wind plant modeling guide pp.ppt - wecc

19
Wind Power Plant Modeling P. Pourbeik [email protected] WECC MVS Workshop September 17 th , 2020 © 2020 Power and Energy, Analysis, Consulting and Education, PLLC

Upload: others

Post on 04-Apr-2022

12 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Wind Plant Modeling Guide PP.ppt - WECC

Wind Power Plant Modeling

P. [email protected] MVS WorkshopSeptember 17th, 2020

© 2020 Power and Energy, Analysis, Consulting and Education, PLLC

Page 2: Wind Plant Modeling Guide PP.ppt - WECC

Key References

• EPRI has sponsored much of the model development work

• Model User Guide for Generic Renewable Energy System Models, EPRI Report, July 2018https://www.epri.com/research/products/000000003002014083

• WECC Wind Plant Dynamics Modeling Guide, 2014https://www.wecc.org/Reliability/WECC%20Wind%20Plant%20Dynamic%20Modeling%20Guidelines.pdf

© 2020 Power and Energy, Analysis, Consulting and Education, PLLC

Page 3: Wind Plant Modeling Guide PP.ppt - WECC

The Types of WTG [1]

© 2020 Power and Energy, Analysis, Consulting and Education, PLLC

Type 1 – Conventional Induction Generator

Type 2 – Variable Rotor-Resistance Induction

Generator

Type 3 – Doubly-Fed Asynchronous Generator

ac/dc dc/ac

Type 4 – Full-Converter Unit

ac/dc dc/ac

Can be gearless;generator can be induction, synchronous or permanent

magnet generator

Page 4: Wind Plant Modeling Guide PP.ppt - WECC

Wind Power Plant

WTG

To system m

odel

R, X, B Equivalent Feeder Model

EquivalentGenerator Step‐up 

TransformerSubstationTransformer

Aggregated WTG model

Pf correctionMSCs

(for type 1 and 2 only)

SubstationMSCs SVC / STATCOM

(typically use for type 1 and 2 WTG wind plants only)

NREL Approach [2]

Scale-up by MVA

All else is explicitly modeled

© 2020 Power and Energy, Analysis, Consulting and Education, PLLC

Page 5: Wind Plant Modeling Guide PP.ppt - WECC

Power Flow Model

• Ensure substation transformer fixed tap-position is verified and properly modeled

• Ensure collector system properly and reasonably equivalenced

• Ensure all substation equipment explicitly modeled

© 2020 Power and Energy, Analysis, Consulting and Education, PLLC

Page 6: Wind Plant Modeling Guide PP.ppt - WECC

The Building Blocks [3]

© 2020 Power and Energy, Analysis, Consulting and Education, PLLC

Page 7: Wind Plant Modeling Guide PP.ppt - WECC

Putting the Models Together

© 2020 Power and Energy, Analysis, Consulting and Education, PLLC

RES Model CombinationType 1 WTG wt1g, wt1t, wt1p_bType 2 WTG wt2g, wt2e, wt2t, wt1p_bType 3 WTG regc_a, reec_a, repc_a, wtgt_a, wtgar_a, wtgpt_a, wtgtrq_aType 4 WTG regc_a, reec_a, repc_a (optional: wtgt_a)

Model Function 1st or 2nd Generationregc_a RES Generator/Converter Model (current source) 2ndregc_b RES Generator/Converter Model (voltage source) 2nd (just approved)reec_a RES Electrical Controls Model A 2ndreec_c RES Electrical Controls Model C  2ndreec_d RES Electircal Controls Model D 2nd (just approved)repc_a RES Plant Controls Model A 2ndrepc_b RES Plant Controls Model B 2ndrepc_c RES Plant Controls Model C 2nd (in development)wtgt_a WTG Turbine Shaft Model A 2ndwtgt_b WTG Turbine Shaft Model B (for type 4 WTGs only) 2nd (in development)wtga_a WTG Aero‐dynamice Model A 2ndwtgp_a WTG Pitch Controller Model A 2ndwtgp_b WTG Pitch Controller Model B 2nd (in development)wtgq_a WTG Torque Controller Model A 2ndwtgwgo WTG Weak Grid Option Controls 2nd (in development)wtgibffr WTG Inertial‐Based FFR 2nd (in development)wt1p_b Pitch Controller for type 1 WTG Model B 2ndwt1g Type 1 WTG generator model 1stwt1t Type 1 WTG turbine shaft model 1stwt2g Type 2 WTG generator model 1stwt2e Type 2 WTG variable external rotor resistance controller 1stwt2t Type 2 WTG turbine shaft model 1stlhvrt low/high voltage ride‐through relay model 1stlhfrt low/high frequency ride‐through relay model 1st

Page 8: Wind Plant Modeling Guide PP.ppt - WECC

TYPE 3 WTG [1]

© 2017 Power and Energy, Analysis, Consulting and Education, PLLC

Generator/Converter

Model

Iq

Ip

Iqcmd

Ipcmd

CurrentLimitLogic

Vt

Pqflag = 1 (P priority)= 0 (Q priority)

Q Control

P Control

Iqcmd’

Ipcmd’

Qref(or Qext)

Qgen

Pref(or PExt)

Drive-Train

spd

reec_aregc_a

wtgt_a

Pord

Torque Control

wtgtrq_a

Pe

Pref0

Pitch-Controlwtgpt_a

ref

Aerowtgar_a Pm

Plant Level Control

repc_a

Vref/Vreg or Qref/Qgen

At plant levelFreq_ref/Freq and Plant_pref/Pgen

Page 9: Wind Plant Modeling Guide PP.ppt - WECC

TYPE 4 WTG [1]

© 2017 Power and Energy, Analysis, Consulting and Education, PLLC

Generator/Converter

Model

Iq

Ip

Iqcmd

Ipcmd

CurrentLimitLogic

Vt

Pqflag = 1 (P priority)= 0 (Q priority)

Q Control

P Control

Iqcmd’

Ipcmd’

Qref(or Qext)

Qgen

Pref(or TExt)

Drive-Train

spd

Plant Level Control

reec_aregc_a

wtgt_a

repc_a

Vref/Vreg or Qref/Qgen

At plant levelFreq_ref/Freq and Plant_pref/Pgen

Generator/Converter

Model

Iq

Ip

Iqcmd

Ipcmd

CurrentLimitLogic

Vt

Pqflag = 1 (P priority)= 0 (Q priority)

Q Control

P Control

Iqcmd’

Ipcmd’

Qref(or Qext)

Qgen

Pref(or TExt)

Plant Level Control

reec_aregc_a

repc_a

Vref/Vreg or Qref/Qgen

At plant levelFreq_ref/Freq and Plant_pref/Pgen

Type 4a Type 4b

Page 10: Wind Plant Modeling Guide PP.ppt - WECC

REGC_A – generator/converter [1], [4]

© 2017 Power and Energy, Analysis, Consulting and Education, PLLC

Page 11: Wind Plant Modeling Guide PP.ppt - WECC

REEC_A – electrical controls [1], [4]

© 2017 Power and Energy, Analysis, Consulting and Education, PLLC

Type 4 WTG – PFlag = 0 or 1Type 3 WTG – PFlag = 0PV – PFlag = 0

Page 12: Wind Plant Modeling Guide PP.ppt - WECC

Current Limit Logic [1], [4]

© 2017 Power and Energy, Analysis, Consulting and Education, PLLC

Active Current

Reactive Current

+ve‐ve

+ve

‐ve

Imax

Current Limit Logic

VDL1

VDL2

Pqflag0 – Q priority1 – P priority

Page 13: Wind Plant Modeling Guide PP.ppt - WECC

Control Options [4]

© 2017 Power and Energy, Analysis, Consulting and Education, PLLC

From ref. [4]

Page 14: Wind Plant Modeling Guide PP.ppt - WECC

REPC_A – plant controller [4]

© 2017 Power and Energy, Analysis, Consulting and Education, PLLC

Kp + Ki s

Vreg(from bus vbus)

Vref

Qmax

Qmin

+

_

s2

1 + s Tft1 + s Tfv

s3Qbranch

(from aggregate turbine model or collection point of

wind plant) Qref+

_1

0RefFlag

Qext

11 + s Tfltr

s0

11 + s Tfltr

s1

emax

emin

Freeze state s2 if Vreg < Vfrz

Kc

+

Ibranch(current through a define branch,

e.g. substation transformer)

Kpg + Kig s

Pbranch(from aggregate turbine model terminal

or collection point of wind plant)

Pmax

Pmin+

_

s5

Freq(from aggregate turbine model terminal

or collection point of wind plant)

+

11 + s Tp

s4

11 + s Tlag

femax

femin

Ddn

Pref

+

Plant_pref

Dup+

fdbd1,fdbd2

s60

0

_

+

Freq_ref

Qbranch(reactive power through a define branch, e.g.

substation transformer)

1

0

VcompFlag

|Vreg – (Rc+jXc)Ibranch|

+ dbd

01

Freq_flag

Reactive PowerControl Path

Active PowerControl Path

Voltage Control

Constant Q Control

Page 15: Wind Plant Modeling Guide PP.ppt - WECC

Ensure Branch is Properly Defined in REPC_* model

© 2017 Power and Energy, Analysis, Consulting and Education, PLLC

WTG

1 2 3

Blue: branch is from 1 to 2, cct. 1Red: branch is from 2 to 3, cct. 1

Page 16: Wind Plant Modeling Guide PP.ppt - WECC

WTGA_A – aerodynamics [1], [5]

© 2017 Power and Energy, Analysis, Consulting and Education, PLLC

Ka

o

+

_

Pmo

_

+

Pm

Ka = 0.007 (default)o = 0 (default)

Must set o to none zero (e.g. 5 to 10 degrees) when “emulating” some wind energy in reserve, e.g. frequency response.

Page 17: Wind Plant Modeling Guide PP.ppt - WECC

WTGP_A – pitch controller [1]

© 2017 Power and Energy, Analysis, Consulting and Education, PLLC

11 + s T

Kiws

Kpw

+s0

+

Kics

Kpc

+s1

+

Pord

Pref

+

_

+s2

+

max & dmax

min & dmin

min

max

min

max

min

min

max

max

ref

t

+_

Kcc

+

max = 25 to 30 typicalmin = 0 typical

dmax dmin = +/- 10 degrees/s

Page 18: Wind Plant Modeling Guide PP.ppt - WECC

WTGQ_A – torque controller [1]

© 2017 Power and Energy, Analysis, Consulting and Education, PLLC

Pref (to reec_a model)

Kips

Kpp

+s2

Temax

Temin

Temax

Temin +

Prefo

Pe_

+

g

Tflag1

0

f(Pe)1

1 + s Tref

s0

+

_ref

11 + s Tp

s1

Freeze State Upon Voltage Dip

(from drive-train model)

P

speed

(p1,spd1)

(p2,spd2)

(p3,spd3)

(p4,spd4)

f(Pe)

Page 19: Wind Plant Modeling Guide PP.ppt - WECC

References

[1] WECC 2nd Generation WTG Model Specificationshttps://www.wecc.biz/Reliability/WECC-Second-Generation-Wind-Turbine-Models-012314.pdf[2] . Muljadi, C. P. Butterfield, A. Ellis, J. Mechenbier, J. Hochheimer, R. Young, N. Miller, R. Delmerico, R. Zavadil, and J. C. Smith, “Equivalencing the collector system of a large wind power plant,” in Proc. IEEE Power Eng. Soc. General Meeting, Montreal, QC, Canada, Jun. 2006.[3] P. Pourbeik, J. Sanchez-Gasca, J. Senthil, J. Weber, P. Zadehkhost, Y. Kazachkov, S. Tacke and J. Wen, “Generic Dynamic Models for Modeling Wind Power Plants and other Renewable Technologies in Large Scale Power System Studies”, IEEE Trans. on Energy Conversion, September 2017 https://ieeexplore.ieee.org/document/7782402[4] Model User Guide for Generic Renewable Energy System Models, EPRI Report, July 2018https://www.epri.com/research/products/000000003002014083[5] W. W. Price, J.J. Sanchez-Gasca, “Simplified Wind Turbine Generator Aerodynamic Models for Transient Stability Studies”, Proc. IEEE PES 2006 Power Systems Conference and Exposition (PSCE), Oct. 29-Nov. 1, 2006, Atlanta, GA, pp. 986-992

© 2020 Power and Energy, Analysis, Consulting and Education, PLLC