num

    bers

    from

    EU

    8180

    78to

    EU

    8185

    66an

    dE

    U83

    6598

    toE

    U83

    6612

    Sta

    tion

    425

    °30′

    N79

    °57′

    W31

    -Mar

    -05

    FS

    04E

    5E

    uk32

    8f-E

    uk32

    9r<

    281

    25°3

    0′N

    79°5

    7′W

    31-M

    ar-0

    5F

    S04

    F85

    Euk

    328f

    -Euk

    329r

    <2

    88

    25°3

    0′N

    79°5

    7′W

    01-A

    ug-0

    5F

    S04

    G5

    Euk

    328f

    -Euk

    329r

    <2

    90

    25°3

    0′N

    79°5

    7′W

    01-A

    ug-0

    5F

    S04

    H89

    Euk

    328f

    -Euk

    329r

    <2

    169

    Sta

    tion

    1425

    °29′

    N79

    °20′

    W30

    -Mar

    -05

    FS

    14I

    70E

    uk32

    8f-E

    uk32

    9r<

    274

    25°2

    9′N

    79°2

    0′W

    30-M

    ar-0

    5F

    S14

    J5

    Euk

    328f

    -Euk

    329r

    <2

    90

    25°2

    9′N

    79°2

    0′W

    31-J

    ul-0

    5F

    S14

    K5

    Euk

    328f

    -Euk

    329r

    <2

    69

    25°2

    9′N

    79°2

    0′W

    31-J

    ul-0

    5F

    S14

    L80

    Euk

    328f

    -Euk

    329r

    <2

    83

    25°2

    9′N

    79°2

    0′W

    Dec

    -08

    FS

    14M

    58E

    uk32

    8f-E

    uk32

    9r<

    283

    25°2

    9′N

    79°2

    0′W

    Dec

    -08

    FS

    14N

    58E

    uk32

    8f-E

    uk32

    9r�

    281

    Sar

    gass

    oS

    eaA

    tlant

    icO

    cean

    Oce

    anic

    euph

    otic

    zone

    Acc

    essi

    onnu

    mbe

    rsfr

    omE

    U81

    7966

    toE

    U81

    8077

    and

    EU

    8366

    13to

    EU

    8366

    15

    Ber

    mud

    aA

    tlant

    icTi

    me-

    Ser

    ies

    Sta

    tion

    31°3

    9′N

    64°3

    7′W

    29-M

    ay-0

    5O

    C41

    3BA

    TS

    _O75

    Euk

    328f

    -Euk

    329r

    <2

    90

    01-J

    un-0

    5O

    C41

    3BA

    TS

    _P15

    Euk

    328f

    -Euk

    329r

    <2

    87

    Sar

    gass

    oS

    ea,A

    tlant

    icO

    cean

    Oce

    anic

    euph

    otic

    zone

    Acc

    essi

    onnu

    mbe

    rsfr

    omE

    U81

    7882

    toE

    U81

    7965

    +E

    U83

    6616

    toE

    U83

    6617

    35°0

    9′N

    66°3

    3′W

    05-J

    un-0

    5O

    C41

    3NS

    S_Q

    15E

    uk32

    8f-E

    uk32

    9r<

    284

    08-J

    un-0

    5O

    C41

    3NS

    S_R

    70E

    uk32

    8f-E

    uk32

    9r<

    283

    Tota

    lnum

    ber

    ofcl

    ones

    6874

    For

    furt

    her

    info

    rmat

    ion

    onth

    epr

    imer

    sus

    ed,

    see

    also

    Tabl

    eS

    2.A

    cces

    sion

    num

    bers

    are

    prov

    ided

    for

    dino

    flage

    llate

    sequ

    ence

    son

    ly.

    3352 L. Guillou et al.

    Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 10, 3349–3365No claim to original French government works

  • (150 clone libraries, mostly from freshwater, sedimentsand soils). Taken together, this resulted in 4844 dinoflagel-late sequences from these environmental data sets, with1164 and 2435 belonging to MALV groups I and II respec-tively (Table 2). An additional 727 sequences werederived from dinoflagellate cultures including a few fromthe amplification of single cells (see Table 2), most ofthese belonging to marine photosynthetic dinoflagellates(a bias already pointed out by Murray et al., 2005). Themean length of the dinoflagellate sequences in the data-base was 950 nucleotides (range 108–1841 bp).

    Phylogenetic analyses

    Dinoflagellate sequences longer than 1600 bp (1018sequences in total, 291 retained for the final tree, see thecomplete list of sequences in the Table S1) were used toperform phylogenetic analyses. Sequences belonging tothe major Alveolata lineages were also included (Fig. 1).In order to avoid long-branch attraction artefacts, highlydivergent alveolate groups were removed after prelimi-nary phylogenetic analyses by neighbour joining (NJ).These divergent groups included Haemosporida (Apicom-plexa including the human parasite Plasmodium), twociliate groups, Mesodiniidae (Myrionecta and Mesod-inium) and Ellobiopsidae (Silberman et al., 2004). Highlydivergent dinoflagellates, such as members of Noctilu-cales and Oxyrrhis marina, were also excluded. Bayesianphylogeny, using 1137 positions in the 18S rRNA genesequence alignments, delineated four primary lineageswithin the Alveolata (Fig. 1), the ciliates, the Apicomplexa,the Perkinsea and the Dinophyceae. As previouslyobserved (Leander and Keeling, 2003; Groisillier et al.,2006), ciliates fell in the basal region of the tree, followedby Apicomplexa (Fig. 1). Perkinsea are the closest rela-tives of dinoflagellates. As frequently found in 18S rRNAgene phylogenies, many of these backbone nodes did notretain bootstrap support. At the basal part of Dino-phyceae, several distinct taxa were placed in the baye-sian analysis, here termed Syndiniales groups I–V, as amonophyletic lineage (Fig. 1). The general tree topologyobtained with maximum likelihood (ML) was similar (datanot shown). The existence of environmental MALV GroupI and II was previously described (López-García et al.,2001; Moon-van der Staay et al., 2001), but hererenamed (Syndiniales groups I and II) given more defini-tive placement within the Syndiniales. The genetic diver-sity and clade nomenclature of Syndiniales groups I and IIare described in detail in separate analyses using partialsequences (Figs 2 and 3). For the definition of clades, wemodified the general criteria chosen by Groisillier andcolleagues (2006) so that a clade must (i) contain envi-ronmental sequences from at least 2 different clone librar-ies, and (ii) be bootstrap supported, at the defining nodes,Ta

    ble

    2.E

    nviro

    nmen

    tty

    pes

    repr

    esen

    ted

    by18

    SrR

    NA

    gene

    sequ

    ence

    sco

    nsid

    ered

    here

    in,

    and

    the

    prop

    ortio

    nfa

    lling

    with

    inth

    eD

    inofl

    agel

    lata

    .

    Orig

    inof

    the

    sequ

    ence

    s(n

    umbe

    rof

    clon

    elib

    rarie

    sco

    nsid

    ered

    )

    Num

    ber

    of18

    SrR

    NA

    gene

    sequ

    ence

    s

    Num

    ber

    ofse

    quen

    ces

    belo

    ngin

    gto

    dino

    flage

    llate

    s

    Num

    ber

    ofse

    quen

    ces

    per

    dino

    flage

    llate

    grou

    p

    Syn

    dini

    ales

    Gro

    upI

    Syn

    dini

    ales

    Gro

    upII

    Syn

    dini

    ales

    Oth

    ers

    ‘Cor

    e’di

    nofla

    gella

    tes

    Cul

    ture

    san

    dis

    olat

    esa

    2179

    572

    7(3

    .3%

    )13

    (1.8

    %)

    24(3

    .3%

    )9

    (1.2

    %)

    681

    (93.

    7%)

    Env

    .C

    ontin

    enta

    l(1

    50)

    571

    135

    (0.6

    %)

    00

    35(1

    00%

    )P

    lank

    ton

    from

    the

    wat

    erco

    lum

    n(4

    2)1

    213

    35(2

    .9%

    )0

    00

    35(1

    00%

    )B

    iofil

    m/m

    icro

    bial

    mat

    s(1

    6)39

    20

    00

    00

    Soi

    l(3

    9)3

    361

    00

    00

    0S

    edim

    ent

    (30)

    438

    00

    00

    0O

    ther

    s:ae

    roso

    l,fe

    rmen

    tor,

    gut

    com

    mun

    ities

    ...(

    23)

    307

    00

    00

    0E

    nv.

    Mar

    ine

    (347

    )16

    149

    4809

    (29.

    8%)

    1151

    (23.

    9%)

    2411

    (50.

    1%)

    156

    (3.2

    %)

    1091

    (22.

    7%)

    Pla

    nkto

    nfr

    omth

    ew

    ater

    colu

    mn

    (262

    )13

    528

    4494

    (33.

    2%)

    1073

    (23.

    9%)

    2315

    (51.

    5%)

    154

    (3.4

    %)

    952

    (21.

    2%)

    Sed

    imen

    t(4

    6)1

    624

    139

    (8.6

    %)

    54(3

    8.8%

    )18

    (12.

    9%)

    067

    (48.

    2%)

    Oth

    ers:

    biofi

    lm,

    incu

    batio

    n,gu

    tco

    mm

    uniti

    es..

    .(39

    )99

    717

    6(1

    7.7%

    )24

    (13.

    6%)

    78(4

    4.3%

    )2

    (1.1

    %)

    72(4

    0.9%

    )

    Tota

    l43

    655

    5571

    (12.

    8%)

    1164

    (20.

    9%)

    2435

    (43.

    7%)

    165

    (3.0

    %)

    1807

    (31.

    5%)

    a.In

    clud

    ing

    anal

    ysis

    ofsi

    ngle

    cells

    .E

    nv.

    mea

    nsen

    viro

    nmen

    tals

    eque

    nces

    .The

    num

    ber

    ofcl

    one

    libra

    ries

    scre

    ened

    for

    each

    envi

    ronm

    ent

    isgi

    ven

    inbr

    acke

    tsin

    the

    first

    colu

    mn.

    Inco

    lum

    ns4–

    7,br

    acke

    tsin

    dica

    te,

    asa

    perc

    enta

    ge,

    the

    num

    ber

    ofse

    quen

    ces

    obta

    ined

    for

    apa

    rtic

    ular

    dino

    flage

    llate

    grou

    pco

    mpa

    red

    with

    the

    corr

    espo

    ndin

    gen

    viro

    nmen

    t(c

    olum

    n3)

    .‘C

    ore’

    dino

    flage

    llate

    sm

    eans

    all

    dino

    flage

    llate

    sex

    cept

    Syn

    dini

    ales

    .

    Diversity of parasitic Syndiniales 3353

    Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 10, 3349–3365No claim to original French government works

  • by values greater than 60% in NJ and maximum parsi-mony (MP) analysis. Some exceptions to these rules weremade as detailed below. The mean sequence identitywithin a clade was 87% for Syndiniales Group I (rangingfrom 76.6% for clade 5 to 91.9% for clade 7) and 93.5%for Syndiniales Group II (ranging from 80.8% for clade 8 to99.4% for clades 35 and 43, see also Fig. S1). Syndini-ales Group I contained eight different clades (Fig. 2).Clades 1–5 were described previously by Groisillier andcolleagues (2006), while three new clades emerged fromthis study. All of these eight clades are supported bybootstrap values > 60%, except for Clade 3, which is onlysupported by MP, bootstrap analyses (74%). Neverthe-less, the tree topology is identical with the two differentmethods (NJ and MP) and minimal sequence identitieswithin this clade are inside the range of other clades

    belonging to this group (see Fig. S1). Ichthyodinium chab-erladi, a parasitoid of fish eggs, belongs to Group I Clade3, while Duboscquella spp., a parasitoid of tintinnides,belongs to Group I Clade 4 (Harada et al., 2007). Syndini-ales sequences retrieved by single-cell PCR on radiolar-ian isolates (Dolven et al., 2007) belong to Clade 1(DQ916408, though not in the tree because this sequencecontained several nucleotide ambiguities) and Clade 2(DQ916404–DQ916407 and DQ916410). Clades 5–8 areonly composed of environmental sequences. Somesequences within clades 1–4 (highlighted in grey in Fig. 2)were retrieved exclusively from suboxic and anoxicecosystems. Together, clades 1 and 5 were the mostcommonly retrieved from environmental clone libraries,representing � 75% of sequences belonging to Syndini-ales Group I.

    DQ504327 LC22-5EP-44

    DQ925237 CsH1AF421184 Hematodinium sp.EF065718 Hematodinium pereziEF065717 Hematodinium pereziEF172791 SSRPB76

    DQ504356 LC22-5EP-37EU793192 E1-80m.27DQ146406 Syndinium sp.DQ146404 Syndinium turboDQ146403 Syndinium turboDQ146405 Syndinium turbo

    AF286023 Hematodinium sp.

    IV

    EU562105 IND72.28EU818223 FS04H087_89mEU793790 EM-110m.171EU793574 ED-15m.111

    EU562107 IND72.30EU780615 AMT15_15B_12EU818001 OC413BATS_O020_75m

    EU793839 EM-50m.113EU818407 FS14JA31_5m

    V

    EU793465 E9-5m.27EU793466 E9-5m.29

    EU561787 IND31.121DQ344732 TWS091

    EU562079 IND72.02EU817912 OC413NSS_Q043_15m

    EU818259 FS04F028_85mEU817911 OC413NSS_Q031_15m

    EU793593 ED-15m.135EU793324 E5-25m.204DQ918792 ENVP36162.00253

    AY664993 SCM15 C23EU818113 FS04G196_5mEU818541 FS14N090_58m

    EU818542 FS14N072_58mEU561731 IND31.60EU818431 FS14K050_5mEU818080 FS04G102_5m

    EU780604 AMT15_1B_36EF539059 MB01.33

    EU818673 FS01D005_65mAY295467 RA000609.43EU818141 FS04GA80_5mAY426937 BL010625.44EU818430 FS14K031_5m

    EU818672 FS01D055_65mEU793987 EU-30m.99

    EU818014 OC413BATS_O095_75mEU793515 E9-65m.113

    EU818655 FS01D056_65mDQ918274 ENVP21819.00021

    EU818152 FS04H034_89mAJ402349 OLI11005

    DQ918653 ENVP223.00266EF526769 NIF 4C5

    DQ310226 FV23 1E1DQ918940 ENVP366.00147

    DQ918434 ENVP21819.00364EU818349 FS14I039_70mEU793615 ED-15m.57

    EU793164 E1-30m.67EU793978 EU-30m.74EU793475 E9-5m.53EU793818 EM-110m.215

    EF539065 TH07.15DQ647514 CD8.10EU562048 IND70.56EU780607 AMT15_1B_40

    EU793959 EU-30m.3DQ918980 ENVP366.00230

    EF527026 SIF 3A10EF527085 SIF 4E8EF527091 SIF 4G12

    2%

    III

    Otherdinoflagellates

    II

    Syndinium turboHematodinium spp. III

    IV

    PerkinseaColpodellidae

    CoccidiaPiroplasmida

    Cryptosporidium spp.

    Ciliates

    Apicomplexa

    IV

    10%

    AY665063 SCM38 C14 AF133909 Parvilucifera

    Und. Apicomplexa 1

    GregariniaColpodellidae Und. Apicomplexa 2

    Outgroups

    100/100

    100/100

    80/-

    98/95

    100/99

    64/-

    100/100

    100/100

    100/100100/100

    99/82

    100/99

    Syndiniales

    Dinophyceae

    Fig. 1. Phylogeny of dinoflagellates using near-complete 18S rRNA gene sequences. Left: Bayesian phylogeny of alveolates based onanalysis of 291 near full-length 18S rRNA gene sequences. Five sequences of Bolidophyceae (stramenopiles) were used as an outgroup.Gblock retained 1137 positions for the phylogenetic analyses. Bootstrap values, given at the principal nodes of the tree, correspond toneighbour-joining and maximum parsimony analyses respectively (1000 replicates, values > 60% shown). For neighbour-joining bootstrapping,a GTR + G + I model was selected with the following parameters: Lset Base = (0.2757 0. 1787 0.2494), Nst = 6, Rmat = (1.0746 2.96001.2514 1.0820 4.7079), Rates = gamma, Shape = 0.7091, Pinvar = 0.2330. The scale bar corresponds to 10% sequence divergence. Inset (atthe right): Details of groups III to VI, based upon analysis of partial (500 bp) sequences (59 sequences including outgroups). The scale barcorresponds to 2% sequence divergence. The two sequences in grey belonging to Group IV are from hydrothermal vents.

    3354 L. Guillou et al.

    Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 10, 3349–3365No claim to original French government works

  • DQ

    1865

    36 B

    L010

    320.

    28EU

    7939

    79EU

    -30m

    .76

    DQ

    5043

    29 L

    C23

    4EP

    1D

    Q50

    4313

    LC2

    2 4E

    P 17

    AF2

    9007

    3 D

    H14

    7 EK

    D18

    AY0

    4668

    1 A

    1 E0

    14A

    Y046

    671

    A1

    E004

    EU81

    8534

    FS14

    N04

    1_58

    mA

    Y664

    995

    SCM

    38 C

    41EF

    2190

    11 1

    8BR5

    DQ

    5043

    30 L

    C23-

    4EP

    9A

    B276

    368

    Icht

    hyod

    inium

    chab

    elar

    diA

    B264

    776

    Icht

    hyod

    inium

    chab

    elar

    diD

    Q34

    0768

    Ich

    thyo

    dinium

    chab

    elar

    diEF

    1728

    30 S

    SRP

    B64

    AY0

    4686

    2 C3

    E03

    4A

    Y256

    307

    CAR

    D 8

    0A

    F530

    539

    AT4

    47

    AY2

    5630

    5 CA

    R D

    76

    AB2

    7510

    9 CP

    SGM

    -2A

    J402

    353

    OLI

    011

    75m

    33(

    5)EU

    7934

    03 E

    5-55

    m.2

    72EU

    8181

    48FS

    04GA

    93_5

    mA

    Y665

    100

    SCM

    27 C

    13A

    Y665

    089

    SCM

    15 C

    33D

    Q50

    4334

    LC2

    3 5E

    P 9

    AY6

    6510

    2 SC

    M15

    C4

    AJ4

    0235

    2 O

    LI01

    1 75

    m 2

    9EU

    7938

    21EM

    -110

    m.2

    21A

    Y665

    092

    SCM

    37 C

    51EU

    8185

    58FS

    14N

    029_

    58m

    EU81

    8566

    FS14

    N07

    4_58

    mEU

    5619

    18 I

    ND

    58.5

    8A

    Y256

    213

    CAR

    H 4

    8EU

    8182

    58FS

    04F0

    78_8

    5mEU

    7938

    74EM

    -50m

    .63

    AY4

    2690

    9 BL

    0103

    20.2

    9EU

    7932

    18E3

    -25m

    .129

    EU81

    8466

    FS1

    4L00

    3_80

    m

    EU79

    3788

    EM-1

    10m

    .169

    EU81

    8079

    FS04

    G101

    _5m

    AY2

    5624

    3 CA

    R E

    3A

    Y882

    464

    Cari

    aco

    T60

    A6

    AY2

    5630

    4 CA

    R D

    75

    AY1

    2905

    6 U

    EPA

    C Q

    p5A

    Y129

    058

    UEP

    AC

    Dp5

    DQ

    1038

    12 M

    aria

    ger

    Fjor

    d 4

    18F0

    5A

    B252

    761

    NA

    MA

    KO-2

    1A

    Y046

    800

    C2 E

    009

    AB2

    7502

    8 D

    SGM

    -28

    EF17

    2822

    SS

    RPB8

    4EU

    8185

    63 F

    S14N

    018_

    58m

    DQ

    1199

    19 N

    OR5

    0.33

    EU56

    2061

    IN

    D70

    .70

    EU79

    3735

    ED-5

    0m.5

    4EU

    8182

    56FS

    04F0

    66_8

    5mD

    Q18

    6529

    RA

    0012

    19.4

    0EU

    5620

    41IN

    D70

    .49

    AJ4

    0235

    4 O

    LI01

    1 75

    m 1

    1EU

    7935

    50E9

    -65m

    .65

    AY4

    2683

    1 BL

    0009

    21.0

    4A

    Y256

    267

    CAR

    E 13

    1A

    B275

    027

    DSG

    M-2

    7A

    Y882

    465

    Cari

    aco

    p14B

    3A

    Y665

    057

    SCM

    27 C

    44

    AY8

    8244

    9 Ca

    riac

    oT

    45F1

    2EU

    7931

    62 E

    1-30

    m.6

    4EU

    7934

    47 E

    9-5m

    .135

    EU81

    8298

    FS04

    E068

    _5m

    AB2

    9504

    0 Dub

    oscq

    uella

    sp.

    Ishika

    ri/2

    003

    AB2

    9504

    1 Dub

    oscq

    uella

    sp.

    Ham

    ana/

    2003

    AY8

    8247

    5 Ca

    riac

    op1

    5F05

    EU81

    7922

    OC4

    13N

    SS_R

    067_

    70m

    EF17

    2986

    SS

    RPD

    80-

    96 S

    SRP

    D84

    EU81

    8085

    FS04

    G116

    _5m

    EU78

    0633

    AM

    T15_

    33B_

    25EU

    8180

    12O

    C413

    BATS

    _O09

    3_75

    mEU

    5618

    78 I

    ND

    33.8

    2EU

    7934

    04 E

    5-55

    m.2

    78D

    Q11

    9907

    NW

    614.

    29D

    Q11

    9893

    NO

    R26.

    25EU

    7937

    65 E

    M-1

    10m

    .100

    EU79

    3223

    E3-

    25m

    .89

    EU81

    8682

    FS

    01D

    039_

    65m

    EU81

    7993

    OC4

    13BA

    TS_O

    009_

    75m

    EU78

    0622

    AM

    T15_

    33B_

    14EF

    5390

    20 T

    H10

    .8A

    Y665

    056

    SCM

    37 C

    30EU

    5620

    05 I

    ND

    70.0

    5EU

    8182

    64 F

    S04

    F024

    _85m

    EU79

    3915

    EM

    -5m

    .166

    EU81

    7990

    OC4

    13BA

    TS_O

    054_

    75m

    EU79

    3939

    EM

    -5m

    .7EU

    8179

    68 O

    C413

    BATS

    _O07

    4_75

    mA

    Y129

    029

    UEP

    AC

    Cp1

    EU81

    8112

    FS

    04G1

    94_5

    mEU

    7936

    47ED

    -50m

    .123

    EU79

    3757

    ED

    -50m

    .87

    AY6

    6502

    8 SC

    M27

    C22

    DQ

    1451

    14O

    LI01

    1 75

    m 8

    6EU

    8186

    53 F

    S01

    C081

    _70m

    EU79

    3245

    E3-

    5m.3

    6EU

    8178

    97 O

    C413

    NSS

    _Q01

    5_15

    mA

    Y426

    850

    BL00

    0921

    .32

    EU56

    2090

    IN

    D72

    .13

    EF17

    2944

    SS

    RPD

    58-

    79 S

    SRP

    D60

    AF2

    9006

    6 D

    H14

    5 EK

    D10

    EU79

    3621

    ED

    -15m

    .63

    EU81

    8550

    FS1

    4N00

    7_58

    mEU

    7806

    03 A

    MT1

    5_1B

    _35

    EU79

    3808

    EM

    -110

    m.2

    01EF

    1728

    15 S

    SRPB

    SSR

    PB38

    EU81

    8393

    FS1

    4JA

    63_5

    mA

    Y665

    031

    SCM

    28 C

    139

    EU56

    1865

    IN

    D33

    .68

    EU79

    3552

    E9-

    65m

    .68

    EF21

    9009

    18B

    R9EU

    8186

    32 F

    S01

    C017

    _70m

    EU79

    3944

    EU

    -30m

    .108

    EU81

    8351

    FS14

    I095

    _70m

    EU56

    1806

    IN

    D31

    .141

    AJ4

    0232

    8 O

    LI01

    1 75

    m 3

    8EU

    7938

    49 E

    M-5

    0m.2

    4A

    Y665

    036

    SCM

    38 C

    5EU

    8186

    34 F

    S01

    C016

    _70m

    AY6

    6502

    2 SC

    M37

    C49

    EU56

    1880

    IN

    D58

    .02

    EU81

    8556

    FS1

    4N04

    4_58

    mA

    J402

    327

    OLI

    011

    75m

    1(1

    )EU

    7935

    85 E

    D-1

    5m.1

    25EU

    8184

    34 F

    S14K

    044_

    5mEU

    5620

    65 I

    ND

    70.7

    4A

    Y665

    030

    SCM

    28 C

    103

    DQ

    5043

    16 L

    C22

    5EP

    6D

    Q11

    9903

    NW

    414

    16EU

    8179

    95 O

    C413

    BATS

    _O08

    5_75

    mEU

    8179

    57 O

    C413

    NSS

    _R05

    0_70

    mD

    Q11

    9909

    NW

    614

    53D

    Q91

    6405

    Rad

    iolarian

    para

    site

    s?D

    Q11

    9899

    NO

    R50.

    42EU

    8184

    74 F

    S14L

    061_

    80m

    AY2

    5624

    6 CA

    R E

    12 2

    EF17

    2831

    SS

    RPB4

    5A

    B275

    022

    DSG

    M-2

    2EU

    8184

    87 F

    S14M

    064_

    58m

    AY0

    4662

    4 C1

    E02

    3A

    Y046

    652

    CS E

    027

    AF5

    3053

    8 A

    T8

    27A

    B275

    023

    DSG

    M-2

    3D

    Q91

    6406

    Rad

    iolarian

    para

    site

    s?A

    Y256

    276

    CAR

    E 18

    8A

    F290

    078

    DH

    148

    EKD

    22A

    Y046

    841

    C3 E

    011

    EU79

    3825

    EM

    -110

    m.2

    29

    AY4

    2687

    3 BL

    0012

    21.2

    4EU

    8484

    95 E

    D-1

    5m.1

    07D

    Q38

    6754

    AP-

    pico

    clon

    e18

    EU81

    8602

    FS01

    B067

    _5m

    EU81

    8671

    FS0

    1D04

    2_65

    mA

    Y046

    650

    CS E

    023

    AB2

    7502

    4 D

    SG

    M-2

    4A

    Y665

    019

    SCM

    16 C

    10D

    Q11

    9900

    NO

    R50.

    53EU

    5616

    96 I

    ND

    31.2

    3D

    Q31

    0231

    FV3

    6 2E

    08A

    Y882

    462

    Cari

    aco

    T41

    A6

    EF17

    2971

    G11

    N10

    EU81

    8567

    FS

    01A

    A06

    _5m

    EF17

    2983

    SSR

    PD 8

    0-96

    SSR

    PD80

    EU79

    3571

    ED

    -15m

    .100

    DQ

    1199

    04 N

    W41

    4.35

    EU81

    7910

    OC4

    13N

    SS_Q

    061_

    15m

    AY4

    2689

    8 BL

    0103

    20.1

    2A

    Y665

    044

    SCM

    38 C

    44A

    Y046

    711

    A1

    E045

    AB1

    9141

    8 TA

    GIRI

    10

    EU81

    8068

    OC4

    13BA

    TS_P

    043_

    15m

    EU81

    8560

    FS

    14N

    038_

    58m

    EU56

    1736

    IN

    D31

    .65

    EU78

    0601

    AM

    T15_

    1B_3

    3EU

    7938

    29 E

    M-1

    10m

    .238

    AY4

    2692

    4 BL

    0106

    25.1

    5A

    Y129

    048

    UEP

    AC

    36p4

    DQ

    3867

    52 A

    P-pi

    cocl

    one

    16D

    Q11

    9894

    NO

    R46.

    05EU

    8178

    94 O

    C413

    NSS

    _Q04

    4_15

    mEU

    7933

    14 E

    5-25

    m.1

    89A

    Y426

    887

    BL00

    1221

    .41

    EU56

    1934

    IN

    D58

    .80

    EU79

    3385

    E5-

    55m

    .161

    AY4

    2693

    6 BL

    0106

    25.4

    2EU

    7931

    95 E

    1-80

    m.3

    4D

    Q31

    0327

    FV2

    3 1C

    7G8

    EU79

    3687

    ED

    -50m

    .189

    DQ

    1199

    01 N

    OR5

    0.54

    EU56

    1927

    IN

    D58

    .68

    EU81

    8603

    FS

    01B0

    66_5

    mEU

    8182

    32 F

    S04

    H13

    5_89

    mEF

    1729

    54 S

    SRP

    D 5

    8-79

    SS

    RPD

    70EU

    7934

    30 E

    9-5m

    .111

    AY4

    2690

    3 BL

    0103

    20.2

    0EU

    8186

    39 F

    S01

    C095

    _70m

    EU56

    2073

    IN

    D70

    .83

    AB2

    5276

    2 N

    AM

    AKO

    -22

    EF17

    3015

    Q2G

    10N

    5EU

    7937

    30 E

    D-5

    0m.4

    8EU

    5619

    91 I

    ND

    60.7

    5A

    Y665

    054

    SCM

    28 C

    151

    DQ

    1198

    95 N

    OR5

    0.13

    EU56

    1962

    IN

    D60

    .40

    EU79

    3401

    E5-

    55m

    .269

    EU81

    8525

    FS

    14M

    022_

    58m

    DQ

    1199

    08 N

    W61

    4 50

    EU78

    0617

    AM

    T15_

    15B_

    17A

    Y046

    827

    C2 E

    042

    AB2

    7502

    5 D

    SGM

    -25

    AY0

    4661

    2 C1

    E00

    8EU

    5616

    77 I

    ND

    31.1

    AY0

    4683

    3 C3

    E00

    3A

    Y426

    900

    BL01

    0320

    .15

    EU81

    7882

    OC4

    13N

    SS_Q

    083_

    15m

    AB2

    7502

    6 D

    SG

    M-2

    6D

    Q38

    6746

    AP-

    pico

    clon

    e10

    EU79

    3505

    E9-

    5m.9

    8A

    B191

    417

    TAGI

    RI 9

    EF17

    2996

    SSR

    PD 8

    0-96

    SS

    RPD

    95A

    Y256

    328

    CAR

    D 2

    05EU

    5621

    35 I

    ND

    72.6

    0EF

    1730

    07 Q

    2A12

    N5

    EU78

    0616

    AM

    T15_

    15B_

    16EF

    1729

    78 Q

    2D12

    N10

    EU81

    8166

    FS

    04H

    154_

    89m

    EF17

    2813

    SSR

    PB S

    SRPB

    66A

    F530

    537

    AT

    4 42

    AY8

    8246

    7 Ca

    riac

    op1

    5H09

    10%

    3 6 8

    4

    EU79

    3351

    E5-2

    5m.2

    42EU

    7933

    28 E

    5-25

    m.2

    09EU

    7932

    89E5

    -25m

    .152

    EU79

    3326

    E5-2

    5m.2

    07EU

    5620

    16 I

    ND

    70.1

    8EU

    7934

    56E9

    -5m

    .16

    EU56

    2010

    IN

    D70

    .12

    AY6

    6499

    9 SC

    M37

    C10

    EU56

    2108

    IN

    D72

    .31

    7

    5

    2

    1

    -/74 100/

    100

    100/

    100

    100/

    96

    99/9

    4

    100/

    100

    99/9

    5 100

    /100

    97/9

    7

    100/

    99

    77/6

    4

    Fig

    .2.

    Phy

    loge

    nyof

    Syn

    dini

    ales

    Gro

    upI.

    Nei

    ghbo

    ur-jo

    inin

    gph

    ylog

    eny

    ofA

    lveo

    late

    Gro

    upI,

    base

    dup

    onth

    ean

    alys

    isof

    275

    part

    ials

    eque

    nces

    ,73

    1bp

    inle

    ngth

    (incl

    udin

    gou

    tgro

    ups,

    not

    show

    n).A

    GT

    R+

    Gm

    odel

    was

    sele

    cted

    usin

    gth

    efo

    llow

    ing

    para

    met

    ers:

    Lset

    Bas

    e=

    (0.2

    627

    0.18

    100.

    2622

    ),N

    st=

    6,R

    mat

    =(1

    .000

    02.

    8775

    1.00

    004.

    6908

    ),R

    ates

    =ga

    mm

    a,S

    hape

    =0.

    5006

    ,P

    inva

    r=

    (0).

    Boo

    tstr

    apva

    lues

    ,gi

    ven

    atth

    epr

    inci

    paln

    odes

    ofth

    edi

    ffere

    ntcl

    ades

    ,co

    rres

    pond

    tone

    ighb

    our-

    join

    ing

    and

    max

    imum

    pars

    imon

    yan

    alys

    esre

    spec

    tivel

    y(1

    000

    repl

    icat

    es,

    valu

    es>

    60%

    show

    n).

    The

    scal

    eba

    rco

    rres

    pond

    sto

    10%

    sequ

    ence

    dive

    rgen

    ce.

    The

    tree

    was

    cut

    inor

    der

    tobe

    tter

    sepa

    rate

    the

    maj

    orcl

    ades

    inth

    efig

    ure.

    Seq

    uenc

    esin

    grey

    are

    from

    hydr

    othe

    rmal

    and

    subo

    xic

    ecos

    yste

    ms.

    Diversity of parasitic Syndiniales 3355

    Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 10, 3349–3365No claim to original French government works

  • EU79

    3692

    ED

    -50m

    .199

    EU79

    3975

    EU-3

    0m.6

    7

    100/

    100

    62/7

    3

    98/8

    3

    92/8

    6

    72/8

    6

    79/-

    98/9

    2

    73/-

    85/7

    4

    83/7

    4

    EU81

    8034

    OC4

    13BA

    TS_P

    045_

    15m

    EU81

    8600

    FS

    01B0

    46_5

    mEF

    1729

    68 F

    11N

    10A

    F239

    260

    Amoe

    boph

    rya

    ex D

    inop

    hysi

    ssp

    .EU

    8180

    15 O

    C413

    BATS

    _O04

    6_75

    mEU

    8186

    25 F

    S01

    B031

    _5m

    EU79

    3356

    E5-

    25m

    .249

    EU79

    3494

    E9-

    5m.7

    7A

    F069

    516

    Amoe

    boph

    rya

    ex A

    kash

    iwo

    sang

    uine

    aEU

    8180

    16 O

    C413

    BATS

    _O07

    2_75

    mEU

    7937

    98 E

    M-1

    10m

    .189

    EU81

    8132

    FS0

    4GA

    43_5

    mEU

    8184

    61 F

    S14L

    069_

    80m

    AY1

    2903

    8 U

    EPA

    C Ep

    3A

    J402

    326

    OLI

    011

    75m

    1-1

    (5)

    EU81

    8573

    FS

    01A

    A57

    _5m

    EU81

    8537

    FS1

    4N01

    0_58

    mEU

    8179

    75 O

    C413

    BATS

    _O00

    6_75

    mEU

    7939

    06 E

    M-5

    m.15

    1EU

    8186

    61 F

    S01D

    088_

    65m

    EU79

    3894

    EM

    -50m

    .93

    AF4

    7255

    5 Am

    oebo

    phry

    aex

    Scr

    ipps

    iella

    sp.

    DQ

    3867

    53 A

    P-pi

    cocl

    one

    17EU

    8186

    65 F

    S01

    D02

    3_65

    mA

    Y129

    040

    UEP

    AC

    Fp3

    EU81

    8424

    FS1

    4K01

    9_5m

    EU81

    8661

    FS

    01D

    088_

    65m

    EU81

    8645

    FS

    01C0

    72_7

    0mA

    Y775

    285

    Amoe

    boph

    rya

    ex G

    onya

    ulax

    poly

    gram

    ma

    DQ

    3867

    57 A

    P-pi

    cocl

    one

    21EU

    8186

    79 F

    S01

    D04

    1_65

    mEU

    8180

    87 F

    S04

    G119

    _5m

    AF4

    7255

    4 Am

    oebo

    phry

    aex

    Gym

    nodi

    nium

    inst

    riat

    umA

    Y775

    284

    Amoe

    boph

    rya

    ex A

    lexa

    ndri

    umaf

    fine

    EU81

    8375

    FS1

    4JA

    68_5

    mEU

    8183

    81 F

    S14

    JA02

    _5m

    EU81

    8570

    FS

    01A

    A30

    _5m

    EU79

    3954

    EU

    -30m

    .19EU

    8179

    18 O

    C413

    NSS

    _Q06

    0_15

    mA

    Y129

    046

    UEP

    AC

    Dp4

    EU81

    8664

    FS

    01D

    073_

    65m

    AY2

    0889

    3 Am

    oebo

    phry

    aex

    Pro

    roce

    ntru

    mm

    ican

    sA

    Y208

    892

    Amoe

    boph

    rya

    ex C

    erat

    ium

    trip

    osA

    Y129

    054

    UEP

    AC

    APp

    5EU

    8181

    42 F

    S04G

    A81

    _5m

    EU81

    8052

    OC4

    13BA

    TS_P

    007_

    15m

    EU81

    8473

    FS1

    4L08

    8_80

    mEU

    7934

    08 E

    5-55

    m.2

    85EU

    8184

    86 F

    S14M

    003_

    58m

    EU79

    3322

    E5-

    25m

    .202

    EU81

    8533

    FS1

    4N05

    2_58

    mA

    F290

    077

    DH

    148-

    EKD

    27A

    Y885

    029

    BB01

    80

    DQ

    3867

    56 A

    P-pi

    cocl

    one

    20EU

    8179

    19 O

    C413

    NSS

    _Q09

    6_15

    mEU

    8186

    36 F

    S01

    C003

    _70m

    EU81

    7954

    OC4

    13N

    SS_R

    084_

    70m

    EU81

    8110

    FS0

    4G18

    5_5m

    AY8

    8502

    7 BB

    01 8

    3D

    Q18

    6528

    RA

    0012

    19.1

    6D

    Q11

    9926

    NW

    414.

    13EU

    7939

    58 E

    U-3

    0m.2

    9EU

    8186

    77 F

    S01

    D01

    2_65

    mEU

    8180

    66 O

    C413

    BATS

    _P01

    1_15

    mEF

    1730

    06 N

    5 Q

    2A03

    EU79

    3785

    EM

    -110

    m.1

    63EU

    8178

    86 O

    C413

    NSS

    _Q02

    3_15

    mEU

    8182

    79 F

    S04

    E046

    _5m

    EU79

    3609

    ED

    -15m

    .40

    EU56

    2025

    IN

    D70

    .27

    EU79

    3446

    E9-

    5m.13

    3EU

    7933

    06 E

    5-25

    m.1

    74EU

    8186

    78 F

    S01

    D09

    5_65

    mEU

    8178

    88 O

    C413

    NSS

    _Q05

    7_15

    mD

    Q18

    6531

    RA

    0104

    12.2

    9D

    Q11

    9927

    NW

    414.

    25A

    Y208

    894

    Amoe

    boph

    rya

    ex P

    roro

    cent

    rum

    min

    imum

    AY1

    2904

    3 U

    EPA

    C 18

    p4D

    Q14

    5107

    OLI

    0117

    5.31

    EF17

    3016

    Q2G

    12N

    5D

    Q11

    9912

    MD

    65 2

    5EU

    8180

    45 O

    C413

    BATS

    _P09

    1_15

    mEU

    7935

    41 E

    9-65

    m.5

    0EU

    7806

    05 A

    MT1

    5_1B

    _37

    EU81

    8227

    FS

    04H

    080_

    89m

    EU81

    8075

    OC4

    13BA

    TS_P

    087_

    15m

    EU79

    3383

    E5-

    55m

    .147

    DQ

    1865

    26 R

    A00

    0609

    .21

    EU81

    8140

    FS0

    4GA

    75_5

    mEU

    5619

    14 I

    ND

    58.5

    421

    3611

    0 Sa

    rgas

    soVe

    nter

    213

    6110

    AF4

    7255

    3 Am

    oebo

    phry

    aex

    Kar

    lodi

    nium

    vene

    ficu

    mEU

    7937

    10 E

    D-5

    0m.2

    29EU

    8184

    58 F

    S14L

    095_

    80m

    EU81

    8251

    FS0

    4F07

    9_85

    mA

    Y129

    031

    UEP

    AC

    05A

    p2EU

    8184

    56 F

    S14L

    057_

    80m

    EU79

    3968

    EU

    -30m

    .5EU

    7937

    06 E

    D-5

    0m.2

    24EU

    8182

    75 F

    S04

    E039

    _5m

    EF17

    2965

    B03

    N10

    AJ4

    0233

    8 O

    LI01

    1 75

    m 2

    6(1)

    DQ

    1199

    20 N

    OR5

    0.35

    EU56

    2052

    IN

    D70

    .60

    AY6

    6500

    1 S

    CM37

    C20

    EU81

    8356

    FS1

    4JA

    94_5

    m EU79

    3112

    E1-

    30m

    .113

    EU79

    3120

    E1-

    30m

    .125

    EU79

    3127

    E1-

    30m

    .133

    3 2

    33

    4

    4225

    39 5

    1

    41

    EU79

    2988

    C9-

    5m.3

    6EU

    7930

    06 C

    D-1

    5.23

    EU79

    2994

    C9-

    5m.6

    8EU

    7930

    16 C

    M-1

    10m

    .104

    EU79

    3100

    CU

    -30m

    .12

    EU79

    3026

    CM

    -110

    m.9

    5EU

    7929

    30 C

    3-5m

    .111

    EU79

    3059

    CM

    -50m

    .56

    EU79

    3061

    CM

    -50m

    .63

    EU79

    3069

    CM

    -50m

    .8EU

    7930

    76 C

    M-5

    m.11

    3EU

    7930

    97 C

    M-5

    m.7

    5EU

    7929

    32 C

    3-5m

    .122

    EU79

    2934

    C3-

    5m.13

    0EU

    7929

    77 C

    5-25

    m.7

    4EU

    7929

    48 C

    3-5m

    .168

    EU79

    2945

    C3-

    5m.15

    9EU

    7929

    43C3

    -5m

    .155

    EU79

    2942

    C3-

    5m.15

    4EU

    7929

    40 C

    3-5m

    .148

    99/1

    00

    97/9

    9

    10%

    24

    19

    In 3

    í10

    0/10

    0

    100/

    100

    99/1

    00

    99/9

    5

    95/8

    0

    -/-

    EU81

    8306

    FS04

    E044

    _5m

    EU56

    1861

    IND

    33.6

    3D

    Q11

    9915

    NO

    R46.

    30EU

    8179

    59O

    C413

    NSS

    _R06

    1_70

    mEU

    7936

    44ED

    -50m

    .118

    EU79

    3292

    E5-2

    5m.15

    7A

    Y046

    755

    A2

    E047

    AB2

    5276

    3 N

    AM

    AKO

    -23

    DQ

    1865

    25 R

    A00

    0412

    .159

    *EU

    8180

    11O

    C413

    BATS

    _O06

    6_75

    mD

    Q18

    6532

    RA

    0104

    12.5

    EU56

    2063

    IND

    70.7

    2EU

    8183

    69FS

    14JA

    60_5

    mEU

    8182

    52FS

    04F0

    10_8

    5mEU

    8186

    04 F

    S01

    B064

    _5m

    EU79

    3344

    E5-

    25m

    .233

    EU81

    8594

    FS01

    B012

    _5m

    *EF

    1729

    94 S

    SRP

    D 8

    0-96

    SS

    RPD

    93 *

    AB2

    7501

    8 D

    SGM

    -18

    *EU

    7935

    51E9

    -65m

    .67

    AY1

    2903

    6 U

    EPA

    C Cp

    3EU

    8179

    74 O

    C413

    BATS

    _O05

    9_75

    mA

    Y129

    037

    UEP

    AC

    Hp3

    AB2

    5276

    4 N

    AM

    AKO

    -24

    AY1

    2905

    2 U

    EPA

    C Ep

    5 *

    AY1

    2905

    0 U

    EPA

    C 43

    p4 *

    EU79

    3122

    E1-3

    0m.1

    28

    EU81

    8643

    FS

    01C0

    79_7

    0mEU

    7939

    33 E

    M-5

    m.1

    90EU

    7806

    06 A

    MT1

    5_1B

    _39

    *EU

    7937

    31ED

    -50m

    .49

    *EU

    8186

    07FS

    01B0

    57_5

    mEU

    8185

    77FS

    01A

    A74

    _5m

    EF17

    2942

    SS

    RPD

    58-

    79 S

    SRP

    D58

    EU81

    8348

    FS14

    I029

    _70m

    EU81

    8414

    FS14

    JA43

    _5m

    EU81

    8529

    FS14

    M04

    6_58

    mEU

    7934

    37E9

    -5m

    .119

    EU79

    3282

    E5-2

    5m.1

    45EU

    8184

    42FS

    14K0

    78_5

    mEF

    1729

    55 S

    SRP

    D 5

    8-79

    SS

    RPD

    71D

    Q18

    6530

    RA

    0012

    19.5

    7EU

    7937

    49ED

    -50m

    .77

    EU81

    8595

    FS01

    B036

    _5m

    DQ

    1865

    33 R

    A01

    0412

    .70

    100/

    100

    23 1219

    3228

    3844

    13 8

    AB2

    7501

    6 D

    SGM

    -16

    100/

    100

    88/8

    5

    EU79

    3927

    EM-5

    m.1

    82EU

    7936

    81ED

    -50m

    .178

    EU79

    3489

    E9-5

    m.7

    EU81

    8575

    FS01

    AA

    72_5

    mEU

    7935

    81ED

    -15m

    .120

    EU79

    3394

    E5-5

    5m.2

    19EU

    5617

    13IN

    D31

    .40

    EU79

    2913

    OLI

    011_

    75m

    .81 *

    EF21

    9010

    18B

    R10

    *EU

    7938

    19EM

    -110

    m.2

    16EU

    8179

    65O

    C413

    NSS

    _R05

    2_70

    mEU

    7939

    63EU

    -30m

    .4EU

    7938

    31EM

    -110

    m.2

    41EU

    7937

    53ED

    -50m

    .81

    EU79

    3618

    ED-1

    5m.6

    0EF

    1729

    87 S

    SRPD

    80-

    96 S

    SRP

    D85

    EU81

    8198

    FS04

    H06

    0_89

    mA

    Y426

    911

    BL01

    0320

    .32

    EU79

    3375

    E5-2

    5m.8

    EU81

    8576

    FS01

    AA

    73_5

    mEU

    5619

    01IN

    D58

    .34

    EU81

    8332

    FS14

    I077

    _70m

    AY4

    2688

    6 BL

    0012

    21.4

    0EU

    7806

    00 A

    MT1

    5_1B

    _32

    AJ4

    0233

    5 O

    LI01

    1 75

    m 2

    3(5)

    EU81

    8202

    FS04

    H06

    7_89

    mEU

    7939

    25EM

    -5m

    .179

    EU81

    8269

    FS04

    F047

    _85m

    AY6

    6498

    8 SC

    M16

    C19

    AY1

    2904

    2 U

    EPA

    C 41

    p3A

    Y882

    474

    Cari

    aco

    p15D

    01EU

    7938

    41EM

    -50m

    .12

    EU81

    8605

    FS01

    B055

    _5m

    EU56

    1715

    IND

    31.4

    2EU

    7805

    94 A

    MT1

    5_1B

    _25

    EU79

    3817

    EM-1

    10m

    .214

    EF17

    3014

    Q2G

    02N

    5D

    Q50

    4320

    LC2

    2-5E

    P-11

    EU56

    1841

    IND

    33.3

    9A

    Y664

    990

    SCM

    37 C

    21EU

    7931

    32E1

    -30m

    .142

    EU79

    3504

    E9-5

    m.9

    6EF

    1729

    92 S

    SRP

    D 8

    0-96

    SS

    RPD

    91EU

    8184

    81FS

    14L0

    32_8

    0mD

    Q11

    9930

    NW

    617.

    25EU

    7939

    53EU

    -30m

    .18A

    Y129

    057

    UEP

    AC

    AFp

    5EU

    8186

    21 F

    S01B

    069_

    5mEU

    8178

    89O

    C413

    NSS

    _Q01

    7_15

    mA

    Y256

    303

    CAR

    D 6

    9A

    Y046

    614

    C1 E

    010

    AY0

    4659

    9 CS

    E00

    1

    10 +

    11

    9

    Clos

    e to

    10

    + 1

    1?

    EU81

    8213

    FS04

    H17

    9_89

    mA

    Y937

    633

    ENI4

    0076

    002

    93A

    F290

    071

    DH

    147

    EKD

    16EU

    7805

    91 A

    MT1

    5_1B

    _21

    EU81

    8484

    FS14

    M00

    6_58

    mEF

    1727

    97 S

    SRPB

    79EU

    7935

    07 E

    9-65

    m.1

    02EF

    1727

    98 S

    SRP

    B41

    EU79

    3345

    E5-

    25m

    .234

    EF17

    2925

    SS

    RPC3

    2EF

    1728

    72 S

    SRPC

    09EU

    7936

    96 E

    D-5

    0m.2

    04EF

    1729

    77 Q

    2D03

    N10

    EU79

    3347

    E5-

    25m

    .236

    EU56

    1778

    IND

    31.11

    1EU

    5617

    85IN

    D31

    .119

    EF17

    2800

    SS

    RPB1

    3EF

    1728

    88 S

    SRPC

    56EU

    8184

    69 F

    S14L

    076_

    80m

    EU81

    8193

    FS0

    4H02

    3_89

    m*

    EU81

    8206

    FS

    04H

    054_

    89m

    *A

    Y665

    038

    SCM

    37 C

    19EU

    7938

    32 E

    M-1

    10m

    .242

    EU79

    3799

    EM-1

    10m

    .191

    EU81

    8155

    FS04

    H01

    0_89

    mEU

    8185

    19 F

    S14M

    052_

    58m

    EU81

    8520

    FS1

    4M01

    7_58

    mEU

    7939

    86 E

    U-3

    0m.9

    3EU

    7939

    67 E

    U-3

    0m.4

    6EU

    7936

    55 E

    D-5

    0m.13

    4EF

    1729

    53 S

    SRP

    D 5

    8-79

    SSR

    PD69

    EU79

    3707

    ED

    -50m

    .225

    EU81

    8196

    FS04

    H01

    9_89

    m*

    EU56

    1848

    IN

    D33

    .47

    EU79

    3579

    ED

    -15m

    .118

    EF17

    2923

    SSR

    PC86

    AF2

    9006

    9 D

    H14

    7 EK

    D3

    EU81

    8314

    FS1

    4I00

    6_70

    mEU

    7937

    92 E

    M-1

    10m

    .177

    EU81

    8239

    FS

    04F0

    68_8

    5mEU

    8484

    94 E

    5-55

    m.14

    9EU

    8184

    29 F

    S14K

    010_

    5mEU

    7931

    34 E

    1-30

    m.1

    48EU

    8181

    54 F

    S04

    H13

    2_89

    mEU

    8180

    18O

    C413

    BATS

    _O03

    3_75

    mEU

    8181

    95 F

    S04H

    059_

    89m

    EF17

    2844

    SS

    RPB5

    8EU

    8181

    94 F

    S04H

    040_

    89m

    EU79

    3801

    EM

    -110

    m.19

    3EF

    1728

    37 S

    SRP

    B62

    EU81

    7944

    OC4

    13N

    SS_R

    029_

    70m

    AY1

    2905

    5 U

    EPA

    C Fp

    5EU

    8181

    89 F

    S04H

    069_

    89m

    EU79

    3838

    EM

    -50m

    .110

    AY4

    2685

    7 BL

    0012

    21.3

    EU79

    3734

    ED

    -50m

    .53

    EU81

    8175

    FS0

    4H06

    4_89

    mEF

    1729

    75 Q

    2B12

    N10

    EU81

    8212

    FS0

    4H15

    8_89

    mEU

    7939

    31 E

    M-5

    m.18

    6EU

    8185

    00 F

    S14M

    038_

    58m

    AY2

    9557

    4 RA

    0012

    19.8

    EU79

    3640

    ED

    -15m

    .94

    AF2

    9006

    8 D

    H14

    7 EK

    D6

    EF17

    2913

    SS

    RPC3

    9EU

    5619

    13IN

    D58

    .53

    EU81

    7973

    OC4

    13BA

    TS_O

    031_

    75m

    DQ

    1199

    23 N

    OR5

    0.56

    EF17

    3017

    Q2H

    03N

    5D

    Q11

    9925

    NW

    414.

    06A

    Y129

    039

    UEP

    AC

    AQ

    p3EU

    7935

    26E9

    -65m

    .127

    EU81

    8182

    FS0

    4H17

    6_89

    m

    100/

    100

    100/

    100

    99/1

    00

    99/9

    3

    99/8

    8

    72/8

    0

    92/6

    3

    64/-

    7

    29

    4043

    203627

    35

    6

    EU78

    0613

    AM

    T15_

    15B_

    9A

    J402

    348

    OLI

    011

    75m

    9EU

    5616

    82IN

    D31

    .7EU

    8180

    65O

    C413

    BATS

    _P08

    3_15

    mEU

    8183

    42FS

    14I0

    64_7

    0mEU

    7935

    34E9

    -65m

    .20

    EU81

    8468

    FS14

    L087

    _80m

    AY6

    6499

    7 S

    CM37

    C7

    EU79

    3510

    E9-6

    5m.1

    06EU

    8183

    53FS

    14JA

    67_5

    m

    EU79

    3288

    E5-2

    5m.1

    51 *

    EU81

    7941

    OC4

    13N

    SS_R

    039_

    70m

    EU81

    8554

    FS14

    N02

    0_58

    mEU

    7938

    53EM

    -50m

    .30

    EU81

    7985

    OC4

    13BA

    TS_O

    061_

    75m

    EU79

    3563

    E9-6

    5m.8

    8EU

    7937

    89EM

    -110

    m.1

    70EU

    8185

    69FS

    01A

    A12

    _5m

    EF17

    2958

    SS

    RPD

    58-

    79 S

    SRP

    D74

    AY1

    2904

    9 U

    EPA

    C 42

    p4 *

    EU79

    3470

    E9-5

    m.3

    7EU

    7934

    96E9

    -5m

    .85

    EU81

    8405

    FS14

    JA47

    _5m

    EU81

    8071

    OC4

    13BA

    TS_P

    052_

    15m

    EU81

    8304

    FS04

    E065

    _5m

    DQ

    1199

    14 N

    OR2

    6.28

    AY8

    8503

    1 BB

    01 6

    2EU

    8186

    14FS

    01B0

    92_5

    mEU

    7932

    66E5

    -25m

    .103

    EU79

    3317

    E5-2

    5m.1

    96EU

    8183

    46FS

    14I0

    19_7

    0mD

    Q11

    9929

    NW

    614.

    20EU

    7938

    63EM

    -50m

    .44

    AJ4

    0234

    4 O

    LI01

    1 75

    m 5

    5EU

    7933

    98E5

    -55m

    .248

    EU81

    8688

    FS01

    D08

    6_65

    mEU

    8178

    93O

    C413

    NSS

    _Q06

    2_15

    mEU

    7806

    26 A

    MT1

    5_33

    B_18

    EU79

    3688

    ED-5

    0m.19

    2EU

    8184

    38FS

    14K0

    06_5

    mEU

    8181

    51FS

    04H

    058_

    89m

    EU79

    3411

    E5-5

    5m.3

    03EU

    7935

    59E9

    -65m

    .82

    EU79

    3555

    E9-6

    5m.7

    4

    99/9

    9

    80/-

    87/6

    4

    78/-

    16 17

    30 26

    EU81

    8482

    FS14

    M08

    8_58

    mEU

    7933

    49E5

    -25m

    .239

    EU79

    3410

    E5-5

    5m.3

    EU81

    7920

    OC4

    13N

    SS_R

    066_

    70m

    EF17

    3005

    H02

    N5

    EU79

    3311

    E5-2

    5m.18

    3EU

    8182

    18 F

    S04

    H04

    8_89

    mEU

    5620

    06IN

    D70

    .06

    EU79

    3198

    E1-8

    0m.4

    1EU

    7931

    23E1

    -30m

    .129

    EU79

    3219

    E3-2

    5m.1

    9EU

    8179

    53O

    C413

    NSS

    _R00

    5_70

    mEU

    7938

    73EM

    -50m

    .60

    EU83

    6604

    FS1

    4JA

    35_5

    mEU

    8183

    10 F

    S14I

    045_

    70m

    EU56

    1881

    IND

    58.0

    3EF

    1729

    52 S

    SRP

    D 5

    8-79

    SS

    RPD

    68EU

    7938

    67EM

    -50m

    .5EF

    1730

    09 Q

    2C03

    N5

    AY0

    4663

    4 C1

    E03

    7A

    F530

    532

    AT

    4 21

    AY0

    4683

    5 C3

    E00

    5A

    Y046

    630

    C1 E

    030

    AY0

    4686

    9 C3

    E04

    2A

    B275

    017

    DS

    GM-1

    7A

    Y046

    603

    CS E

    006

    AY0

    4661

    0 C1

    E00

    6A

    F290

    079

    DH

    148

    EKD

    14D

    Q14

    5113

    OLI

    011

    75m

    70

    EF17

    3003

    D05

    N5

    EU81

    8267

    FS

    04F0

    73_8

    5mEU

    7932

    24E3

    -25m

    .97

    EF17

    2931

    SS

    RPC0

    2D

    Q11

    9918

    NO

    R50.

    26A

    Y129

    045

    UEP

    AC

    Bp4

    EU79

    3111

    E1-3

    0m.11

    1EU

    5620

    27IN

    D70

    .29

    EU79

    3751

    ED-5

    0m.7

    9EU

    7933

    42E5

    -25m

    .231

    DQ

    1199

    16 N

    OR5

    0.19

    EU81

    8225

    FS

    04H

    001_

    89m

    EU56

    1966

    IND

    60.4

    5EF

    1729

    45 S

    SRPD

    58-

    79 S

    SRP

    D61

    EU81

    8532

    FS14

    N01

    4_58

    mEU

    7939

    09EM

    -5m

    .154

    EU81

    8044

    OC4

    13BA

    TS_P

    051_

    15m

    AF2

    9007

    4 D

    H14

    7 EK

    D19

    EU81

    8043

    OC4

    13BA

    TS_P

    029_

    15m

    EU81

    8273

    FS04

    E053

    _5m

    DQ

    3867

    51 A

    P-pi

    cocl

    one

    15EU

    7938

    16EM

    -110

    m.2

    13EU

    5618

    59IN

    D33

    .60

    EU79

    3877

    EM-5

    0m.7

    EU81

    7890

    OC4

    13N

    SS_Q

    072_

    15m

    EU81

    8526

    FS14

    M03

    1_58

    mD

    Q18

    6534

    RA

    0106

    13.1

    26EU

    7938

    15EM

    -110

    m.2

    11EU

    8184

    13FS

    14JA

    82_5

    mEU

    7937

    84EM

    -110

    m.1

    56D

    Q14

    5103

    OLI

    011

    75m

    17(

    5) *

    EU56

    2109

    IND

    72.3

    2EU

    8183

    41FS

    14I0

    28_7

    0mEU

    8179

    50O

    C413

    NSS

    _R02

    3_70

    mEU

    8185

    13FS

    14M

    004_

    58m

    100/

    100

    100/

    100

    100/

    100

    100/

    100

    100/

    100

    100/

    98 77/-

    93/7

    2

    87/-

    0.05

    22

    15 31 2

    1

    14

    18 37

    34

    Cla

    de

    «A

    mo

    ebo

    ph

    rya

    »5%

    63/8

    0

    100/

    99

    81/-

    55/-

    98/8

    5

    100/

    87

    100/

    100

    65/1

    00

    100/

    100

    96/9

    3

    Fig

    .3.

    Phy

    loge

    nyof

    Syn

    dini

    ales

    Gro

    upII.

    Nei

    ghbo

    ur-jo

    inin

    gph

    ylog

    eny

    ofA

    lveo

    late

    Gro

    upII,

    base

    dup

    onan

    alys

    isof

    423

    part

    ials

    eque

    nces

    ,73

    8bp

    inle

    ngth

    and

    cent

    red

    atth

    e5′

    end

    (incl

    udin

    gou

    tgro

    ups,

    not

    show

    n).A

    GT

    R+

    Gm

    odel

    was

    sele

    cted

    usin

    gth

    efo

    llow

    ing

    para

    met

    ers:

    Lset

    Bas

    e=

    (0.2

    736

    0.17

    000.

    2545

    ),N

    st=

    6,R

    mat

    =(1

    .000

    03.

    3780

    1.28

    041.

    2804

    4.96

    83),

    Rat

    es=

    gam

    ma,

    Sha

    pe=

    0.61

    08,

    Pin

    var

    =0.

    1155

    ).B

    oots

    trap

    valu

    es,

    give

    nat

    the

    prin

    cipa

    lnod

    esof

    the

    diffe

    rent

    clad

    es,

    corr

    espo

    ndto

    neig

    hbou

    r-jo

    inin

    gan

    dm

    axim

    umpa

    rsim

    ony

    anal

    yses

    resp

    ectiv

    ely

    (100

    0re

    plic

    ates

    ,va

    lues

    >60

    %sh

    own)

    .T

    heas

    teris

    k‘*

    ’ind

    icat

    essi

    ngle

    tons

    (seq

    uenc

    esth

    atar

    eno

    tin

    clud

    edin

    any

    clad

    es).

    The

    scal

    eba

    rco

    rres

    pond

    sto

    5%se

    quen

    cedi

    verg

    ence

    .T

    hetr

    eew

    ascu

    tin

    orde

    rto

    bette

    rse

    para

    teth

    em

    ajor

    clad

    esin

    the

    figur

    e.In

    set:

    asm

    allp

    ortio

    nof

    the

    neig

    hbou

    r-jo

    inin

    gtr

    eeob

    tain

    edus

    ing

    the

    3′en

    dof

    the

    18S

    rRN

    Age

    neof

    Alv

    eola

    teG

    roup

    II,ba

    sed

    upon

    anal

    ysis

    of36

    5pa

    rtia

    lseq

    uenc

    es,

    617

    bpin

    leng

    th(in

    clud

    ing

    outg

    roup

    s).

    The

    scal

    eba

    rco

    rres

    pond

    sto

    10%

    sequ

    ence

    dive

    rgen

    ce.

    Boo

    tstr

    apva

    lues

    corr

    espo

    ndto

    neig

    hbou

    r-jo

    inin

    gan

    alys

    es(1

    000

    repl

    icat

    es).

    Seq

    uenc

    esin

    grey

    are

    from

    hydr

    othe

    rmal

    and

    subo

    xic

    ecos

    yste

    ms.

    3356 L. Guillou et al.

    Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 10, 3349–3365No claim to original French government works

  • By comparison, Syndiniales Group II is genetically morediverse than Group I. In addition to clades 1–16 (seeGroisillier et al., 2006), 28 new clades emerged from thepresent study (clades 17–44, Fig. 3). Some of theseclades are not supported by bootstrap analyses obtainedwith one of the two phylogenetic methods tested (clades2, 6, 10+11, 14, 16, 23, 25 and 26), but in such cases thetree topologies are identical between the two methods.Clade 10 and Clade 11 described by Groisillier and col-leagues (2006) are now merged into a single clade(herein named Clade 10+11), which includes cloneBL10320.32 (a singleton in the work of Groisillier et al.,2006). However, Clade 10+11 is not supported by boot-strap analyses. Numerous environmental sequences dis-playing long branches (labelled ‘close to 10+11?’ in Fig. 3)also appear to be closely related to Clade 10+11.

    Only a single genus within Syndiniales Group II hasbeen formally described, the Amoebophrya. AllAmoebophrya sequences obtained from cultures andsingle-cell analyses formed a monophyletic group as rec-ognized by Groisillier and colleagues (2006). This mono-phyletic group now also includes clades 1–5 as well asclades 25, 33, 39, 41 and 42 (Fig. 3). Recently, Kim andcolleagues (2008) recognized nine different subgroupswithin Amoebophrya. Subgroup 1 (from the analysis ofKim and colleagues) corresponds primarily with our Clade1 (except sequence AF290077 which belongs to the novelClade 25) while subgroups 3, 4, 5 and 6 correspond toclades 4, 3, 5 and 2 respectively. The recognition of sub-group 2 (identified in Kim et al., 2008) is probably skewedby inclusion of a sequence we identified to be a chimera(DQ186527). Thus, sequence AY260468, obtained fromthe direct amplification of Ceratium tripos infected withAmoebophrya, likely remains a singleton. SequenceAY295690 (subgroup 8) is also a probable chimera,whereas sequences included within subgroups 7 and 9belong to Clade 33 in the present study. SequenceDQ916402, obtained from the direct amplification of a cellof spumellarida Hexacontium gigantheum (Radiolaria), isclosely related to Clade 6. This sequence was removedfrom our global analyses due to the high number of nucle-otide ambiguities it contained. Clades 15 and 9 are pri-marily composed of environmental sequences fromanoxic or suboxic ecosystems (highlighted in grey inFig. 3). Both clades also include sequences retrievedfrom deep-sea methane cold seeps (DSGM-16 and 17,Takishita et al., 2007) and deep oceanic waters (Count-way et al., 2007), but these sequences were not includedin this analysis due to their short length. Clades originallycontaining only sequences from coastal systems (i.e.clades 2, 4, 5, 8, 12 and 13; see Groisillier et al., 2006) areshown here to also include clones from other oceanicregions, including oligotrophic waters. This highlights theimportance of gaining sequence representation from a

    broader array of geographical locations. Finally, in termsof the number of sequences, the most commonly foundclades in rank order were clades 10+11, 7, 6, 1, 19, 3, 22and 16.

    Other Syndiniales groups (III–V) also emerged from thepresent study (detailed in Fig. 1). Syndiniales Group IIIcontains 71 environmental sequences, including cloneOLI11005 (AJ402349) that was previously placed outsideGroup II (see Groisillier et al. 2006), as well as numerousenvironmental sequences retrieved from various oceanicsurface waters (Mediterranean Sea, Indian Ocean, Sar-gasso Sea), coastal waters [Southern Taiwan Strait,Blanes Bay (Spain) and the English Channel] and from asupersulfidic anoxic fjord (DQ310226). Syndiniales GroupIV contains the genera Syndinium and Hematodinium,five closely related environmental sequences, a sequenceretrieved from the Mediterranean Sea, E1–80m.27,closely related to Syndinium turbo and a clade allied withthe genus Hematodinium and composed of sequencesfrom the Sargasso Sea (EF172791 and DQ918583)and from deep sea hydrothermal vents (DQ504327 andDQ504356). Syndiniales Group V contains 67 environ-mental sequences, all collected within the euphotic zone,but includes clones retrieved from very different oceanicecosystems (Indian Ocean, Atlantic Ocean, Mediterra-nean Sea and Sargasso Sea). Sequence BL000921.23from Blanes also belongs to Syndiniales Group V (notincluded here due to sequence length dissimilarities).Finally, two partial environmental sequences could not beassigned to any specific group: EU793524 (E9–65m.123)and EU818559 (F14DEC+), but phylogenetic analysisplaced them closely related, although separated fromthese Syndiniales groups.

    Ecological distributions

    Dinoflagellate sequences represent less than 1% ofenvironmental sequences from continental ecosystems(aquatic and terrestrial), whereas they represent close to30% of the sequences obtained from marine ecosystems.With respect to aquatic environments (both marine andfreshwater), dinoflagellates sequences as a whole wereobtained primarily from the plankton, as opposed to otherenvironments such as sediments (Table 2). Sequencesbelonging to Syndiniales groups I and II were absent insamples collected to date from continental ecosystems,however, they represent the largest portion of dinoflagel-late sequences from marine systems. Syndiniales GroupII alone represented about half of all environmentaldinoflagellate sequences (Table 2).

    We divided marine ecosystems included in oursequence database into various categories: (i) anoxic andsuboxic ecosystems, (ii) ecosystems with hydrothermalactivities, (iii) sediments, or (iv) the water column

    Diversity of parasitic Syndiniales 3357

    Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 10, 3349–3365No claim to original French government works

  • (wherever possible, we also specified whether sequenceswere derived from the aphotic or euphotic zone; Fig. 4). Incases where these categories overlapped (e.g. anoxicsediments collected from deep hydrothermal vents, oranoxic water columns), environmental sequences wereincluded in both categories. Considering all dinoflagellatesequences, Syndiniales Group II sequences were moreabundant in clone libraries derived from the water column(planktonic ecosystems) than in other habitats, whilethe relative importance of the remaining dinoflagellatesequences (including Syndiniales Group I) was greater inanoxic environments, hydrothermal vents and sediments(Fig. 4). Within planktonic ecosystems, the relative contri-bution to clone libraries of Syndiniales Group I and IIcompared with other dinoflagellate sequences was similarbetween euphotic and aphotic waters (Fig. 4).

    Environmental sequences derived from the euphoticzone, both coastal and oceanic waters, have generallybeen recovered using three different primer setsEuk328/Euk329, EukA/EukB and EukA/EukB′ (for primerreferences see Table S2). Although the contribution ofdinoflagellate sequences to the total number of clones is

    very similar using either the EukA/EukB or EukA/EukB′primer sets, the relative contribution of Group II is higherusing the Euk328f/Euk329r primer set (Fig. 5). However,the distribution of Syndiniales Group I and II cladeswithin the euphotic zone, as evidenced from these clonelibraries, is quite similar with the different primer sets(Fig. 6). According to clone library composition, sunlitsurface marine waters are dominated by SyndinialesGroup I clades 1, 4 and 5, and Group II clades 1, 6, 7and 10+11 (Fig. 6). Comparing sequences obtainedusing the same primer sets, Syndiniales clade distribu-tions within the aphotic zone are quite different fromsurface waters, mainly dominated by Syndiniales GroupI clades 1, 2 and 3 and by Syndiniales Group II clades6 and 7 (Fig. 6).

    Discussion

    Our phylogenetic analysis of available 18S rRNA genesequences from described par