wilt & goldstein cerro prieto resistivity.pdf

Upload: emir-monrod

Post on 07-Jul-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Wilt & Goldstein Cerro prieto resistivity.pdf

    1/15

    THIRD SYMPOSIUM

    ON THE CERRO PRIETO GEOTHERMAL FIELD,

    BAJA

    CALIFORNIA, MEXICO

    Sponsored by

    United States Department of Energy, Office of Renewable Technology

    Geothermal and Hydropower Technology Division

    in Cooperation with

    Comisidn Federal de Electricidad de Me xico

    \

    Q

    DO

    NOT M l R O f l L

    PROCEEDINGSIACTAS

    March 24 26 1981

    San Francisco California

    Earth Sciences Division

    Lawrence Berkeley Laboratory

    University of California

    Berkeley, California 94720

    R

    Coordinadora Ejecutiva

    de Cerro Prieto

    Mexicali, Baja California,

    Mgxico

    Prepared for the

    U S .

    Department

    o

    Energy under Contract DE-AC03-76SFOCO98

    k J T U

    IJ

    tM

    bbtU Wtif

    W U U l T E 8

    CONF-810399-27

  • 8/18/2019 Wilt & Goldstein Cerro prieto resistivity.pdf

    2/15

    RESULTS FROM

    TW

    YEARS

    OF

    RESISTIVITY MONITORING

    AT

    CERRO PRIETO

    M.

    J.

    Wilt and N. E. Goldstein

    Lawrence

    Berkel ey Laborat ory

    Uni versi ty

    o

    Cal i fornia

    Berkel ey, Cal i fornia, U.S.A.

    ABSTRACT

    Di pol e-di pol e r esi st i vi t y measurement s

    f or t he combi ned pur poses of r eser voi r del i neati on

    and r esi sti vi t y moni t ori ng were f i r st made at

    Cer r o Pr i et o i n 1978 and have cont i nued on an

    annual basi s si nce then.

    di pol e l i nes w t h per manent l y empl aced el ect r odes

    at one ki l omet er spaci ngs wer e est abl i shed over

    t he f i el d ar ea; one of t hese l i nes i s r emeasur ed

    annual l y. Resi st i vi t y measurement s are t aken

    usi ng a 25 kW gener ator capabl e of up t o 8OA

    out put and a m cr opr ocessor cont r ol l ed si gnal

    aver agi ng recei ver ; t hi s hi gh power- l ow noi se

    syst em i s capabl e of hi ghl y accurat e measur ement s

    even at l ar ge t r ansm t t er - r ecei ver separ at i ons.

    St andar d er r or cal cul at i ons f or col l ected data

    i ndi cat e er rors l ess than 5 percent f or al l

    poi nt s, but 95 per cent conf i dence i nt er val s

    show err or l i m t s about 2- 4 ti mes hi gher .

    Anal ysi s of col l ected dat a i ndi cat e l i t t l e

    change i n the apparent r esi st i vi t y of t he upper

    300

    m over t he f i el d producti on zone and t hat

    i n thi s secti on measur ement s are r el at i ve-

    l y i nsensi ti ve to the annual rai nf al l cycl e.

    Apparent r esi st i vi t y i ncr eases were observed

    over t he ol der pr oduci ng zone at Cerr o Pri eto

    at depths of 1 km and gr eat er. Lar ge zones of

    decr easi ng appar ent r esi st i vi t y were observed

    f l anki ng t he zone of i ncr eases on bot h si des.

    The i ncrease i n appar ent r esi st i vi t y i n the

    product i on r egi on may be due to an i ncreasi ng

    f r acti on of steam i n t he reservoi r resul t i ng

    f r oma pr oducti on r el at ed decl i ne i n reser voi r

    pr essur e.

    t he resul t of f resh wat er i nf l ux fr om the

    Col or ado ri ver. The zone of decl i ni ng resi sti v-

    i t y f l anki ng t he area of i ncr ease may be due to

    t he movement of sal i ne wat er s i nt o the r eser voi r

    r egi on as a resul t of t he pr essur e decl i ne.

    Quant i t at i ve model i ng of observed changes i s

    i mpr act i cal ow ng to t he hi gh uncer t ai nt y i n

    est i mati ng appar ent r esi st i vi t y changes and t he

    nonuni queness of model s.

    Two 20 km l ong di pol e-

    Al t ernat i vel y t he i ncreases may be

    I NTRODUCTI ON

    Begi nni ng i n 1978, Lawr ence Berkel ey

    Laborat ory (LBL), i n cooper ati on w t h t he Comsi bn

    Federal de El ectr i ci dad i n Mexi co (CFE), began a

    pr oj ect of moni t or i ng changes i n subsur f ace

    r esi st i vi t y w t h surf ace resi st i vi t y measurements

    over an area of i nt ense st eam and water producti on

    at t he Cer r o Pri eto geot her mal f i el d i n Baj a

    Cal i f orni a, Mexi co (Fi gure 1.

    i ncl ude: (a) t he del i neati on of subsur f ace

    r esi st i vi t y str ucture at Cerr o Pri et o and reservoi r

    boundari es and

    (b)

    the f easi bi l i t y of det ecti ng

    The pr oj ect goal s

    changes i n t he subsur f ace r esi st i vi t y (e. g. , due

    t o cont i nui ng f l ui d producti on) f r om sur f ace

    measurement s. The proj ect pl an was to est abl i sh

    a permanent arr ay of st ati ons and to dupl i cate

    t he measurement on a year l y basi s

    f or t he pur pose

    of observi ng changes i n subsur f ace condi t i ons.

    The r esi st i vi t y str ucture deri ved f rom

    sur f ace measurement s has been descri bed i n Wl t

    and Gol dst ei n (1979).

    t he resul t s of two years of r esi st i vi t y moni t ori ng

    at Cer r o Pri et o. We descr i be the f i el d system

    used f or measurement s and t he met hods f or obt ai ni ng

    hi gh qual i t y r epeat abl e dat a.

    observed changes over t he t wo year span w l l be

    examned i n t erms of t he exi st i ng t wo- di mensi onal

    r esi st i vi t y model . Fi nal l y, an at t empt i s made

    t o expl ai n geol ogi cal and hydr ol ogi cal processes

    r el ated to groundwater w t hdr awal and t ect oni sm

    I n thi s paper , we pr esent

    I n addi t i on,

    EXPERI MENT DESI GN

    The di pol e-di pol e resi st i vi t y method was

    chosen f or t he resi st i vi t y moni t or i ng arr ay at

    Cerr o Pri eto. Thi s met hod, whi ch i s commonl y

    used i n m ni ng expl orat i on, was chosen f or

    sever al r easons: (a) t he ease i n establ i shi ng

    t he r el ati vel y f ew per manent el ectr odes needed

    f or moni t or i ng; (b) t he i nherent sensi t i vi t y of

    t he met hod to l at eral l y di scont i nuous resi st i vi t y

    st r uct ur e; and (c) t he r el ati vel y short l engt hs

    of w r e needed f or f i el d operat i on.

    A schemati c di agr amof t he f i el d syst em

    i s shown i n Fi gur e 2.

    capabl e of provi di ng square wave curr ent s of up

    t o 80 amps peak t o peak i nto the ground at up to

    1200 vol t s f or square wave per i ods f r om1 t o 1000

    seconds. Thi s power source pr oved i deal f or t he

    Cer r o Pri eto sur vey si nce i t i s por t abl e yet

    powerf ul enough to pr ovi de adequat e si gnal s f or

    di st ant st at i ons. Because of t he hi ghl y conduct i ve

    gr ound at Cer r o Pr i et o, 40 second peri od squar e

    waves wer e used t o m ni m ze i nduct i ve coupl i ng

    eff ects. Tri al s of 10 second peri od square waves

    showed severe i nduct i ve at t enuat i on f or di st ant

    si t es whi ch resul t ed i n er r oneousl y l ow apparent

    res i st i vi t y est i mates.

    The 25 kW generator i s

    W t h t he LBL syst em si gnal s are recei ved

    at f our di pol es si mul t aneousl y at i nt eger mul t i pl es

    of

    1

    t o 10 t i mes t he 1 tan t ransmt t er di pol e

    l engt h.

    copper - copper sul f ate el ectr odes and el ect r oni cal - -

    l y f i l t ered and ampl i f i ed.

    t o r emove

    6 0

    Hz and t el l ur i c noi se. Af t er anal og

    pr ocessi ng, t he si gnal s ar e di gi t i zed, decomposed

    i nto Four i er components and st acked usi ng a

    The si gnal s are detect ed w t h porous pot

    Fi l t er i ng i s n e c e s s a b

    372

  • 8/18/2019 Wilt & Goldstein Cerro prieto resistivity.pdf

    3/15

    DISCLAIMER

    This report was prepared as an account of work sponsored by anagency of the United States Government. Neither the United StatesGovernment nor any agency Thereof, nor any of their employees,makes any warranty, express or implied, or assumes any legalliability or responsibility for the accuracy, completeness, orusefulness of any information, apparatus, product, or processdisclosed, or represents that its use would not infringe privatelyowned rights. Reference herein to any specific commercial product,process, or service by trade name, trademark, manufacturer, orotherwise does not necessarily constitute or imply its endorsement,recommendation, or favoring by the United States Government or anyagency thereof. The views and opinions of authors expressed hereindo not necessarily state or reflect those of the United StatesGovernment or any agency thereof.

  • 8/18/2019 Wilt & Goldstein Cerro prieto resistivity.pdf

    4/15

  • 8/18/2019 Wilt & Goldstein Cerro prieto resistivity.pdf

    5/15

    multichannel spectrum analyzer (Morrison et el.

    ,

    1978).

    for obtaining high quality data since it was

    possible to eliminate much of the noise prior to

    --tacking and efficiently reduce the remaining

    This system was found to be very effective

    ise by stacking the signals from four dipoles

    tdmult aneously.

    Two

    2

    km long dipole-dipole lines

    oriented east-west were established in the field

    area (Figure 1). Line D-D' is outside of the

    producing field area and lies adjacent to the

    Cerro Prieto volcano; this line was primarily

    used for background information. Line E-E'

    crosses directly over the production zone (Figure

    3) and is remeasured on an annual basis for

    monitoring purposes. Measurements are take n-at

    130 points to a maximum n-spacing of

    8,

    which

    corresponds to a transmitter-receiver separation

    of 9 km and a maximum depth of penetration of

    about 3 km. A minimum of 30 square wave cycles

    were averaged at each site; and, for the distant

    sites, where signals are weakest, more than 2

    cycles were averaged. Measurements were often

    taken during the evening hours and during

    weekends, when telluric and cultural noise levels

    were lowest. Almost half of the points were

    measured twice or more during each annual field

    session. This was done to estimate repeatibility

    of measurements over a short time interval and to

    compare short time repeatability with errors

    estimated from individual data sets.

    \

    RESULTS

    Estimate of Error.

    For all measurements,

    means and standard deviations (g) of apparent

    resistivities were computed, and from these

    quantities and

    N,

    the number

    of

    cycles averaged,

    the percent standard error (SEI was computed,

    U

    percent SE

    *

    7100

    ' FT

    average apparent resistivity.

    This number estimates the error in the mean

    of

    a

    given data set. With only random noise in the

    signal this is a reasonable estimate of the

    measurement error. Unfortunately, signals are

    often contaminated by non-random sources (i.e.,

    power lines, fence lines, vehicular traffic), and

    such sources could provide a bias to the data

    measurements. To estimate how severe this bias

    can be, we made repeat measurements over particular

    points two and three times during each annual

    survey.

    ranged from 12 hours to 8 days.

    these data, 9 5 percent confidence 1

    calculated, as displayed in Table 1.

    In all cases, we find that the calc

    The time interval between measurements

    For some of

    exceed the standard errors by a

    In addition, the differences

    s of remeasured Val

    fall within the confidence interval

    two

    entries in the table show the results when

    transmitter and receiver position were

    w

    erchanged. The calculated means for this case

    are very close to each other; however, the errors

    are much larger when the transmitter is located

    at stations 12 and 13. The error difference is

    probably due to the higher noise level at stations

    7

    and 8, which are close to the power plant.

    Although it is likely that the confidence

    intervals provide a more accurate representation

    of actual error, their calculation for three sets

    of data is a formidable task. Because of the

    limited number of observations taken for each

    point, the accuracy of these more rigorous

    confidence interval calculations is still suspect.

    We have therefore limited error calculations to

    the standard error.

    approach is that it gives a fairly accurate

    representation of relative error for. values in

    the pseudosection. A pseudosection plot of

    standard errors the fall 1980 data set is

    given in Figure

    increasing with separation, and relatively

    greater errors are observed in the western end of

    the line where it is comparatively more difficult

    to impress large currents in the ground. Errors

    are relatively low in the central and eastern

    portions of the line, which overlie the reservoir

    region.

    The advantage of this

    This figure shows errors

    Observed Apparent Resistivity Changes.

    Figure 5 is a line plot of observed apparent

    resistivity differences for h-spacings of 1 and

    4

    over line E-E'.

    calculations for two sets of data relative to

    baseline measurements taken in the spring of

    1979. For the n=1 line plot (Figure 5a), the

    differences are large for both sets of data at

    the western end of the line but relatively small

    elsewhere.

    The plot shows percent difference

    To assess the effect of the annual

    rainfall cycle on subsurface conditions, a set of

    measurements taken in the fall of 1980, at the

    end of the dry season, is compared with measure-

    ments taken in the spring of the same year.

    Figure 5a shows that the apparent resistivity

    differences for measurements taken over the

    producing field (stations 6-13) at the n=l

    spacing are very small for both data sets. This

    indicates that the clays and muds in this region

    are relatively insensitive to the annual rainfall

    cycle. In contrast, the apparent resistivity

    differences of the near surface in the alluvial

    fan material adjacent to the Cucapa mountains

    (stations 1-5) is much greater; this suggests

    that the resistivity of the near surface in this

    region is very sensitive to the annual rainfall

    In Figure 5b, the apparent resistivity

    ences for an n=4 spacing ar

    both spring and fall of 1980 data

    to the 1979 baseline. The

    n==4

    p

    to a maximum depth of penetration of about 1300

    m.

    The figure indicates a sign

    in.apparent resistivity over th

    zone at Cerro Prieto (stations 7-11) and signifi-

    cant decreases in an apparent resistivity for the

    areas flanking the high.

    A

    similar pattern is

    observed for n spacings.of 3 through

    7.

    Because

    these changes are observed only at the larger

    separation, this suggests that significant

    resistivity changes are occurring at depth in the

    producing reservoir at Cerro Prieto as well as in

    373

  • 8/18/2019 Wilt & Goldstein Cerro prieto resistivity.pdf

    6/15

    the region surrounding the reservoir.

    Interpretation of results. Figures 6a

    and 6b are pseudosection plots of apparent

    resistivity 'differences from the spring and fall

    of 1980 data respectively, relative to the 1979

    baseline measurements. The differences, plotted

    in percent, show apparent resistivity increases

    as greater than 25 percent for points adjacent to

    the Cucapk mountains, but also show decreases as

    much as 25 percent in regions immediately eastward

    and westward from the present steam production

    zone.

    For n spacings greater than 2, a significant

    increase in apparent resistivity is observed over

    the present steam production zone flanked on

    either side by large regions of decreasing

    apparent resistivity. Differences for both

    figures are contoured at 2 and 5 percent, which

    is close to or within the confidence limits for

    these data. Because the changes occur for

    clusters or groups of points in the psuedosection

    that increase or decrease together, the observed

    pattern of differences is probably significant,

    although the actual shape of the patterns may be

    sensitive to measurement error.

    such changes does, however, suggest significant

    subsurface variations caused by extensive fluid

    withdrawal and subsequent groundwater recharge

    into the system.

    Both sets of data show a similar pattern.

    The magnitude of

    Figure 7 shows the present two-dimensional

    dipole-dipole resistivity model over the region

    encompassing the producing zone. For the purpose

    of

    analyzing apparent resistivity changes, we

    briefly discuss the working two-dimensional model

    presented in

    1979). The most striking feature of the model is

    the relatively resistive 4.0 ohm-m) body associ-

    ated with the zone of present steam production.

    The body is also associated with a zone of

    increased consolidation (de la Peiia et al.,

    1979) and metamorphic minerals (Elders et el. ,

    1979).

    sands and shales increase in resistivity in this

    region (although for the shales the increase is

    more dramatic)

    and that the bulk density is

    greater and bulk porosity lower than for corre-

    sponding rocks outside this zone (Lyons and van

    de Kamp, 1979; Elders et al., 1981).

    an earlier paper (Wilt and Goldstein,

    Well log analysis has indicated that both

    Immediately east of this 4.0 ohm-m

    resistivity zone lies a thin, steeply inclined

    conductive body. This region correlates well

    with a plane of microearthquake hypocenters on

    the Hidalgo fault (Majer and McEvilly, 1981) and

    the inferred source plane location for the

    observed self-potential anomaly (Corwin et al.,

    1979). Well log analysis indicates that this

    region is characterized by warm water and low

    resistivity sands and shales (Diaz et al.,

    1981).

    sponds to a plume of ascending hot waters connec-

    ting the zone of deep production east of the

    power plant to the shallower production zone

    adjacent to and west of the plant (Elders et

    al., 1981).

    represents a mixing area for upward-moving hot

    waters and colder waters moving in from the sides

    or downward from above. East of this conductor,

    the rocks gradually increase in resisitivity

    One explanation is that this area corre-

    It is also possible that this zone

    indicating fresher pore waters as we approach the

    Colorado River.

    zone the resistivity at depth is low, less than

    1.5 ohm-m.

    interpreted this section as a sequence of marine

    beds saturated with partially evaporated sea

    water.

    West

    of

    the steam production

    Lyons and van de Kamp (1979) have

    With this conceptual model,

    it is

    possible to explain in a general way the observed

    apparent resistivity changes at Cerro Prieto. A n

    increase in apparent resistivity in the older,

    shallower-producing zone can be explained by an

    increase in steam fraction in the formation due

    to production or by a replacement of produced

    waters by less saline Colorado River water, or a

    combination of these two. Evidence for the

    former comes from the observation that enthalpy

    has increased and pressure has decreased in many

    of the older wells over the past several years

    (Goyal et al., 1981). The chemistry of produced

    waters has also changed markedly over the past

    several years to more closely resemble Colorado

    River water (Grant et al., 1981). This, along

    with isotopic evidence (Williams and Elders,

    19811, suggests significant fresh water recharge

    for the geothermal system. For

    a

    10 percent

    increase in resistivity in a year, a 15 percent

    replacement of reservoir waters with waters

    one-tenth as saline would be required.

    ing the annual fluid production at Cerro Prieto

    (Goyal et al., 19811, this is not unreasonable.

    Consider-

    A possible explanation for the regions

    of resistivity decrease on either side of the

    high is that more saline waters are moving

    towards the reservoir in response to the pressure

    drop caused by production.

    plant, the apparent resistivity decreased by as

    much as 25 percent for a large region extending

    from the surface to great depths. If faulting is

    important in this region, as suggested by self-

    potential measurements and microearthquake

    surveys, then flow channels may be created by

    fault induced fracturing. The pore fluids may

    then be moving fairly rapidly in response to

    the production pressure drop.

    East of the power

    In order to quantify these observations,

    an attempt was made to match the observed differ-

    ences by perturbing the working two-dimensional

    model. It was quickly discovered, however, that

    the range

    of

    acceptable models that match the

    data is very large. A second drawback is that

    the pattern of observed differences is not

    well-defined due to the margin of error in the

    field data.

    CONCLUSIONS

    The two year resistivity monitoring

    experiment has yielded some significant results:

    (1) It is possible and feasible to monitor a

    geothermal reservoir with surface resistivity

    measurements but even in the most ideal situation

    the measurement error may be large relative to

    the expected change.

    changes in apparent resistivity were observed

    for the production region and surrounding area.

    The observed 10 percent increase in apparent

    (2) At Cerro Prieto, large

    374

  • 8/18/2019 Wilt & Goldstein Cerro prieto resistivity.pdf

    7/15

    re si s i t i v i ty i n the o lder product ion region may

    be due to local boi l ing or to f resh water

    invasi on. The lar ge decrease in apparent

    re si s t iv i t y on the f lanks of the producing zone

    may be due t o th e movement of more sa l i n e

    he pressure drop. ( 3 ) Because of the

    oundwater in to the res erv oir region in response

    nonunique-ness of models and the pres ent le ve l of

    measurement error, i t

    i s

    no t f eas ib l e t o quan t it a -

    t i ve ly in t er pre t data by per turbing the working

    two-dimensional model i n order t o match th e

    observed changes.

    ACKNOWLEDGMENT

    The aut hor s wish t o acknowledge t he h elp

    We als o wish t o thank Alfred Truesde ll ,

    of Deborah Hopkins who was invo lved i n e rr o r calcu -

    l a t i o n s .

    Ern est Majer, Keshav Goyal, Serg io Diaz, and HCctor

    Fonseca for valuable d iscussions .

    This work was supported by t he As si sta nt

    Secretary €or Conservation and Renewable Energy,

    Of fi ce of Renewable Technology, Divisi on of Geother-

    mal and Hydropower Technologies of the

    U.S.

    Depart-

    ment

    of

    Energy under Contract DE-AC03-76SF00098.

    REFERENCES

    Corwin, R. F., H. F. Morrison, S . Dfaz C . , and

    B. Rodriguez

    J . ,

    1978. Self po ten tia l

    s tud ies a t t he Cerro Pr i e t o geothermal

    f i e l d , in Procee dings, F i r s t Symposium

    on

    the Cerro Pri et o Geothermal Field ,

    Baja

    Ca li fo rn ia , Mexico, September 1978. Lawrence

    Berk eley Lab ora tory Rep ort LBL-7098, p.

    204-

    210.

    de l a Peaa L., A. , I . Puente C . , and E. Dfaz C.,

    1979. Modelo geo ldgic o d e l

    campo geothrmi-

    co de Cerro Pr ie to , &Proc eeding s, Second

    Symposium on th e C erro P ri e t o Geothermal

    Fie ld, Baja Cal iforn ia, Mexico, i n MexiCali,

    Mexico, October 1979, Comisidn Federal de

    Electricidad, pp. 29-52.

    Dfaz

    C., S . , I.

    Puente

    C. ,

    A. de l a Pe3a

    L . ,

    Proposed geologic model based on981.

    geophysical w e l l

    logs,

    Proceedings , Third

    Symposium on the Cerro Prieto Geothermal

    Fie ld, Baja Cal iforn ia, Mexico, ( th i s volume).

    Elde r s ,

    W.

    A.,

    J.

    R. Hoagland, and A.

    E Williams,

    1979. Dis tr ib uti on of hydrothermal mineral

    zones i n the Cerro Pr ie to geothermal f ie ld

    o f

    Baja Ca lif orn ia, Mexico, Proceedin gs,

    Second Symposium on th e C erro P r i e t o Geother-

    mal Fie ld , B aja Ca lif orn ia, Mexico, i n Mexi-

    Cali, Mexico, October 1979, Comisidn

    Federal de El ect ric ida d, pp. 57-65.

    Elde r s , W. A.,

    A. E . Williams,

    and

    J . R.

    Hoagland, 1981. An int eg rat ed model fo r

    the natural f low regime in the Cerro

    Pr ie to geothermal f ie ld based upon petro-

    logic al and isotope geochemical c r i te r i a

    -

    n Proceed ings, Third Symposium on th e Ce rro

    Pr i e t o Geothermal F ie ld , Baja C al i fornia ,

    Mexico, ( t h i s volume).

    Goyal,

    K.

    P. ,

    C.

    W.

    Miller ,

    M.

    J.

    Lippmann, and

    S. P.

    Vonder Haar, 1981. Ana lysi s of Cerro

    Pri eto production dat a Proceedings, Third

    Symposium

    on

    the Cerro Prieto Geothermal

    Fiel d, Baja Cal iforn ia, Mexico, ( t h is volume).

    Grant, M. A., A. H. Truesdell and A. Mafidn M.

    1981. Production induced bo il in g and col d

    water e nt ry i n the Cerro Pr ie t o geothermal

    res erv oir in dica ted by chemical and physical

    measurements Pro cee ding s, Thi rd Symposium

    on the Cerro Pr ie to Geothermal Field , Baja

    Ca lif orn ia, Mexico, ( th i s volume).

    Lyons, D.

    J.,

    P. C. van de Kamp,

    S.

    Vonder

    B a r ,

    J. Noble, and

    J. H .

    Howard, 1980. Subsurface

    geolog ical and geophysical study of th e Cerro

    Prieto

    geothermal f ie ld ,

    i p

    Proceedings,

    Second Symposium on the Cerro P ri et o Geother-

    mal

    Fie ld , Baja Ca l i fo rn i a ,

    Mexico, in

    Mexi-

    C a l i , Mexico, October 1979, Comisibn

    Fed era l de El ec tri cid ad, pp. 173-186.

    Majer, E. L. and

    T.

    V. McEvilly, 1981. A de ta i l ed

    microearthquake study a t th e Cerro Pri et o geo-

    thermal fi e ld Proceedin gs, Third Symposium

    on

    t he Cerro Pr ie to Geothermal Fie ld, Baja

    California, Mexico ,

    (

    h i s volume).

    Morrison,

    H. F., N . E.

    Coldste in ,

    W.

    Hoversten,

    G.

    Oppliger, and C. Riveros, 1978. Descr ip t ion,

    f i e l d test and data analysis of a con t ro l l ed

    source EM system

    (EM-60),

    Lawrence Berkeley

    Laboratory Report LBL-7088.

    W i l l i a m s

    A

    E. and W.A. Eldere, 1981. Oxygen

    i so tope

    exchange in

    rocks and minerals from

    t he

    Cerro

    Pr i e t o geothermal system; i nd ica tor s

    o f

    temperature

    d i s t r i b u t i o n and f l u i d f l o w ,

    -

    n

    Proc eed ing s, Thi rd Symposium

    on

    the Cerro

    Prieto Geothermal Field,

    Baja California,

    Mexico, ( t h i s volume).

    W i l t

    M.

    J

    and

    H-

    E. Goldstein, 1979. R e s i s t i v i t y

    monitoring a t Cerro P r i e t o , g P roc ee ding s,

    Second Symposium

    on

    t he

    Cerro

    Prieto Geother-

    m a l Fie ld ,

    Baja

    California, Mexico,

    in Wexi-

    Cali, Mexico, October

    1979,

    Comisibn Federal

    de El ec tr ic id ad , pp. 419-428.

    375

  • 8/18/2019 Wilt & Goldstein Cerro prieto resistivity.pdf

    8/15

    c

    Sonora

    B

    C.

    \

    SCALE

    Ikmd

    0

    \

    XBL 7881632

    Figure

    1.

    pro jec t

    .

    Figura

    1.

    d e r e s i s t i v i d a d d e l LBL.

    Pro jec t loc ati on map

    LBL

    r e s i s t i v i t y

    Mapa de ubicaci6n d e l levantamiento

    Permanent

    FWOUS

    pot

    Current Electrodes Electrodes

    XBL 8163203

    Figure

    2.

    dipole-dipole re si s t iv i t y system.

    Schematic design diagram of t he

    LBL

    x eL 811-2532C

    Figure 3.

    d i p ol e r e s i s t i v i t y l i n e

    E-E .

    Figura 3.

    de l a l i n ea de r e s i s t i v id ad d ipo lo-d ipo lo E-E

    .

    Sta t io n locat ion map for d ipole-

    Mapa de ubicaci6n de

    l a s

    es t ac iones

    Figura

    2.

    r e s i s t i v idad d ipo lo -d ipo lo de l LBL.

    Diagrama e s q u d t i c o d e l

    sistema

    de

    kilometers

    0 I 2 3

    4

    5 6 7 8 9

    IO

    I I 12 13 i 4

    15

    16 17 18 19

     

    :

    =

    7

    8

    9 -

    10

    -

    .

    XEL812-2717

    Figure

    4.

    d a t a se t .

    Figura 4.

    otoiio de 1980.

    Pseudosection pl ot of s tandard er r or s (SE) f o r f a l l 1 980

    Seudosecci6n de errores estgndar SE) para

    10s

    d a t o s d e l

    376

  • 8/18/2019 Wilt & Goldstein Cerro prieto resistivity.pdf

    9/15

    30 - -

    FALL 1980

    -*- PR. 1980

    20

    c

    .

    ’j IO

    0

    &

    -10

    .-

    >

    l

    c

    al

    “ 1

    20

    n = l

    SPACING

    Figure 5a.

    t o 1979 ba se lin e measurements, spac ing n = 1.

    Figura 5a.

    t i v a s

    a

    l a s mediciones de l in ea de base de 1979, separaci6n n =

    1.

    Line p lo t of pe r cen t apparen t r e s i s t i v i ty d i f f e r ences r e l a t i ve

    Porcentaje de l a s d i f e r enc ias de r e s i s i t i v idad apa ren te

    rela-

    ‘O r

    t

    20

    L

    n=4SPACING

    PA

    DIFFERENCES%

    XBL 813-2715A

    Figure 5b.

    t o 1979 bas elin e measurements, sp

    Line plot

    of

    percent

    r e l a t i v e

    377

  • 8/18/2019 Wilt & Goldstein Cerro prieto resistivity.pdf

    10/15

    kilometers

    0 1

    2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 ~ 1 5 1 6 1 7 1 8 1 9

    h

    I

    I 1

    1 1 ' 1

    14.

    SPRING 1980

    Figure 6a.

    spring 1980 data set re l a t i ve t o sp r ing 1979 da ta

    se t .

    Pigura 6a.

    para 10s datos de l o toso de 1980 re la t i vo a

    10s

    datos de l a primavera

    de 1979.

    Pseudosect ion p lo t o f appa ren t r e s i s t iv i t y d i f fe rences fo r

    Seudosecc i6n de l a s d i fe renc ia s de r e s i s t iv i dad apa ren te

    kilometers

    I

    2

    3 4 5 6

    7

    8

    9

    IO

    II

    12

    13 I I I I : ~4 15

    16

    17 18 19

    FALL 1980

    PA

    DIFFERENCES

    %

    XBL 813-27188

    Figure 6b.

    f a l l 1980 da ta set relative to spring 1979 measurements.

    Figura 6b.

    para

    10s

    datos d e l o to iio de 1980 re la t iv o a

    10s

    datos de l a pr imavera

    de 1979.

    Pseudosect ion p l o t of apparent re s i s t iv i t y d if ferences fo r

    Seudosecci6n de

    l a s

    d i fe renc ia s de re s i s t iv i dad aparen te

    318

  • 8/18/2019 Wilt & Goldstein Cerro prieto resistivity.pdf

    11/15

    I - 8.5

    -

    2.0

    Fi gur e

    7.

    l i ne E-E .

    Fi gur a 7.

    a l o l ar go de l a l i nea E-E .

    muest r a l a ubi caci bn de 10s pozos.

    Expanded ver si on of t wo- di mensi onal r esi st i vi t y model over

    Wel l l ocat i ons ar e shown at t he top of t he f i gur e.

    Versi bn ampl i ada del model o de resi st i vi dad bi - di mensi onal

    En l a par t e super i or de l a f i gur a se

    -

    Tabl e 1 Conf i dence l i m t s of appar ent r esi sti vi t y

    esti mat es f or var i ous t r ansm t t er- r ecei ver di pol e

    separ at i ons.

    Tabl a 1

    r ent e par a vari as separ aci ones ent r e el di pol a

    Lf m t es de conf i anza de resi st i vi dad apa-

    transmsor

    y

    r ecept or .

    DATA POI NT

    T R P A S E ( ) 95 CI(+)

    C I / S E

    8-9 5-6 1.686 .8 2.0 2.5

    8-9 5-6 2.4 2.7

    6-7 11-12 6.0 3.3

    6-7 11-12 2.083 1.6 4.6 2.9

    7-8 13-14 2.807 1.8 5.0 2.8

    7-8 13-14 2.692 1.9 4.9 2.6

    12-13 7-8

    1.813 3.6

    10.0

    2.9

    7-8 12-13

    1.808 3.0 6.5 3.2

    T

    =

    Transmt t i ng di pol e st at i ons

    R

    -

    Recei vi ng di pol e st at i ons

    PA Appar ent r esi st i vi t y

    SE = Per cent St andard Er r or

    CI - 95 Conf i dence I nt er val

    CI f SE = 95 CI / SE

    379

  • 8/18/2019 Wilt & Goldstein Cerro prieto resistivity.pdf

    12/15

    RESULTADOS DE DOS AGOS D E MONITOREO

    DE LA RESISTIVIDAD EN CERRO PRIETO

    RESUMEN

    Mediciones de res i t i vi dad dipolo-dipolo

    c on e l dob le prop6s ito de de l ine a r e l yacimiento y

    de monitorear l a res i s t i vid ad de l campo se han l l e -

    vado

    a

    cab0 anualmente en Cerro Pri et o desde

    1978.

    En e l

    &rea

    d e l campo

    se

    e s ta b le c ie ron dos

    l h e a s

    dipolo-dipolo de 20

    km

    de longitud con e lec tr odos

    permanentes emplazados

    a

    1

    km

    de d i s ta nc ia e n t re

    si;

    una de

    esas

    l i n e a s

    se

    mide anualmente.

    Las

    medi-

    c i on e s d e r e s i s t i v i d a d s e r e a l i z a n u t i l i z a n d o u n

    generador de 25

    kW

    con una corr ien te d e s a l i d a d e

    ha s ta 8 0 A y un receptor promediador de se&les con-

    trolado por un microprocesador. Este

    sistema

    de

    a l t a potenc ia y ba jo ruido

    es

    capaz d e mediciones

    altamente precisas, abn con grandes separaciones

    e n t r e e l t ransmisor

    y

    e l recepto r. Los c6lc ulo s

    e s t b d a r d e e r r o r p a r a d a t o s o bt en i do s i n d i ca n

    errores menores de l

    5

    para todos

    10s

    puntos.

    l h i t e s de confianza de 95%muestran Grgenes

    de er ro r 2-4 veces

    mas

    a l t o s .

    datos obtenidos muestran un cambio pequezo en

    l a

    r e s i s t iv ida d a pa re n te e n

    10s 3 m

    supe r io re s en l a

    zona de producci6n de l campo; en dicha re gi 6n las

    mediciones son re la t ivamente insens ibles

    a1

    c i c l o

    pluvia l anua l .

    gua de Cerro Prieto se observaron incrementos de

    l a

    r e s i s t i v i d a d a p a r e nt e a profundidades de

    1

    km y

    mayores. Grandes zonas de disminuci6n de l a res is -

    t iv idad aparente se observaron

    a

    ambos lados de l a

    zona d e incremento. E l aumento de l a r e s i s t i v i d a d

    aparente en l a reg& de producci6n puede debers e

    a1 incremento de l a f r a c c i6n de va por e n e l ya c i -

    miento como resu lta do d el abatimiento de l a pres i6n

    d e l mismo rel acio nado con l a produccibn. Alterna-

    tivamente, 10s aumentos de resistividad pueden ser

    e l

    r e su l ta do de l a entr ada de agua dulce d el Rio

    Colorado.

    L a

    zona de res i s t i vi dad de c l inan te que

    f l an q ue a e l

    &ea

    de aumento puede deberse a l a en-

    trada de aguas sa lobres en l a regi 'on de l yacimiento

    como consecuencia del abatimiento de

    l a

    presidn.

    E l

    modelado cuantita tivo de

    10s

    cambios observados

    es impriictico debido a l a gran incer t idumbre en l a

    estimaci6n de

    10s

    cambios de res is t ividad aparente

    y l a f a l t a de unicidad de 10s modelos.

    L o s

    E l a d i s i s d e

    10s

    En l a

    zona de produccidn

    m6s

    a n t i -

    INTRODUCCION

    A

    comienzos de 1978, e l Lawrence Ber keley

    Laboratory (LBL) en cooperaci'on con l a Comisi6n

    Federal de Electricidad de M6xico

    CFE)

    comenzd en

    e l k e a de inten sa produccidn de vapor y agua de l

    campo geot6rmico de Cerro Pr ie to , Baja Ca l i fo rn ia ,

    Mgxico (Fig. 1)

    un

    proyecto de monitoreo de cambios

    en

    l a

    resistividad del subsuelo mediante mediciones

    de l a r e s i s t iv ida d de sde l a sup erf ici e . Los obje-

    t i vos de l proyecto inc luyen: a ) l a de l ineac i6n

    de

    l a

    e s t ru c tu r a de r e s i s t i v ida d en e l subsuelo de

    Cerro Pr i e to y de 10s l im ite s de l yac imiento, y

    b) l a fac t ibi l idad de de tec ta r cambios en l a re-

    s is t iv ida d de l subsuelo (e.8. debido a

    l a

    produc-

    c i b continua de f luidos) , a par t i r de medic iones

    hechas en l a supe r f ic ie .

    lecer

    un

    conjunto permanente de estaciones

    y

    repe-

    E l programa

    era

    de estab-

    w

    t i r anualmente l a s mediciones con e l f i n de obser-

    va r cambios en l a s condiciones subterrgneas.

    i l t

    y Coldstein

    (1979)

    d e s c ri b i e r o n l a

    e s t r u c t u r a d e l a r e s i s t iv ida d de r iva da de

    l a s

    me-

    d ic ione s

    d e

    s u p e r f i c i e .

    mos

    10s

    resul tados de dos

    6 0 s

    de monitoreo de l a

    res i s t i vid ad en Cerro Pr ie t o . Descr ibimos e l equi-

    PO

    u t i l i z a d o e n

    l as

    mediciones y

    10s

    mgtodos para

    ob te ner da tos r e p e t ib le s de a l t a c al idad .

    A d d s ,

    se examinarzn 10s cambios observados en

    e l

    lapso

    de dos azos en tgrminos d e l modelo bi-dimensi onal

    de res i s t i vid ad exis t ente . F inalmente, se hace un

    i n t e n t o d e e x p l i c a r loa procesos geol6gicos e hi-

    drol6gicos relacionados con l a extracci6n de aguas

    subte rrgneas y e l tec tonismo.

    En e s te t r a b a jo p re se nta -

    DISEfJO DEL EXPERIMENT0

    E l

    mgtodo de resistividad dipolo-dipolo fu6

    seleccionado para

    e l

    monitoreo de

    l a

    r e s i s t i v i d a d

    en Cerro Pr ie to . Este mgtodo, ut il iz ad o comunmente

    en exploraciones d e minerTa, fu6 seleccionado por

    va r i a s r az ones : a ) l a f a c i l ida d de e s ta b le c e r loa

    re la t vamente pocos e lec tro dos

    pe

    manentes necesa-

    r i o s p a r a

    e l

    monitoreo; b)

    rente de es te mgtodo a e s t r u c t u r a s d e r e s i s t i v i d a d

    la te ra lme nte d i s c on t inua s y c )

    cable re la t ivamente c or t as que

    son

    necesar ias para

    l a s

    operaciones de campo.

    l a s e n s i b i l i d a d inhe-

    l a s longi tudes de

    En l a F ig u ra

    2

    s e muestra un diagrama esque-

    E l

    generador de

    25

    kWtic 0 de l equ ipo u t i l i z a do .

    es capaz d e proveer co rri en tes de onda cuadrada de

    has t a 8 0 amps de c re s ta

    a

    c r e s t a ,

    y

    de hasta 1200

    volts para periodos de onda cuadrada

    d e 1

    a 1000

    segundos.

    para e l est udi o en Cerro Pr ie to dado que, aunque

    po rt a t i l , ea suf ic ientemente poderosa

    para

    proveer

    seza les adecuadas a l as e s tac io nes

    a

    d i s t a n t e s .

    Se ut il iz ar on ondas cuadradas de un period0 de 40

    segundos para minimizar 10s efectos de acoplamiento

    induc tivo re su l ta n te s de l a

    a l t a

    conductividad del

    ter ren o en Cerro Pri eto . Pruebas de ondas cuadra-

    das de un perio d0 de 1 0 segundos mostraron atenua-

    c i6n induc t iva severa en lug ares dis t ant es , dando

    como resultado estimaciones d e r e s i s t iv ida d a pa re n-

    t e erroneamente bajas.

    Esta fue n te de e ne rg ia r e su l t6 ide a l

    Con e l sistema del

    LBL,

    las seGales se r e c i -

    ben en cuat ro dipolos simultaneamente a d i s t a n c i a s

    que son mfi l t ip les en te ros , ent re

    1

    y 10 veces, de

    l a longitud de 1 km del dipolo t ransmisor . Las

    se na1es son detectadas con electrodos

    porosos

    de

    cobre-sulfa to de cobre, y f i l t ra da s y amplif icadas

    electronicamente. Es necesar io

    f i l t r a r

    l a s

    s ek l e s

    para

    r emover e l r u ido t e l i k i c o y

    e l

    de 60

    Hz.

    Des-

    pu'es d e l procesado analSg ico, l a s

    se&les

    s e

    d i g i t a l i z a n ,

    se descomponen en

    SUB

    componentes de

    Fourie r , y s e adic ionan ( s tacking ) ut i l izando un -

    ana l i zador de es pec tro mult icana l (Morrison

    et a

    1978).

    t i vo pa ra ob te ner da tos de a l t a calidad dado que es

    pos ib le e l im ina r buena pa r te d e l ru ido a n te s de l

    L d

    e encontr6 que este sistema es muy efec-

  • 8/18/2019 Wilt & Goldstein Cerro prieto resistivity.pdf

    13/15

    adicionado ( stacking ) y redu cir eficientemente e l

    ruido restante adicionando simultaneamente

    las

    se-

    :ales de c uatro d ipolos .

    Doe lin ea e dipolo-dipolo de 20 km de longi-

    o r ien tadas e s te -oes te se e s tab lec ie ron en e l

    wmpo (Figura 1). La l i n e a D-D est& f u e r a d e l

    6r ea de producci'on d e l campo y es adyacente a1

    volc'an Cerro Pr iet o.

    cipalmente para obtener informacign de fondo.

    l b e a

    E-E ,

    que cruza directamente sobre l a zona

    de producci'on (Figura

    3 ) .

    se usa para medir anual-

    mente l a res ist ivi dad con fi ne s de monitoreo. La8

    mediciones se efectGan en 130 puntos a una separa-

    ci'on

    (n)

    m6xima de 8, que corresponde

    a

    una separa-

    ci'on transmiaor -receptor de 9

    km

    y a una profundi-

    dad m'axima de penetraci'on de 3

    km.

    se

    promediaron

    un

    m'inimo de 30 cicloe de onda cuad-

    rada. Para es tac iones d is tan tes , donde l a s s e k l e s

    son

    m6s &bi le s ,

    se

    promediaron m'as de 200 ciclos.

    Las

    mediciones s e efect uaron a menudo en horas de

    l a

    noche y en f i n e s de semana, cuando 10s n ive le s

    d e r ui do t e l b i c o y c u l t u r a l

    son

    m'as bajos.

    t e cada camp&a an ua l, c a si l a mitad de loa puntos

    se

    midieron doe veces

    o

    &s.

    estimar l a repe t ib i l idad de las mediciones en in-

    tervalos de tiempo cortos, y para comparar l a repe-

    t i b i l i da d de cor t o p lazo con error es es timadoa de

    conjuntos individuales de datos.

    RESULTADOS

    Dicha l h e a

    se

    uti l iz 'o pr in-

    La

    En

    cada lugar

    Duran-

    Esto

    se

    hizo para

    Estimaci'on de error.

    Para todas las medi-

    c iones se computaron promedios y desviaciones es-

    t 'andares (a) de re s i s t iv idad apa ren te , y de

    esas

    cantidades y d el n b e r o de ci cl os promediado (N),

    s e comput'o e l er ro r es tandar porcentual (SE),

    U

    per cen taj e SE = x 100

    P * d

    donde

    V

    es l a res ia t iv i d ia d aparente promedio.

    E l

    e r r o r e k n d a r (SEI

    estima

    e l

    e r r o r e n

    e l

    promedio

    de un conjunto dado de datos.

    razonable de l e r ro r de l a medici'on s i

    e l

    ruido en

    l a se na1 fue ra solamente aleat ori o. Desafortunada- .

    mente,

    l a s s e b l e s

    est'& a menudo contaminadas

    por

    fuen te s no al ea to r i as ( i .e . l in eas de tensi 'on , 15-

    neas de alambrados, t r6 nsi to vehicular) y d ichas

    fuentes podrian provocar errores sistem'aticoa en

    l a s

    mediciones de datos. Para estimar cu& sever08

    pueden se r es to s er rore s, realizamoa mediciones re

    petidas 2 y

    3

    veces en determinados puntos durante

    cada levantamiento anual. E l interval0 entre me-

    dic iones var i6 entre 12 horas y 8 dias.

    muestra en

    l a

    Tabla

    1, se

    calcularon l fm ites de

    confianza de 95% para algunos de es to s datos.

    todos loa casos, encontramos que

    10s

    l imi te s de con

    fianza calculados excedieron 10s errores es t i indares

    por un fa c t or de 2 a

    4.

    Adem&, l a s d i fe renc ia s

    en t re 10s promedios de va lor es remedidos c ayemn,

    usualmente, d entro d el l h i t e de confianza.

    Las

    Gltimas

    d o s

    en t radas de la Tabla 1muestran 10s re

    sultados cuando

    se

    intercambiaron

    la8

    posiciones

    de l r ecep to r y e l tran smis or. Loa promedios cal -

    culados para

    este

    cas0 est& muy pr6ximos entre sf;

    n

    embargo, 10s e r r o r e s son mucho mayores cuando

    u ransmisor se ubica en l as estac iones 12 y

    13.

    La d i fe renc ia de e r ro r se debe, probablemente, a 1

    nivel de ru ido &s elevado en l as es tac iones 7 y 8,

    Es una estimacibn

    Como se

    En

    381

    que se e ncuentran pr6ximas

    a la

    planta generadora.

    Aunque es probable que 10s l h i t e s de

    confianza den una represent aci6n e prec i sa de l

    e r r o r r ea l , su c6 lculo pa ra

    tres

    conjuntos de datos

    e s

    una

    tar ea enorme. Dado e l n b e r o limitado de

    observaciones tomadas en cada punto,

    l a

    prec i s i6n

    de es tos l -b i t es de confianza m

    rigurosos

    es

    sospechosa. Por l o tanto, hemos lim itad o nues tros

    cglculos de error a 1 de loa e rro res es t6ndar . La

    venta ja de esta apr oxi mac ib ea que da

    una

    repre-

    sentac i 'on bas tante prec isa de l error r e l a t i v o p a r a

    valores de

    l a

    seudosecci6n.

    muestra una r epresentaci' on en seudosecci6n de

    err ores es tgndares para e l conjunto de da tos de l

    otoso de

    1980.

    aumentan con l a separaci6n entre transmisor y re-

    cept or, y s e observan er ro re s relativamente mayores

    en e l extremo occidental de l a linea donde e8 com-

    parativamente

    6 s

    i i c i l i n t ro d uc i r c o rr i e nt es

    mayores en e l suelo.

    ba jos en l ea pa r te s ce n t ra l y o r ien ta l de

    l a

    l i n e a

    que cruza l a regi'0n del yacimiento.

    En

    l a Figura 4 se

    Esta f i gura muestra err ore s que

    Los e r r o r e s son relativamente

    CABIBIOS OBSERVADOS

    EN

    LA RESISTIVIDAD APARENTE

    En l a

    Figura

    5

    se

    mueatran

    l a s

    d i fe renc ia s

    observadas en l a re s i s t iv idad apa ren te de l a l k e a

    E-E , para

    separaciones

    (n)

    igua le s

    a 1

    y 4.

    gr if ic o muestra c6 lculos d e l porcenta je de d ifere;

    c i a para dos conjuntos de da tos re la t ivos a medi-

    ciones de linea de base hechos en l a primavera de

    1979.

    (Figura 5a) para ambos conjuntos de datos

    las

    d i -

    fe renc ia s

    son

    grandes en e l extremo oeste de l a

    l inea, pero relativamente pequeEas en todo e l

    re s to .

    E l

    Para e l grgf ico correspondiente

    a n =

    1

    Para

    estimar

    10s e f e ct o s d e l c i c l o p l u v ia l

    anual sobre l as condiciones en e l subsuelo, se e-

    fectu aron una a er i e de mediciones en e l otoso de

    1980, a1 f i n a l d e l a esta ci6n seca, con e l f i n de

    compararlas con mediciones efectuadas

    en

    l a

    prima-

    ve ra d e l mismo aiio. La Figura 5a muestra que las

    d i fe renc ia s de resis t ividad aparente para medicio-

    nes efectuadas sobre

    e l

    campo de producci6n (esta-

    ciones 6-13), con separaciones

    n

    =

    1,

    son muy pe-

    queiias en ambos con jun tos de dato s. Es to demues-

    t r a qu e l a s a r c i l l a s y lodos de la regi'on

    son

    rela

    t ivamente insensib les

    a1

    c i c l o

    pluvi a l anual .

    Por

    con t ra s te ,

    las

    d i fe renc ia s de re s i s t iv idad

    aparen-

    t e son mucho mayores cerca de la superf ic ie en e l

    mater ia l de abanico a luv ia l adyacente a l a s i e r r a

    Cucap; (estaciones

    1-5).

    Esto sugiere que l a re-

    s i s t iv idad de l a parte somera d e esta regi6n es

    muy se ns ib le

    e l

    cic lo p luvia l anual .

    En l a Figura

    5b

    se gra f ican las diferen-

    c i as de res is t iv idad aparente para separac iones

    n

    -

    1

    para

    l a s

    se ri es de datos de primavera y

    o t o -

    50 de

    1980,

    r e l a t i v a s

    a

    l a l h e a de base de

    1979.

    Las separaciones n =

    4

    corresponden a una profundi

    dad &xima de penetraci 6n de alr sde dor de 1300 m.

    La

    f i g u r a i n d i c a

    un

    incremento s ign if i ca t ivo en

    l a

    re s i s t iv idad apa ren te en l a zona de producci6n

    116s

    antigua

    de

    Cerro

    Pr ie to (e s tac iones

    7

    11) y

    una

    dieminuci6n significativa en

    las

    &reas

    que

    f lu

    quean l a zona antedicha.

    Un

    pa t& similar se ob-

    serv a para separaciones con n e n t r e

    3

    y 7. Dado

    que estos cambios se observan 8610 con las separa-

  • 8/18/2019 Wilt & Goldstein Cerro prieto resistivity.pdf

    14/15

    ciones m grandes, es to su gier e que en Cerro

    P r i e t o

    est&

    ocurr iendo cambios s igni f icat ivos de

    r e s i s t i v i d a d a profundidad ta nto en e l yacimiento

    bajo producci6n como en l a regi'on que rodea a1 ya-

    cimient 0 .

    In t e rp r e t ac idn de

    10s

    Resultados: Las

    Figuras

    6a

    y 6b son seudosecciones de di ferencias

    de r e s i s t i v idad apa ren te co r respond ientes r e sp ec t i

    vamente

    a

    10s da tos de

    la

    primavera y d e l otoEo de

    1980,

    r e l a t i v o s

    a las

    mediciones

    d e

    linea

    de base

    de 1979.

    b s

    diferen cias , dadas en porcentaje ,

    muest ran incrementos de res is t iv i dad aparen te de

    has ta 25% en puntos adyacentes

    a

    l a s i e r r a de Cuca

    p6. Tambi'en muestran disminuciones de hasta 25%

    en regiones inmediatamente hacia

    e l es te

    y

    e l

    o e s t e

    de l a actual zona de producci6n.

    dat os muestran un pat &

    similar.

    Para separacio-

    nes mayores de 2

    se

    observa

    un

    incremento s igni f i -

    ca t ivo de r e s i s t i v idad apa ren te en l a actual zona

    de producci6n, flanqueada a ambos lados por grandes

    zonas donde l a r e s i s t i v i d a d a p a r e nt e

    est&

    disminu-

    yendo. En ambas f i g u r a s l a s d i f e r e n c i a s se contor-

    nean para 2 y 52, l o que est6 cerca o dent ro de

    10s l ' imites de conf ianza para e sto s datos.

    que en

    l a

    seudosecci6n

    10s

    cambios ocurren en

    gru-

    pos de puntos que aumentan

    o

    dismirmyen conjunta-

    mente,

    e l

    pat& observado de di fe renc ias es pro-

    bablemente signif icativo, aunque su

    forma

    real puz

    de s e r s e n s i b l e a errores de medici6n.

    Sin

    embar-

    g o , l a magnitud de

    t a les

    cambios sugiere variacio-

    nes s ign i f i ca t ivas en

    e l

    subsuelo causadas por una

    extensa ext raccidn de f lu i d0 y subsecuente recarga

    subter rgnea de l s i s tema.

    Ambas

    series

    de

    Dado

    La Figura

    7

    muestra

    e l

    actual modelo de

    re-

    si st iv id ad bi-dimensional dipolo-dipolo para la re

    gi6n que abarca

    l a

    zona de prod ucc ibn. Con e l

    pro_

    p 6 s i t o d e a n a l i z a r

    10s

    cambios de resis t iv idad apa

    rente, discutimos brevemente

    a

    continuaci6n

    e l

    mo-

    del0 bi-dimensional d e l campo presentado en un t

    bajo anterior (Wilt y Goldstein, 1979).

    E l

    rasgo

    m6s

    sobresaliente del modelo

    es

    e l c ue rp o r e l a t i v a

    mente resis t ivo (4.0 ohm-m) a so ci ad o con la zona

    ac tu al de producci6n. Este cuerpo ta mb ib

    est6 a s 2

    ciad o con una zona de mayor consol idac i6n (de l a

    Pe& et al . , 1979), 9 de m inera les metamo'rficos

    (Elde r s

    e t

    al. ,

    1979).

    An6l i s i s d e regist ros geo-

    f i e i co s de pozos indicaron que tant o

    l a

    r e s i s t i v i -

    dad de l as arenas como l a de las lu t i tas aumentan

    en ea ta zona (aunque para

    l a s

    l u t i t a s

    e l

    incremen-

    t o es s d r h t i c o ) , y que l a densidad es mayor y

    l a

    porosidad &s

    baja

    que l a de

    l a s

    rocas cor res-

    pondientes loca l iza das fuera de esta zona (Lyons y

    van de Kamp, 1979; E ld er s

    e t al . ,

    1981).

    Inmediatamente

    a1 es t e

    de

    es ta

    zona de

    4.0

    ohm-m de re si st iv id ad , yace

    un

    cuerpo conduc-

    t i v o delgado, sumamente inclina do. Esta regi'on co

    rrelaciona bien con un plano de hipocentros micro-

    sismicoa local izado sobre

    l a

    f a l l a

    Hidalgo (Majer

    y McEvilly, 1981) y con l a ub icac i6n in f e r ida de l

    plano de

    l a

    fuente de l a anomalia de autopotencial

    observada en e l campo (Corwin e t al . , 1979). An6li

    s i s de regi st r os de pozos in dican que es ta zona se

    ca rac t e r i za po r

    aguas

    c a l i e n t e s , y a r e n a s l u t i -

    tas de baja resi t iv idad (Diaz e t al . , 198l3. Una

    expl icacidn e s que

    esta

    zona corresponde a un pe-

    nacho de aguas calientes ascendentes que conectan

    l a

    zona de producci6n profunda situada a1

    es t e

    de

    la planta generadora con la regi'on de producci6n

    de menor profundidad situada

    a1

    oeste de y adsacen

    t e a l a planta (Elders e t al . , 1981).

    posibl e que

    6sta sea un

    ;rea de mezcla e nt re

    aguas

    ca l i en t es a scenden tes y aguas m6s f r i as descenden-

    tes

    o que fluyen horizontalmente.

    A 1

    es te de es t e

    cuerpo conductivo,

    l a s

    rocas aumentan gradualmente-'

    en resi s t iv idad indicando

    aguas

    de poro

    s

    d u l c e

    a

    medida que

    nos

    aproximamos

    a1 Rio

    Colorado.

    oes t e de

    l a zona

    de producci6n de vapor,

    l a

    resis-

    t i v idad a profundidad es ba ja, menos de 1.5 ohm-m.

    Lyons y van de Kamp (1979) in te rp re ta ro n

    esta

    sez

    ci6n como una secu enci a de es tr a t os marinos s atu-

    rados con

    agua

    de mar parcialmente evaporada.

    Tambi'en

    e8

    A1

    Con este modelo conceptual

    e8

    pos ib l e e5

    p l i c a r , d e

    un

    modo general, 10s cambios de

    resistL

    vidad aparente observados en Cerro Prie to. Un au-

    mento en l a r e s i s t i v idad apa ren te en l a zona de pro

    ducci6n m6s an ti gu a y poco profunda puede explicaf

    se por un incremento en

    l a

    fracci6n de vapor en l a

    formaci6n debido a la produccio'n, o por un reempla

    eo de l a s

    aguas

    profundas por

    aguas

    menos salobres

    d e l Rio Colorado,

    o por una

    combinaci6n de ambas

    causas. hridencia de

    l a

    primera viene de la obsef

    vaci6n de que en muchos de 10s pozos a nt ig uo s du-

    r a n t e

    10s

    Gltimos 6 0 s

    l a

    e n t a l p b se ha elevado y

    ha descendido l a presi'on (Goyal

    e t

    al., 1981).

    bi'en han variado marcadamente en 10s Gltimos

    6 0 s

    l a s

    ca rac t e r i s t i cas qu5u icas de las

    aguas

    produci-

    da s hacia un mayor pareci do con las d e l Rio Colo-

    rado (Grant e t

    al.,

    1981). Esto, junt o con l a e v i

    dencia isot6pica (Will iams y Elders, 198l), sugie:

    r e que ex i s t e

    una

    r eca rga s ign i f i ca t iva

    de

    agua

    f r es c a en e l sistema geot6rmico. Para provocar en

    un 6

    n aumento de l 10%e n l a r e s i st i v id a d

    S e r b

    nece sari o un reemplazo d e l 15% de las aguas d e l y&

    cimiento con

    aguas

    d e s a l i n i d a d

    10

    veces menor.

    Esto

    no es

    i r razona ble dada

    l a

    producci6n

    armal

    de

    f lu ido s en Cerro Pr i e to (Goyal e t

    al . ,

    1981).

    T B ~

    Una

    posible expl icaci6n para

    las

    zonas

    donde l a r e s i t i v idad dec rece a ambos lados del -

    ximo es que otr as

    aguas

    sal obr es s e mueven hacia e l

    yacimiento en respuesta a

    l a

    caida de l a i r e s i 6 n

    causada por l a producci6n.

    A 1

    este de l a p lan ta

    generadora, en una

    gran

    &ea

    que s e extiende desde

    l a

    super f i c i e has t a gran profundidad, l a r e s i s t i v i

    dad aparente disminuy6 hasta un 25%. S i

    e l

    a fa l l a

    miento es importa nte en e s ta zona, como l o sugi eren

    l a s mediciones

    d e

    autopo tencia l y

    l a s

    i n v e s t i g a c i o

    nes microsismicas, pueden

    crearse

    cana les de f lu jo

    mediante e l fracturamiento inducido por

    fallas.

    Los

    f lu id os de poro podrian entonces moverse bas-

    tante

    rapidamente en respuesta a

    l a

    c d d a de p re -

    si6n debida a l a produccio'n.

    Con e l f i n de cuan t i f i ca r estas observa-

    ciones,

    se

    real izb un in tento de reproduci r loa

    ca=

    bios observados perturbando e l modelo bi-dimensio

    n a l elaborado. Si n embargo, pro nto descubrimos que

    e l

    n h e r o de modelos acep tab les que pueden corres-

    ponder a 10s da tos

    es

    muy grande.

    Una

    segunda des

    ventaja

    es

    que

    e l

    pa t& de cambios observado no

    est6 bien definido debido

    a1 margen

    de e r r or de

    loa datos de campo.

    onclusiones

    E l monitoreo de resis t iv ida d durante d

    o s ha rendido a lgunos resul tados s igni f icat ivos:

    1 )

    geot6rmico midiendo l a r e s i s t i v idad desde l a s u p e r

    E 8

    poaible y v iabl e moni torear

    un

    yacimiento

    382

  • 8/18/2019 Wilt & Goldstein Cerro prieto resistivity.pdf

    15/15

    f i c i e ; s i n embargo, aGn ba jo las mejores condicio- Agradecimientos

    nes,

    e l

    e rr o r de medici6n puede ser grande en rela

    ci'on a1 cambio esperado.

    2

    En Germ P r i e t o s e

    02

    servan grandes cambios de reaist ividad aparente en

    l a zona de produccidn y

    Qreas

    circundantes. E l i

    temento de

    10%

    en re sis t iv i dad aparente observado

    l a zona de produccidn s antigua puede deberse

    a

    e b u l l i c i d n l o c a l o a invasidn de agua dulce. La

    gran disminuci6n de

    l a

    resis t iv idad puede deberse

    a l a entrada de agua subter rgnea 6 s a l o b r e a la

    regi6n del

    presi6n. 37 Debido a l a f a l t a de unicidad de

    10s

    modelos y

    a1

    niv el a ctu al de er ro r de medicidn,

    no

    e s f a c t i b l e i n t e r p r e t a r cu a nt i ta t iv a me n te l o a cam-

    bio s de re si st iv id ad perturbando e l modelo bi-dimen

    s ion a l e l aborado pa ra i gua l a r

    10s

    cambios observa-

    Loa auto res desean agradecer l a ayuda de

    Deborah Hopkins que colabor6 en

    1 8

    d l c u l o s d e

    e r ro r .

    ' d e l l , E r n e s t

    Majer,

    Keshav Goyal, Sergio D h z y

    H6ctor Fonseca por v ali osa s discusionea.

    Tambih quie ren agradecer a Alf red Trues-

    Este t rab ajo cont6 con e l apoyo del

    Ass ist ant S ecr eta ry f o r Conservation and Renewable

    Energy, Office o f Renewable Technology, D ivi sio n

    of Geothermal and Hydropower Technology de l Depar-

    tamento de Energia de Estados Unidos bajo contrato

    acimiento en respuesta

    a

    l a cafda de l a

    DE-AC03-76SF00098.

    dose

    1