work of shershah amarkhail

Upload: anonymous-ffje1rpa

Post on 13-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/26/2019 Work of Shershah Amarkhail

    1/107

    Islamic republic of Afghanistan

    Ministry of higher education

    Kabul polytechnic university

    Faculty o f chemical technology

    Theworkwasrealizedincooperationwith

    SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

    FACULTYOF CHEMICAL AND FOOD TECHNOLOGYINSTITUTE OF CHMICAL AND ENVIRONMENTAL ENGINEERING

    Air Separation

    Diplomaproject

    Thisdiplomaworkwasrealized

    Intheframeworkoftheproject

    No.SAMRS2009/09/02

    DevelopmentofhumanresourcecapacityofKabulpolytechnicuniversity

    Funded

    by

    Bratislava2010 ShershahAmarkhail

  • 7/26/2019 Work of Shershah Amarkhail

    2/107

    Acknowledgement:

    The author would like to express his appreciation for the Scientific Training Program to

    Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food

    Technology of the Slovak University of Technology and Slovak Aid program

    (SMARS/2009/09/02) for financial support of this project. I would like to say my hearth

    thank to Doc. Ing. Juma Haydary, PhD. for his guidance and assistance during the all time of

    my training visit in Slovakia. My thank belongs also to Prof. Dr. Noor Mohammad Zamani

    and Prof Ahmad Ali Farhat my supervisors at the Kabul Polytechnic University for their kind

    guidance and support.

  • 7/26/2019 Work of Shershah Amarkhail

    3/107

    Content

    Introduction 1

    2.Theoreticalparts 3

    1.2Airproperties 3

    2.2Air separat iontechnologies 8

    2.2.1CryogenicAirseparation 10

    2.2.2Airclearing 15

    2.2.3Aircompression 17

    2.2.4CoolingofAir 20

    2.2.5Airdistillation 23

    2.3ProductsofAirseparationandtheirapplications 24

    3.Practicalparts 30

    3.1Thermodynamicofairseparation 30

    3.2CalculationofairdistillationbyMcCabeThielemethod 34

    3.3Aspensimulationofairseparationprocess 42

    3.3.1TechnicalspecificationsofKT1000Mplant 43

    3.3.2ResultsofASPENsimulation 47

    4.Mechanicalaspectsofairdistillationtower 61

    4.1Basicparametersofcalculations 61

    4.1.1Calculated

    pressures

    61

    4.1.2CalculatedTemperature 63

    4.1.3Reactionarylongitudinalmodel 63

    4.1.4CoefficientSutureStabilityWeld 64

  • 7/26/2019 Work of Shershah Amarkhail

    4/107

    4.2Specifiedstructuralsurpluses 65

    4.2.1SelectionoftheVirtualInjections 66

    4.3MechanicalCalculationofdistillationtower 68

    4.3.1CalculationCylindricalBodyofthetower 69

    5.Safetyaspectsofairdistillationprocess 73

    5.1MajorhazardsofchemicalProduction 73

    5.2Materialpropertiesinplant(separationofair)wasplanning 73

    5.3Majorrisks

    in

    the

    production

    system

    (air

    separation)

    74

    5.4SafeConditionsfromoperationofcompressor 75

    5.5FacilityforDefenseemployeesindividual 75

    5.6Sourcesoffireignitionmaterials 76

    5.7Wayofmakingofffire 76

    5.8Electrical

    safety

    77

    5.9RulesofthetechnicalRepairofCompressorwhenitsbenotdanger 78

    5.10Ventilationproductsanditskinds 79

    6.Controlofairdistillationcolumns 80

    6.1Capitalinvestmentcosts 80

    6.2ControllingPressureinDistillation 81

    6.2.1VenttoAtmosphere 82

    6.2.2CoolingWater 82

  • 7/26/2019 Work of Shershah Amarkhail

    5/107

    6.2.3FloodedCondenser1 83

    6.2.4FloodedCondenser2 84

    6.3Controlling

    Tops

    Composition

    in

    Distillation

    85

    6.3.1RefluxRate 85

    6.3.2RefluxRatio 86

    6.3.3DistillateRate 86

    6.4DistillationColumnControlExamples 87

    6.Economicevaluationofairdistillation 92

    6.1Capitalinvestmentcosts 92

    6.2Operationalcosts 93

    Summary 97

    Conclusion 98

    Symbols 98

    References 101

  • 7/26/2019 Work of Shershah Amarkhail

    6/107

    1

    1. Introduction

    Thecomponentspresented inair(Nitrogen,Oxygen,Argonetc.)areveryoftenapplied

    componentsinchemicaltechnology.Largequantitiesofhighpurityairproductsareusedin

    severalindustries, includingthesteel,chemical,semiconductor,aeronautical,refining,foodprocessing,andmedicalindustries.

    Airatlowertemperatures(196oC)becomesinliquidandsowecandothedistillationofthe

    airtoitscomponents.Distillationofair iscurrentlythemostcommonlyusedtechniquefor

    productionofpureoxygen,nitrogen andArgon on an industrial scale.An exampleof an

    industrialprocessthatrequirespureoxygenandnitrogenisanIGCC(integratedgasification

    combinedcycle),wheretheoxygenisfedtoagasifiedandthenitrogentoagasturbine.The

    Historyofairseparationhaslongtime,in1895Worldsfirstairliquefactionplantonapilot

    plantscale,commercialscale,productionscale,1904 World's firstairseparationplant for

    the recoveryofnitrogen,1910World's first air separationplantusing thedouble column

    rectification process, 1950 First LindeFrankl oxygen plant without pressure recycle and

    stonefilledreactors,1954World'sfirstairseparationplantwithairpurificationbymeansof

    absorbers,1978Internalcompressionofoxygenisappliedtotonnageairseparationplants,

    1984World's largestVAROXairseparationplantwithvariableoxygendemandadjustment,

    1990World'sfirsttalecontrolledairseparationplantwithunmannedoperation.Pureargon

    productionbyrectification.1991World's largestairseparationplantwithpackedcolumns,

    1992Airseparationplantsproducemegapuregases,and1997Linedsetsanewmilestone

    inair separationhistory.Fournitrogengeneration trainsarebeingprovided,each in itself

    constituting the largest air separation plant ever built. Nitrogen capacity 1,200 MMSCFD

    (40,000 t/d). 2000 Development of the advanced multistage bath type condenser. In

    chemical technology we need to allot of oxygen, nitrogen and argon. Air separation has

    becomeaprocessintegraltomanymanufacturingprocesses.

    Thelargestmarketsforoxygenareinprimarymetalsproduction,chemicalsandgasification,

    clay, glass and concrete products, petroleum refineries, andwelding. The use ofmedical

    oxygen is an increasingmarket.Gaseousnitrogen isused in the chemical andpetroleum

    industriesanditisalsousedextensivelybytheelectronicsandmetalsindustriesforitsinert

    properties.Liquidnitrogenisusedinapplicationsrangingfromcryogenicgrindingofplastics

  • 7/26/2019 Work of Shershah Amarkhail

    7/107

    2

    to food freezing.Argon, the thirdmajor componentofair, findsusesasan inertmaterial

    primarily in welding, steelmaking, heat treating, and in the manufacturing processes for

    electronics.

    The separation of air into its components is an energy intensive process.The companies

    designing air separation processes have aggressively reduced the required energy to the

    pointthat it ispossibletosellatruckloadof liquidnitrogenfor is lessthanmanycommon

    consumer products. This surprising result hasbeen accomplished by advances in process

    design,processoperation,manufacturingapproachesandtechniques,andimprovementsin

    supply chain management. Process designs have increasingly utilized mass and energy

    integration.Substitutedprocessoperationshave increasedtheabilitytooperateefficiently

    at awider rangeofproducton requirements, significantly improvedproductivity through

    pervasiveAutomationandadvanced controldeveloped thecapability toefficientlyhandlerapid production rate and product split changes, and leveraged advances in remote

    communications. Supply chain improvements have ranged from improved purchasing

    practicestooptimizedschedulingofproductdeliverytocoordinatedoperationofseparate

    facilities.

    Muchhasbeenwrittenconcerningthedesignofairseparationprocessesandcertainlythe

    worldwide patent activity for flow sheet and equipment innovation continues. Advanced

    controlhasbeenpracticedintheairseparationbusinessfordecades.Thefirstapplicationof

    computercontrol foranairseparationplantwascompleted in theearly1970s.Since that

    time,mostadvancedcontroltechnologieshavebeenapplied inanattemptto improvethe

    efficiencyandproductivityofairseparationfacilities.

    Thecurrentworkaimstodescribetheairseparationprocess includingheatexchangeand

    cryogenicdistillation.AnASPENPlus simulationof cryogenic air separation intoNitrogen,

    OxygenandArgon iscreated.The influenceofdifferentprocessparametersondistillation

    efficiencyisanalyzed.

  • 7/26/2019 Work of Shershah Amarkhail

    8/107

    3

    2. THEORETICALPART

    2.1 Airproperties

    Airisamixtureofgases,consistingprimarilyofnitrogen(78%),oxygen(21%)and

    theinertgasargon(0.9%).Theremaining0.1%ismadeupmostlyofcarbondioxideandthe

    inertgasesneon,helium,kryptonandxenon.Aircanbeseparatedintoitscomponentsby

    meansofdistillationinspecialunits.Airisusuallymodeledasauniform(novariationor

    fluctuation)gaswithpropertiesaveragedfromtheindividualcomponents.

    Figure1:Aircomposition

    DryAir: DryAir is relativelyuniform in composition,withprimary constituents as shown

    below.Ambientair,mayhaveuptoabout5%(bycvolume)watercontentandmaycontain

    anumberofothergases(usuallyintraceamounts)thatareremovedatoneormorepoints

    intheairseparationandproductpurificationsystem.

    Thetwomostdominantcomponents indryairareOxygenandNitrogen.Oxygenhasa16

    atomicunitmassandNitrogenhas14atomicunitsmass.Sincebothoftheseelementsare

  • 7/26/2019 Work of Shershah Amarkhail

    9/107

    4

    diatomic inair O2andN2,themolecularmassofOxygen is32andthemolecularmassof

    Nitrogenis28.Table1showssomepropertiesofaircomponents.

    Table1:Somepropertiesofaircomponents

    Gas

    RatiocomparedtoDryAir(%) Molecular

    Mass

    M

    (kg/kmol)

    Chemical

    Symbol

    BoilingPoint

    Byvolume Byweight (K) (oC)

    Oxygen 20.95 23.20 32.00 O2 90.2 182.95

    Nitrogen 78.09 75.47 28.02 N2 77.4 195.79

    CarbonDioxide 0.03 0.046 44.01 CO2 194.7 78.5

    Hydrogen 0.00005 ~0 2.02 H2 20.3 252.87

    Argon 0.933 1.28 39.94 Ar 84.2 186

    Neon 0.0018 0.0012 20.18 Ne 27.2 246

    Helium 0.0005 0.00007 4.00 He 4.2 269

    Krypton 0.0001 0.0003 83.8 Kr 119.8 153.4

    Xenon 9106 0.00004 131.29 Xe 165.1 108.1

    Othercomponentsinair:

    Sulfurdioxide SO2 1.0parts/million(ppm)

    Methane CH4 2.0parts/million(ppm)

    Nitrousoxide N2O 0.5parts/million(ppm)

    Ozone O3 0to0.07parts/million(ppm)

  • 7/26/2019 Work of Shershah Amarkhail

    10/107

  • 7/26/2019 Work of Shershah Amarkhail

    11/107

    6

    400 1.0135 0.7264 1.395 2.286 3.365 0.688 2.591 0.8824

    450 1.0206 0.7335 1.391 2.485 3.710 0.684 3.168 0.7844

    500 1.0295 0.7424 1.387 2.670 4.041 0.680 3.782 0.7060

    CommonPressureUnitsfrequentlyusedasalternativeto"oneAtmosphere"

    76Centimeters(760mm)ofMercury

    29.921InchesofMercury

    10.332MetersofWater

    406.78InchesofWater

    33.899FeetofWater

    14.696PoundForceperSquareInch

    2116.2PoundsForceperSquareFoot

    1.033KilogramsForceperSquareCentimeter

    101.33Kilopascal

    Table3:Someotherphysicalpropertiesofaircomponents:

    Nitrogen Oxygen

    NormalboilingpointK 126.1 154.4

    criticalpressure at 34.6 51.3

    CriticaltemperatureK 77.35 90.19

    Oxygenhasthehighestboilingpointofthethreemaincomponentsand istakenfromthe

    bottomoftheLPcolumn.NitrogenistakenfromthetopoftheLPorHPcolumns.Anargon

  • 7/26/2019 Work of Shershah Amarkhail

    12/107

    7

    richstreamcanbeproductinotherdistillationcolumnswithdrawnfromthemiddleoftheLP

    column. Figure 2 (Source: reference [9] www.engineeringtoolbox.com/dryairproperties

    d_973.html)showstheairdensityversustemperatureandpressure.

    Figure2:Airdensityversustemperatureandpressure

  • 7/26/2019 Work of Shershah Amarkhail

    13/107

    8

    2 . 2 A i r s e p a r a t i o n t e c h n o l o g i e s

    Air separation plants are designed to generate oxygen, and argon from air through the

    process of compression, cooling, liquefaction and distillation of air. Air is separated for

    production of oxygen, nitrogen, argon and in some special cases other rare gases

    (krypton,xenon,helium,neon) throughcryogenic rectificationofair.Theproducts canbe

    produced in gaseous form for pipeline supply or as cryogenic liquid for storage and

    distributionbytruck.OneofthelargestproducersofairseparationplantsisLinedCompany.

    Ithasbuiltapprox.2,800cryogenicairseparationplantsinmorethan80countries(Source:

    http://tnsansoplant.com/en/air.html [4]) and has the leading market position for air

    separationplants.

    Figure3:airseparationscheme

    Aircanbeseparated into itscomponentsbymeansofdistillation inspecialunits.Socalled

    air fractionating plants employ a thermal process known as cryogenic rectification to

    separate the individual components from one another in order to produce highpurity

    nitrogen,oxygenandargoninliquidandgaseousform.

    Differenttypeofairseparationtechnologieswasdeveloped:

  • 7/26/2019 Work of Shershah Amarkhail

    14/107

    9

    CryogenicAirseparation

    MembraneAirseparation

    Separationbyadsorption

    Other

    Differenttechnologiesareapplicablefordifferentrequirementonamountandpurityofthe

    products. Figure (4) shows theOxygen production process selection grid.A similar graph

    describingtherangesforwhichthedifferentnitrogenprocessesareapplicablecanbeseen

    inFig.(4)

    Figure4:Oxygenproductionprocessselectiongrid

    Methodssuchasmembraneseparationarealsoavailablebuttheyarecurrentlyusedfarless

    pervasivelythantheothertwoapproaches.

  • 7/26/2019 Work of Shershah Amarkhail

    15/107

  • 7/26/2019 Work of Shershah Amarkhail

    16/107

    11

    Inthecryogenicgasprocessing,variousequipmentisusedlikethedistillationcolumns,heat

    exchangers, cold interconnectingpipingetc.whichoperate at very low temperatures and

    hencemustbewellinsulated.Theseitemsarelocatedinsidesealed"coldboxes".Coldboxes

    aretallstructureswitheitherroundorrectangularcrosssection.Dependingonplanttype,

    sizeandcapacity,coldboxesmayhaveaheightof15to60metersand2to4metersona

    side.

    Basicstepsofcryogenicairseparation:

    FirstStep:Thefirststepinanycryogenicairseparationplantisfilteringandcompressingair.

    Afterfiltrationthecompressedairiscooledtoreachapproximatelyambienttemperatureby

    passingthroughaircooledorwatercooledheatexchangers.Insomecases it iscooled ina

    mechanical refrigeration system to a much lower temperature. This leads to a better

    impurity removal,andalsominimizingpower consumption, causing less variation inplant

    performancedue to changes in atmospheric temperature seasonally.After each stage of

    coolingandcompression,condensedwaterisremovedfromtheair.

    Second Step:Thesecondstep is removingthe remainingcarbondioxideandwatervapor,

    which must always be removed to satisfy product quality specifications. They are to be

    removedbeforetheairentersthedistillationportionoftheplant.Theportionisthatwhere

    thevery low temperaturecanmake thewaterandcarbondioxide to freezewhichcanbedepositedonthesurfaceswithintheprocessequipment.Therearetwobasicmethodstoget

    ridofwatervaporandcarbondioxide molecularsieveunitsandreversingexchangers.

    ThirdStep:The thirdstep inthecryogenicairseparation isthetransferofadditionalheat

    againstproduct andwaste gas so as to bring the air feed to cryogenic temperature. The

    cooling isusuallydone inbrazed aluminumheat exchangers. They let theheat exchange

    between the incoming air feed and cold product and waste gas streams leave the air

    separationprocess.Theverycoldtemperaturesrequiredfordistillationofcryogenic

    Products are formed by a refrigeration process comprising expansion of one or more

    elevatedpressureprocessstreams.

    FourthStep:Thisstepinvolvestheuseofdistillationcolumnstoseparatetheairintodesired

    products.Forexample,thedistillationsystemforoxygenhasboth"high"and"low"pressure

  • 7/26/2019 Work of Shershah Amarkhail

    17/107

    12

    columns.Nitrogenplantscanhaveoneortwocolumn.Whileoxygenleavesfromthebottom

    ofthedistillationcolumn,nitrogenleavesfromthetop.Argonhasaboilingpointsimilarto

    that of oxygen and it stays with oxygen. If however high purity oxygen is needed, it is

    necessarythatatanintermediatepointargonmustberemovedfromthedistillationsystem.

    Impureoxygenproducedinthehigherpressuredistillationcolumnisfurtherpurifiedinthe

    lower pressure column. Plants which produce high purity oxygen, nitrogen or other

    cryogenicgasesrequiremoredistillationstages.

    Figure4 shows thebasic stepsofcryogenicair separationprovidedbyMESSER.Thebasic

    stepsofthistechnologyaredescribedas:

    Compressionofair:Ambientair isdrawn in,filteredandcompressedtoapprox6bar

    byacompressor.

    Precookingofair:Toseparateairintoitscomponents,itmustfirstbeliquefiedatan

    extremelylowtemperature.Asafirststep,thecompressedairisprecooledwithchilled

    water.

    Purificationofair:Impuritiessuchaswatervaporandcarbondioxidearethen

    removedfromtheairinasocalledmolecularsieve.

    Cooling of air: Because the gases which make up air only liquefy at very low

    temperatures,thepurifiedair inthemainheatexchanger iscooledtoapprox. 175C.The

    cooling is achieved by means of internal heat exchange, in which the flows of cold gas

    generatedduringtheprocesscoolthecompressedair.Rapidreductionofthepressurethen

    causes thecompressedair tocool further,whereby itundergoespartial liquefaction.Now

    theairisreadyfortheseparatingcolumn,wheretheactualseparationtakesplace.

  • 7/26/2019 Work of Shershah Amarkhail

    18/107

    13

    Figure6:Basicstepsofairseparation

    Separationofair:Separationofairintopureoxygenandpurenitrogenisperformedin

    twocolumns,themediumpressureandthelowpressureColumns.Thedifferenceinboiling

    pointoftheconstituentsisexploitedfortheseparationprocess.Oxygenbecomesaliquidate

    183Candnitrogenat196C.Thecontinuousevaporationandcondensationbroughtabout

    bytheintenseexchangeofmatterandheatbetweentherisingsteamandthedescending

    liquidproducespurenitrogenatthetopofthelowpressurecolumnandpureoxygenatthe

    bottom.Argonisseparatedinadditionalcolumnsandinvolvessomeextrastepsinthe

    process.

    Withdrawalandstorage:Gaseousoxygenandnitrogenarefedintopipelinesfor

    transporttousers,e.g.steelworks.Inliquidform,oxygen,nitrogenandargonarestoredin

    tanksandtransportedtocustomersbytankerLorries.

  • 7/26/2019 Work of Shershah Amarkhail

    19/107

  • 7/26/2019 Work of Shershah Amarkhail

    20/107

    15

    under the right conditions,providebetteroveralleconomics thaneither an allbulkliquid

    supplyoranewcryogenicnitrogenplantwithastandardinternalrefrigerationcycle.

    2.2.2 Airclearing

    Beforedistillationtheairshouldbeclearedfromdifferent impuritiesandcomponents.The

    exitsof impurity likecompass ,wet ,carbondioxide,andanother impurity inairmake the

    problemsinairdistillationsowehavetocleartheairbeforethethatprocess.

    ClearingtheairfromcompassandDryit:

    Thecontentofcompass inair isabout0.0020.02g/m

    3 so forclearing theair from this

    impureweusetheoilfilters.Airpassesthesefiltersandclearsfromcompass.Inabigplant

    withlargecapacityofproductsweusetheseveralsectionsofautomaticfilterswithapatch

    orsectionoflocomotive.Wetinairbelongstothestatusoftheweathers.Valueofthewet

    inairwhenairbee100%saturatebyitinthebelowtable.

    Table4: correlationofairwithwetfromtC

    Dryingoftheaircanberealizedwithoneoftheseforms:

    1 Adsorption with SiO2.H2O : We can get the SiO2.H2O by sluice hydrate of aced of

    SiO2.H2Oanditsbaitsizeis37mm.afterdryingbySiO2.H2Ocontainofthewetis0.03

    g/m3

    decreaseanditsdewdotis52.

    Co wet g/m3 tC Cowet g/m

    3tC

    2.31

    1.01

    0.44

    0.117

    0.038

    10

    20

    30

    40

    50

    50.91

    30.21

    17.22

    9.93

    4.89

    40

    30

    20

    10

    0

  • 7/26/2019 Work of Shershah Amarkhail

    21/107

    16

    2AdsorptionbyActiveAl2O3.H2O: ActiveAl2O3.H2OandanotheroxidantisSiO,Na2O,and

    OFproductviasluicetrayhydroidoxidantAlmonium.

    ActiveAl2O3.H2OpossessorofverybettermechanicalsubstancethenSiO2.H2Oanditbetter

    suction thewet.After thedryingwithAl2O3.H2O thecontentofwet inair0.005g/m3

    be in

    decrease.Anditmachwiththe64dotofdew.RedactionoftheadsorbentbyHatenitrogen

    upto170180CforSiO2.H2OforAl2O3.H2O245270C.

    Foradsorptionofairfromwetalsoweusethealmoniumsilicates,sodium,andetc.

    3Making ice: Insameoftheairseparationplantthatworkwithtwopressurecycleand

    frizzingwithNH3.Dryingtheair inheatexchangeratfirstcoolingbythegutteroxygenand

    nitrogenupto5CafterthatwithebullientNH3upto 4045Cbeecooled.Usuallyweuse

    twoammonicheatexchangerthatworkautomaticwhenoneofthemhatestheotherone

    becooled.

    Airclearingfromcarbondioxide:

    Inbegplant thathasbegcapacityclearing theair fromCO2 in the scrubberofalkali that

    washed by SOLUTION of the sodium hydro oxide or potassium hydroxide. Same time in

    regeneratorsofoxygenandnitrogendo that.During thepassageofair from regenerators

    theCO2becomefreezeontheabsorbentoftheO2,N2.ThefreezeCO2thenclearsfromair

    and the CO2 on absorbent clearing by the predicted O2and N2. There also use two

    regenerators thatworkonperiodic system and aftera fewmintschange theyareplaces.

    ContentofCO2afterscrubberofalkaliandregenerator1520cm3/m

    3anditwillbeinthe

    liquid form the air or same times it is like a ingredient suspension so it canmake same

    problemsinvalvesandshuttheholeofplatesinseparationtower.

    Clearingairfromacetylene:

    Airclearing fromacetylenebecause itsverydangerous for theairseparationplant so its

    importanttoclearairfromitbecauseifacetyleneaggregationitwillbeexplosion.Acetylene

    haslowpartpressureintheairsoitcantdistantinheatexchangerandinregeneratorand

    itsaggregationinliquid.Acetylenehaslowsolubilityinair,oxygenandnitrogensoitcanbe

    veryeasycleaninSiO2.H2Ofilters. UsethedifferentmarkoftheSiO2.H2O.

  • 7/26/2019 Work of Shershah Amarkhail

    22/107

  • 7/26/2019 Work of Shershah Amarkhail

    23/107

    18

    Somevapor iscondensed,andthe latentheatofthevapor isdischargedfrom4to7.Then,

    thesaturatedairat7isexpandedandcooledtothecoolairat8intheturbine.Thecoolair

    at8isthenductedtotheairconditionedrooms.Thecoolwaterisheatedinthesurfaceheat

    exchanger. Water injection before the axial compressor aims to decrease both the

    temperatureoftheworkingfluidandthepolytrophicexponentinthecompressionprocess.

    Thus,wecansavesomecompressionwork.Thismethodhasbeenusedinajetenginewhen

    a fighterplane increases itsspeed.However,thedifference isthatwhat is injected inajet

    engineiswater,alcohol,etc.Thewatervaporinthecompressedaircaneasilybeextracted

    by a surface heat exchanger. With the same temperature, the humidity ratio of the

    saturatedwetairathighPressureP4isonlyaboutP3/P4ofthatatpressureP3.Themethod

    ofusing compressed air to acquiredry airhasbeenused in someworkshops the system

    abovediffersfromaconventionalaircyclesystem.Therearemanycharacteristicsinthisairvaporrefrigerationcircle.

    Firstly,anaxialcompressorandaturbineareusedintheabovesystem.

    Thecharacteristicsofturbomachinesarelargemassflowrateandhighefficiency.Theother

    types of compressor and expander have none of the above advantages. Secondly, these

    refrigerationsystem intakesprecooledwetairwith finewaterdroplets,andsomevapor is

    condensedduringtheaircoolingfrom4to7.

    Theamountofwaterextractedfromthehighpressurewetaircanreach1830g/kg(d.a.),

    and the amountof latentheatdischarged from the vapor condensed, about4575 kJ/kg

    (d.a.), exceeds the sensible heat from the air, 3050 kJ/kg (d.a.). For this reason, the

    refrigeration load in this airvapor refrigeration systemdependsona combinationof the

    sensible

    Thehumidityratioofwetair,D,isobtainedfrom

    (2.1)

    Theenthalpyofwetair,H,iscalculatedfrom

    H=1.006t+0.001D(2501+1.805t) (2.2)

  • 7/26/2019 Work of Shershah Amarkhail

    24/107

    19

    Theadoptedrelationforwatervaporbetweensaturation

    Pressureandsaturationtemperature,Ps=f(ts),isselectedfromRef[2]

    Tocalculatethesaturatedtemperatureofthewetairfromthesaturatedenthalpy,Esq.(1)

    and(2)andPs=f(ts)areused.

    Axial

    compressor

    During the compression process of the wet air, the fine water droplets in the air may

    evaporate. Because the evaporation of water takes in heat, we can regard the ideal

    compressionprocessofthewetair inthecompressorasapolytrophicprocess.Therefore,

    wecanobtaintheidealworkofthecompressorperkilogramdryair,WC,from

    Wc=

    (Rair+0.001DRvapor)T3[1(p4/p3)n1/n

    ] (2.3)

    inwhichnisthepolytrophicexponentforthecompressionprocess.

    Thepracticalworkconsumedby theaxialcompressor isWc/gc inwhichgc is the thermal

    efficiencyofthecompressor.

    Turbine

    ThesaturatedairwithapressureofP7andatemperatureofT7beforetheturbinehasbeen

    dehumidified in the surface heat exchanger by coolingwater.At point 7, the amount of

    vapor included in the saturated air is very small, about P3/P7 of the amount included in

    saturatedairatP3.Thus,thewatercondensedintheairisinfog.Nevertheless,expansionof

    thesaturatedairintheturbinecannotberegardedasanadiabaticexpansionofanidealgas.

    With thedecreaseof thewetairpressure in the turbine, the temperatureof thewetair

    decreases,andsomeheat isdischargedduringthecondensationofsomewatervapor.The

    heatdischargedmaycause increasesinboththetemperatureoftheturbineoutletandthe

    workdoneintheexpansion.Forthisproblem,wecan imaginethatnophasechangeexists

    and that there is someheatadded to thewetairduring theexpansionprocesswhenwe

    calculatetheworkdonebytheexpansionprocess.Accordingtotheaboveassumption,this

    problem can be simplified to a problem of the polytrophic expansion of an ideal gas.

  • 7/26/2019 Work of Shershah Amarkhail

    25/107

  • 7/26/2019 Work of Shershah Amarkhail

    26/107

    21

    becomesliquidagain.Forcreationofliquidnitrogen,O2,H2,airetc.thereconditecoolis

    used.

    Ingeneralforovertakeofreconditecoolweusethreesystemsasbelow:

    1. Cascadevaporization

    2. Fastpressuredropbytransmissionofgas

    3. Adiabaticallyexpansionofgaswithexternalwork

    Thefirstonecreatesmediumcool,thesecondandthirdarecreatingreconditecool.Two

    kindoftransmissioneffectwehave:

    1. Differentialeffect

    2. Integraleffect

    Thechangeoftemperaturecausedbyaverysmallchangeofpressureiscalleddifferential

    effectoftransmission. Anditisshownbythisformula

    i=[]i=cont (2.4)

    Thechangeoftemperaturecausedbyalargechangeofpressureiscalledintegraleffectof

    transmission. Anditisshownbythisformula

    Ti=T1 T2=

    (2.5)

    T1,T2are gastemperaturebeforeandafterthetransmission.Thetransmissioneffectof

    everygascanbepositive,negativeorzero.Thetemperaturethatequalszerobytheeffectof

    transmissioniscalledchangepoint.

    Adiabaticallyexpansionofgaswithexternalwork

    One of another way to create low temperature is adiabatically expansion of gas withexternalworkthatoccurs inturbomachineor incompressors.Theadiabaticallyexpansion

    effectoftransmissionofgasisequaltothe:

    s= scont (2.6)

  • 7/26/2019 Work of Shershah Amarkhail

    27/107

    22

    By adiabatic expansion the decrease of temperature is more significant than the

    transmissionofgas.

    Theworkdonebyadiabaticexpansionisequaltothedifferenceofairenthalpiesintheenter

    andexitofmachine.

    L=i1i2 kj/kg

    Whends=0thefinaltemperaturecanbefindfromthisformula

    =(

    )

    k1/k

    T2,T1 aretemperaturesofgasbeforeandaftertheexpansion.

    P1,P2 firstandsecondpressureofgas.

    K Adiabaticallycharacteristic.

    By increaseofthepressureandreductionoftemperaturethequantityof sreducesand it

    becomenearorclosetotheiquantity.Andneartotheclimacterictemperatureareaboth

    affectofadiabaticallyexpansionandeffectofTransmissionofgasare the sameand they

    createidenticalcool.

    Reconditecoolcycles:

    1 CyclesthatusingeffectofTransmissionofgas:

    a) CycleofonestageTransmissionofgas

    b) Cyclewithtowpressureofair

    c) Cyclewithrotationoflowpressure

    2 CyclebyusingAdiabaticallyexpansion:

    a) Clodcycle

    b) Kapisacyclec) Lirozacycle

    d) Compositecycle

    Formoredetailsofaircoolingcyclessee(Reference:lessenchapter[3])

  • 7/26/2019 Work of Shershah Amarkhail

    28/107

    23

    2.2.5 Airdistillation

    Inanairseparationunitforseparatingairbycryogenicprocess,therebyrecoveringoxygen,

    nitrogenandArgon,columnofduplextyperectificationtowerisused.Theairisfedintothe

    lowercolumnwithhigherpressure.Liquidnitrogenisintroducedintotheuppercolumnasa

    reflux from lower column and a oxygen reached stream from the bottom of the lower

    column is fed to the bottom of the higher column. Distillate from the upper column is

    practicallypureNitrogen,bottomof this column inOxygen andArgon reached stream is

    removedfromthemiddlepartoftheuppercolumn.

    Airdistillationcolumn

    Distillationcolumncombinedfrombottom

    column(2),condenserandreboiler(3)and

    uppercolumn(4).Bottomcolumnwork

    under5.5 6.5atpressureandits

    allocationforpreliminarydistillationofair

    intonitrogenandmixedofoxygenandair

    thathas6065%nitrogenand3540%

    oxygen. Inuppercolumnthatworksat1.3

    1.4atforfinallydistillationofmixed

    oxygenandairintonitrogenandoxygen.

    1 Liquidoxygenandair

    2 Bottomcolumn3 condenserreboiler4

    uppercolumn5stages

    6 Liquidnitrogenpacket7 valve

    8 pipes

    Figure9:airdistillationcolumn

    Inthemedalofbottomanduppercolumncondenserandreboilerlocatedthatcondensing

    ofnitrogenforbottomcolumnandvaporizingoxygenforuppercolumn.Condensation

    temperatureofnitrogeninbottomcolumnis9697Kandoxygenvaporization

    temperatureinuppercolumnis9293K.

  • 7/26/2019 Work of Shershah Amarkhail

    29/107

    24

    Compressedairin120200atinsidingatthelowerpartsofcolumn2bytemperatureof145

    155Kafterthatotherprocessaccomplishmentonit.Attheendgasesnitrogenproducts

    from topofcolumn4,oxygenproducts from the topofcondenser3andArgon from the

    medalof column 4 .numberof theoretical stage inupper column are about 36up to 56

    stagesandinbottomcolumn24upto36stages.

    TheproducedNitrogen,OxygenandArgonpurityis:

    Molfractionofoxygen98.7%,molfractionofnitrogen99.0%,molfractionofArgon99.5%.

    2.3 Productsofairseparationandtheirapplications

    ThesearetheAirproducts:

    Oxygen: Oxygenmakesup21percentoftheairwebreathe.Ourbodiesneedoxygento

    supportlife,sooxygenhasmanymedicalandhealthcareuses.

    Oxygenisalsousedinmanyindustries,incloudingmetalandglassmanufacturing,chemicals

    andpetroleumprocessing,pharmaceuticals,pulpandpaper,aerospace,wastewater

    treatmentandevenfishfarming.

    Chemicalformula:O2othernames:oxygengas,gaseousOxygen(GOX),liquidoxygen(LOX)

    PhysicalandChemicalProperties

    Oxygenhasnocolororsmell.Oxygenisslightlyheavierthanairandslightlywatersoluble.

    Oxygen combines readily with many elements to form compounds called oxides. One

    example is ironoxide,orrust,thatformson iron inthepresenceofoxygenandmoisture.

    Although oxygen itself is nonflammable, combustible materials burn more strongly in

    oxygen.Eventhoughmostapplicationsuseoxygeninthegasform,itcanbecooledtoapale

    Blue liquid at extremely low temperatures (297F/183C). To put that temperature into

    perspective,waterfreezesat32F/0C.

    UsesandBenefits

    Ourbloodstreamabsorbsoxygenfromtheairinourlungstofuelthecellsinourbodies.

    Healthcareprovidersusemedicaloxygenforpatientsinsurgeryandforthosewhohave

    difficultybreathing.Forhomeuse,lightweightPortableoxygencylindersgivepatients

    freedomtogoutintothecommunity.

  • 7/26/2019 Work of Shershah Amarkhail

    30/107

    25

    Oxygenpromotescombustion,soithelpmanufacturerssaveuplandenergyandreducethe

    emissionofgreenhousegasessuchascarbondioxide,nitrogenoxideorsulfuroxide.

    Using oxygenenriched air increases production efficiency in steel, rocket fuel, glass,

    chemicalandmetallurgicalprocessingapplications.

    Manufacturersofaluminum,copper,goldand leaduseoxygentoremovemetalsfromore

    moreefficiently.Asaresult,theycanoftenuse lowergradeoresandrawmaterials,which

    helpsconserveandextendournaturalresources.Formetalfabrication,oxygenisoftenused

    withacetylene,propane,andothergasestocutandweldmetals.

    Thechemicalandpetroleumindustriescombineoxygenwithhydrocarbonbuildingblocksto

    makeproductssuchasantifreeze,plasticandnylon.

    Thepulpandpaper industryusesoxygen to increasepaperwhitenesswhile reducing the

    need forotherbleachingchemicals.Theyalsouse it to reduceodorsandotheremissions.Municipalandindustrialwastewaterplantsuseoxygentomakethetreatmentprocessmore

    efficientandincreasebasincapacityduringplantexpansionsorplantupsets.Municipal

    Waterplantsuseoxygenasfeedgastotheirozonesystemstoremovetaste,odorandcolor

    fromdrinkingwater.Oxygenatedwateralsoimprovesthehealthandsizeofthefishforfish

    farmingoperationssofarmersaroundtheworldcansupplyhighqualityfood.

    Industrial Use:Weshipoxygenasahighpressuregasoracold liquid.Weoftenshipand

    store largerquantitiesofoxygen in liquid form,because itoccupiesmuch less space that

    way.Dependingonhowmuchoxygengasourcustomeruses,westoreandship it inhigh

    pressure cylinders and tubes. Industry guidelines cover the storage and handling of

    compressedgascylinders.Workersshouldusesturdyworkgloves,safetyglasseswithside

    shieldsandsafetyshoeswhenhandlingcompressedgascylinders.Westoreandship liquid

    oxygen in three different types of containersdowers, cryogenic liquid cylinder sand

    cryogenicliquidtanks.Thesecondtrainersaresimilartoheavydutyvacuumbottlesusedto

    keep your coffee hot or your water cold. Because of its low temperature, liquid oxygen

    shouldnot come in contactwith skin. Ifworkershandle containersof liquidoxygen, it is

    importanttowearafullfaceshieldoversafetyglassestoprotecttheeyesandface.Workers

    shouldalsowearclean,loosefitting,thermalinsulatedgloves;alongsleevedshirtandpants

    withoutcuffs;andsafetyshoes.

    Theriskoffireincreaseswhenoxygenlevelsintheairarehigherthannormal.Clothingand

    hairreadilytrapoxygenandarehighlycombustible.Itisimportanttohavegoodventilation

  • 7/26/2019 Work of Shershah Amarkhail

    31/107

  • 7/26/2019 Work of Shershah Amarkhail

    32/107

  • 7/26/2019 Work of Shershah Amarkhail

    33/107

  • 7/26/2019 Work of Shershah Amarkhail

    34/107

    29

    shield over safety glasses to protect the eyes and face.Workers should alsowear clean,

    closefitting, thermalinsulated gloves; a longsleeved shirt and pants without cuffs; and

    safetyshoes.Topreventsuffocation,itisimportanttohavegoodventilationwhenworking

    with argon. Confined workspaces must be tested for oxygen levels prior to entry. If the

    oxygen level is lower than 19.5 percent, personnel, including rescueworkers, shouldnot

    entertheareawithoutspecialbreathingequipment.

  • 7/26/2019 Work of Shershah Amarkhail

    35/107

  • 7/26/2019 Work of Shershah Amarkhail

    36/107

    31

    The model has option codes which can be used to customize the model, by selecting a

    differentalphafunctionandothermodeloptions.Forbestresults,thebinaryparameterkij

    mustbedeterminedfromregressionofphaseequilibriumdatasuchasVLEdata.TheAspenPhysicalPropertySystemalsohasbuiltinkij fora largenumberofcomponentpairs inthe

    EOSLITdatabank.Theseparameters areused automaticallywith the PENGROBproperty

    method.Valuesinthedatabankcanbedifferentthanthoseusedwithothermodelssuchas

    SoaveRedlichKwongorRedlichKwongSoave,andthiscanproducedifferentresults.

    UsingthePeng Robinsonequationofstatetheisobarict,xyandx,ydiagramsofN2O2and

    ArO2binarysystemsatdifferentpressureswerecalculated:

    a)P=1.4at

    Figure10:T,X,Y diagram,N2O

    2

  • 7/26/2019 Work of Shershah Amarkhail

    37/107

    32

    Figure11:X,Ydiagram,N2 O2

    b)P=5at

    Figure12:T,X,Y diagram,N2O2

  • 7/26/2019 Work of Shershah Amarkhail

    38/107

    33

    Figure13:X,Ydiagram,N2O2

    bOxygen,Argon,P=1.4at

    186.5

    186

    185.5

    185

    184.5

    184

    183.5

    183

    0 0.2 0.4 0.6 0.8 1

    t(C)

    X

  • 7/26/2019 Work of Shershah Amarkhail

    39/107

    34

    Figure14:T,X,Y diagram,Ar O2

    Figure15:X,Y diagram,ArO2

    AsitresultsfromtheisobaricphaseequilibriumdiagramstherelativevolatilityofN2toO2isquite

    highitmeansthatseparationofN2fromO2isnotverydifficult.ButtherelativevolatilityofArtoO2is

    verylow.Forthisreasonforseparationofthesecomponentswewillneedlargenumberof

    theoreticalstagesandlargerefluxratios.

    3.2CalculationofairdistillationbyMcCabeThielemethod

    Materialbalancesystem:

    Thequantityofoxygenandnitrogenthatinteriorwithairinplantisequaltothequantityof

    thosegasesthatoutsidewiththeproductoftheplant.Ifweknowtheproductoxygenand

    nitrogenConcentrationwecanknowthequantityofthemebyMaterialbalanceequation.

    Weconsiderthat191.94kmol/hofabubbleliquidairconsistingof79mol%N2and 21mol%

    O2 is distillated continuously in a distillation tower at a pressure of 1.4 atmospheres.

    Distillatecontains98mol%oflightcomponentandBottoms98mol%ofheavycomponent.

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.2 0.4 0.6 0.8 1

    Y

    X

  • 7/26/2019 Work of Shershah Amarkhail

    40/107

    35

    Therefluxratiois1.45timesofminimumrefluxratio.Followingisdescribedthecalculation

    of:

    a Numberoftheoreticalstagesandoptimumfeedstagelocation.

    b Steam requirement in reboilerand requirementofcoolingAir in totalcondenser if

    the steam pressure is 0.14 Map and cooling Air is preheated by 20oC, only

    condensation heat of the steam is used and reflux is returned to the column at

    boilingpoint.

    Data:

    EquilibriumdataofAirin1.4at(molfrictions)

    XfN2 = 0.79 t=tfBP

    XfO2 = 0.21 q=1

    XDN2 = 0.98

    XwN2 = 0.02

    Nf =6048.9kmolh1

    Heatofevaporationataveragecolumntemperature:t=190C

    vhN2=6661.1kJ/kmol vhO=5487kJ/kmol

    MN2= 28kg/kmol MO2=32kg/kmol

    x 0 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 1

    y 0 0.1732 0.3078 0.4146 0.501 0.5722 0.6318 0.7259 0.7972 0.8534 0.8993 0.9378 0.9709 0.9859 1

  • 7/26/2019 Work of Shershah Amarkhail

    41/107

  • 7/26/2019 Work of Shershah Amarkhail

    42/107

    37

    Figure17:XYdiagram,vaporandliquidN2

    3 SelectondiagrampointF,DandW

    Figure18:SelectionofxFandxD

    0

    0.1

    0.2

    0.3

    0.4

    0.50.6

    0.7

    0.8

    0.9

    1

    0 0.2 0.4 0.6 0.8 1

    Y

    X

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.2 0.4 0.6 0.8 1

    Y

    X

  • 7/26/2019 Work of Shershah Amarkhail

    43/107

    38

    4 Drawqline

    qlineisgraphicalinterpretationofmaterialbalanceofthefeedstage;qrepresentsthe

    amountofliquidthataccumulatesatthefeedstagebyfeedingof1kmolofthefeed.

    qline

    equation:

    nv=nL+nD (3.5)

    nvyi=nLxL+nDxD

    L Di i D

    v v

    n ny x x

    n n= + (3.6)

    11

    =

    q

    xxi

    q

    qyi F

    ForbubbleliquidAir,q=1,theslopofqlineequationiso

    q

    qtg 90

    1==

    =

    Figure19:XYdrawingofqline

    00.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.2 0.4 0.6 0.8 1

    Y

    X

    ( 1) ( 1)

    D Di i D

    R ny x x

    R Rn= ++ +

  • 7/26/2019 Work of Shershah Amarkhail

    44/107

    39

    5 Calculationofminimumrefluxration

    ForcalculationminimumrefluxrationRmintheoperatinglineintherectifyingsectionofthe

    columnforatRminshouldbedrawn.

    11 minmin

    min

    +

    +

    +

    =

    R

    xx

    R

    Ry D (3.7)

    Wehavetwopointsofthislineoneistheintersectionofqlineandequilibriumcurveand

    anotherintheintersectionof45olineandxDline.

    Figure20:XYminimumrefluxratio

    Theminimumrefluxratiocanbecalculatedfromtheslopeofthisline

    ''

    'min

    xy

    yxR D

    =

    (3.8)

    Orfromthesection1min +R

    xDontheyaxisforx=0

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.2 0.4 0.6 0.8 1

    Y

    X

  • 7/26/2019 Work of Shershah Amarkhail

    45/107

    40

    6 Calculaterefluxratio(R)asR=2Rmin.

    R=2Rmin (3.9)

    ''

    'min

    xy

    yxR D

    =

    Rmin=

    R=2*0.727=1.45

    7 Calculatethesection1+R

    xDontheyaxisforx=0

    40.0145.1

    98.0

    1=

    +

    =

    +

    =

    R

    x

    y D

    i

    8 Drawtheoperatinglineoftherectifyingsectionofthecolumnbyconnectingpoints(0,

    1+R

    xD)and(xD,yD)

    9 Drawtheoperatinglineofthestripingsectionofthecolumn,byconnectingintersection

    pointofqlineandoperatinglineofrectifyingsectionwithpoint(xw,yw)

    Figure21:XYDrawingofoperatinglines

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.2 0.4 0.6 0.8 1

    Y

    X

  • 7/26/2019 Work of Shershah Amarkhail

    46/107

    41

    10 Drawstepsbetweenequilibriumcurveandoperatinglines

    Numberoftheoreticalstages=numberofsteps1(reboiler)

    Optimalfeedstage=intersectionofqlineandoperatinglines

    Enthalpybalanceofreboiler:

    QRe=[nD(R+1)+nF(q 1)]vhw (3.10)

    vhw=vhwO2Xw

    O2+vhw

    N2Xw

    N2 (3.11)

    vhw=54870.98+6661.10.02=5510.5kJ/kmol

    QRe=[4652.612(1.4+1)+6048.9(11)]5510.5=61531724kJ/hr=17.092MW

    Figure22: XYdiagram,vaporandliquidN2

  • 7/26/2019 Work of Shershah Amarkhail

    47/107

    42

    Enthalpybalanceoftotalcondenser:

    Qcon=nD(R+1)vhD (3.12)

    vhD=vhNXDN+vhOXDO (3.13)

    vhD=6661.10.98+54870.02=6637.62kJ/kmol

    Qcon=4652.612(1.4+1)6637.62=74117449kJ/hr=20.59MW

    3.3Aspensimulationofairseparationprocess

    For calculation and design of air separation process we have used the ASPEN Plus air

    separationprogram. Itsanewsciencetechnology fordoingthecalculationofengineering

    process.

    In this project we have designed the air separation process and distillation of air to its

    components. A special attention was devoted to separation of Argon. However, the

    simulationofallprocessincludingaircoolingwasdone.

    FollowingaredescribedthebasicstepsofsimulationbyASPENPlus

    1. UsingAspenpropertyanalysisandPengRobinsonequationofstate,thermodynamic

    analysisofairseparationwasdone.Theresultsarepresentedinthesection3.1.

    2. Designanddrawingoftheprocessflowsheet

    Descriptionoftheairseparationprocessflowsheet:

    ThisschemeisgenerallyusingforproducingArgonthathasdifferentuse.

    Thebasic formoftheair (3500m3/hratoperationalconditions (t=20C,P=5at)or (727.5

    kmol/hr) thatcleared fromdustandcompressed inacompressorup to5atpressureafter

    crossing refrigerator and separator of wet goes to inside of oxygen and nitrogen

    refrigerators.Airiscooledhereupto( 160, 170C).Therefrigeratorsworkautomatically.

    Airscrossingonetherefrigeratorso inthis timethereversedproceedinggasofO2andN2

    arecrossinganotherrefrigeratorandafterafewminuteschangingthemarereplaced.After

    thatclearedandcooledairgoestothelowerpartsoftheairseparationcolumn(C1).Second

    partsoftheair(800m3/hratoperationalconditions(t=20C,P=160at))or(5321.4kmol/hr)

  • 7/26/2019 Work of Shershah Amarkhail

    48/107

    43

    thatcompressedupto(150200at)atfirstandupto(120160at)pressureduring normal

    work in several stage compressor. Thehigh pressure airdivided in to twoproceedingor

    parts,onepartsoftheair(550m3/hr) iscrossingheatexchanger(EH1)andcoolingupto(

    130C)therebyreversinggasofnitrogenandafterthatexpandringupto5atandenters to

    lowerpartsofcolumnC1.Theanotherpartsofhighpressureair(250m3/hr) isgoestothe

    expanderandexpandsupto5atpressuresothispartsofairalsoenterstothe lowerparts

    of air separation columnC1. in the resultofexpand ration the temperaturebecome (

    130C).

    Inthe lowerpartsofcolumnC1iscollected liquidairbymol fractionof3538%oxygen.

    Vaporswith98%nitrogenareremovedfromthepartialcondenserLiquiddistillatenitrogen

    iscollectedinthenitrogenpackets.ThisnitrogenaftercrossingHE3expandringtothetop

    of columnC2. Themixtureof liquid air andoxygen from thebottomof columnC1 after

    crossingHE2expandringtothe20stageofcolumnC2.Nitrogengasproductedfromthetop

    of column C2 crossing heat exchanger (HE3) and nitrogen refrigerator it goes to use for

    technologicalaim.AlsoproducedoxygenfromlowerpartsofcolumnC2aftercrossingHE4

    andoxygenrefrigeratortocoolairthatcomingatfirsttoprocessgoestogascooler.From

    themiddlepartofcolumnC2anstream reachedbyargon (line38)goes to thecolumnC3

    where Argon is separated from Oxygen. From lower part of this column a product with

    99.9%ofoxygenisremovedsothisO2mixedwithC2oxygenandaftercrossingHEO2goesto

    useinotherprocesssothisoxygenhasapurityof98.7%molfraction.

    From the top of C3 Argon with same nitrogen goes to column C4. From the top of this

    columnproductsnitrogenand fromthebottomofthiscolumnArgon isreceived.TheMol

    fraction of produced Argon is 99.5%. Nitrogen produced in C4 is mixed with Nitrogen

    producedinC2.

    3:3:1TechnicalspecificationsofKT1000Mplant:

    Volumeflowoftheair m3/hr:

    Highpressureair 800m3/hr atpressure160at 5321.4kmol/hr

    Lowpressureair 3500m3/hr atpressure 5at 727.5kmol/hr

    Volumeofproductedoxygen 1243.877kmol/hr

  • 7/26/2019 Work of Shershah Amarkhail

    49/107

    44

    Volumeofproductednitrogen 4760.309kmol/hr

    VolumeofproductedArgon 44.714 kmol/hr

    Molfractionofoxygen 98.7%

    Molfractionofnitrogen 99.0%

    MolfractionofArgon 99.5%

    3. Selectingcomponentsandpropertymethod

    Figure23:componentsandpropertymethodforairseparation

  • 7/26/2019 Work of Shershah Amarkhail

    50/107

    45

    4. Specifyingenteringair

    Highpressureair

    Pressure: 160at

    Temperature: 20C

    Molarflow: 5321.4kmol/hr

    Composition: N2=0781,O2=0.209,Ar=0.0093

    Lowpressureair

    Pressure: 5 6at

    Temperature: 20C

    Molarflow: 727.5kmol/hr

    Composition: N2=78.1,O2=20.9,Ar=1

    Figure24:streamspecificationinASPENPlus

  • 7/26/2019 Work of Shershah Amarkhail

    51/107

    46

    5. Specifyingofequipments

    HEO2:Hotstreamoutlettemperature:130C

    HEN2:Hotstreamoutlettemperature:130C

    HE1:Hotstreamoutlettemperature:130C

    HE2:Hotstreamoutlettemperature:185C

    HE3:Hotstreamoutlettemperature:190C

    HE4:Hotstreamoutlettemperature:176C

    ColumnC1:Numberoftheoreticalstages:26,Airfeedstage:26,Condenserpressure: 6at

    columnpressuredrop:0.5at

    Distillaterate:3500kmol/hr

    ColumnC2:Numberoftheoreticalstages:40,feedstage:40,Condenserpressure: 1.4at

    columnpressuredrop:0.05at

    Distillaterate:4751.99kmol/hr,N2purity: 0.99 ,N2recovery0.997

    ColumnC3:Numberoftheoreticalstages:100,feedstage:50,Condenserpressure: 1at

    columnpressuredrop:0.0at

    Distillaterate:53.03kmol/hr, O2purity:0.999inbottom ,O2recovery0.999inbottom

    ColumnC4:Numberoftheoreticalstages:15,feedstage:11,Condenserpressure: 1at

    columnpressuredrop:0.0at

    Distillaterate:44.71kmol/hr, Arpurity:0.995,Arrecovery0.998

  • 7/26/2019 Work of Shershah Amarkhail

    52/107

    47

    Figure25:exampleofblockspecificationinASPENPlus

    3.3.2ResultsofASPENsimulation

    Figure(26)showsthesimulationschemeofairseparationbasedontheabovedescribed

    inputdata. Theresultsofmaterialandenthalpybalanceforallblocksandstreamsare

    showninTable(5).

    OtherresultsofdistillationcolumnsareshowninTable(6)

  • 7/26/2019 Work of Shershah Amarkhail

    53/107

  • 7/26/2019 Work of Shershah Amarkhail

    54/107

  • 7/26/2019 Work of Shershah Amarkhail

    55/107

    50

  • 7/26/2019 Work of Shershah Amarkhail

    56/107

  • 7/26/2019 Work of Shershah Amarkhail

    57/107

    52

    Table6:Resultsofdistillationcolumns

    TemperatureprofileofC1

    ThisdiagramshowsthetemperetureindifferentstageofcolumnC1.

    Itshowstheteperaturewillbehigherupfromlowertothebottomofcolumn1

    Figure27:Temperatureprofileofcolumn C1

    17 6

    175.5

    17 5

    174.5

    17 4

    173.5

    17 3

    172.5

    17 2

    171.5

    17 1

    0 5 10 15 20 25 30

    t(

    C)

    N

    Col

    condensar Reboiler

    T(C) Headduty

    (Watt)

    Distillrate

    (kmol/hr)

    Refluxerate

    (kmol/hr)

    Refluratio T(C) Heatduty

    (Wat)

    Bottomsrate

    (kmol/hr)

    Boiluprate

    (kmol/hr)

    Boilupratio

    C1 175.35 6472347.3 3500 1910.764 0.5459 171.48 0 2548.9 2620.192 1.0279

    C2 192.74 91411835 4751.9924 58422.27 12.29 180.297 91000347.4 1196.907 49392.546 41.266

    C3 188.872 1715098.2 53.03 923.076 17.4066 183.313 1710731.19 46.9698 910.819 9 19.39 1

    C4 195.71 106960.11 8.316 68.6828 8.2588 186.123 120270.311 44.7138 67.5344 1.5103

  • 7/26/2019 Work of Shershah Amarkhail

    58/107

  • 7/26/2019 Work of Shershah Amarkhail

    59/107

    54

    Figure29: Temperatureprofileofcolumn C2

    CompositionprofileofC2

    Thisdiagramshowsthe compositionofoxygen,nitrogenand Argonindifferentstage

    numberofcolumn2.

    Figure30: CompositionprofileocfolumnC2

    19 4

    19 2

    19 0

    18 8

    18 6

    18 4

    18 2

    18 0

    17 8

    0 10 20 30 40 50

    t(

    C)

    N

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 5 10 15 20 25 30 35 40 45

    X

    N

    N2

    O2

    AR

  • 7/26/2019 Work of Shershah Amarkhail

    60/107

    55

    TemperatureprofileC3

    ThisdiagramshowsthetemperetureindifferentstageofcolumnC3.

    Itshowstheteperaturewillbehigherupfromlowertothebottomofcolumn3

    Figure31:TemperatureprofileofcolumnC3

    CompositionprofileC3

    Thisdiagramshowsthe compositionofoxygen,nitrogenand Argonindifferentstage

    numberofcolumn3.

    190

    189

    188

    187

    186

    185

    184

    183

    1 11 21 31 41 51 61 71 81 91 101 111

    t

    (

    C)

    N

  • 7/26/2019 Work of Shershah Amarkhail

    61/107

    56

    Figure32: CompositionprofileofcolumnC3

    TemperatureprofileC4

    ThisdiagramshowsthetemperetureindifferentstageofcolumnC4.

    Itshowstheteperaturewillbehigherupfromlowertothebottomofcolumn4

    Figure33: DiagramofTemperatureprofileC3

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 10 20 30 40 50 60 70 80 90 100 110

    X

    N

    N2

    O2

    AR

    19 8

    19 6

    19 4

    19 2

    19 0

    18 8

    18 6

    18 4

    0 2 4 6 8 10 12 14 16

    t(C)

    N

  • 7/26/2019 Work of Shershah Amarkhail

    62/107

  • 7/26/2019 Work of Shershah Amarkhail

    63/107

    58

    Figure35:DistillateflowrateincolumnC1versuscompositionofArgoninthesideArgonstreaminColumnC2

    InfluenceofdistillateflowrateintheColumnC1onrefluxratioincolumnC2:

    ThisdiagramshowsthedistillateflowrateincolumnC1versusrefluxratioincolumn

    C2.Wherethepurityandrecoveryofproductswereholdatconstantvalues. Thedistillate

    flowrate incolumnC1effectstherefluxratiointhecolumnC2. AswecanseeonFigure

    (36)adistillateflorrateofaround3400kmol/hrshowsaminimumforrefluxrationin

    columnC2.

    Figure36: DistillateflowrateincolumnC1versusrefluxratio inthecolumnC2

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    1100 1600 2100 2600 3100 3600 4100 4600 5100

    XArC2

    nDC1

    5

    7

    9

    11

    13

    15

    17

    19

    21

    23

    25

    1100 1600 2100 2600 3100 3600 4100 4600 5100

    R

    C2

    nDC1

  • 7/26/2019 Work of Shershah Amarkhail

    64/107

  • 7/26/2019 Work of Shershah Amarkhail

    65/107

  • 7/26/2019 Work of Shershah Amarkhail

    66/107

    61

    4.Mechanicalaspectsofairdistillationtower

    TargetofmechaniccalculationssetsizeandpartsofHerbsdevicewasplannedthatshould

    providestrengthanddurabilitytothemachine.Calculate,includingbasicpartstationmechanic

    andpartsofthefollowingdevicesarechemicalvalence.Bodies(cylindersE.)depthring

    strengthbyseparateducts,fittingsFlange,byrelyingonstrengthandHerbspartsdevices.

    Devicesinthecapacitypressures(lessandadditional)undervacuumoroutsidepressureworks

    and shouldalso theyare in the fieldsagainstwind loadeffectsandbe tested inearthquake

    force.

    Ifyouneedtocalculatetheeffectofsimultaneousmultipleadverseconditionswhentheother

    operation canbeperformed.When computing thedeviceelementsmechanicwith stainless

    defense wall ML plastic the creatures lining etc. It will not be considered.

    Todeterminecastdevices thatconsistof several segmentsof the same formula thatcanbe

    usedtodeterminethewallthicknessoftwoRinddevicesareused.Ifthedifferenceinthermal

    expansioncoefficientofmetalsegments(3cm+X18H10T)thereisInthiscase,thethicknessof

    cortical thickness saturate devices the basic forms (thick carbon steel) but also in such

    conditions,socalculatedagainstsurplusesrustyarenotlooking.Whenplanningunitsofplants

    inselectedcaseofbuildingsandusingnormalStandardnumbersthatareneededtotestthe

    calculations and can be performed. The purpose of computing tentative is defining the

    authorizedpressureInjectionsvirtualmachinesthatcanbeharvested.ForCalculationsstability

    andstrengthofthemachinesthisnormsOH26011365/H103965areapplied.

    4.1Basicparametersofcalculations

    4.1.1Calculatedpressures

    Pressure in the formula calculating machines and container wall thickness and stability,

    including in Stabilityhasbeennamed and supposedly learned saturatepressure term is the

    workingpressure.Astheworkingpressure,thelargeexcesspressureincaseofnormalflowof

    Practicaltechnologyarise, isconsidered. Ifthefluid filleddevice isset inMeanwhileSaturate

  • 7/26/2019 Work of Shershah Amarkhail

    67/107

    62

    pressureisneededtomakethatpushhydrostaticalsoisconsidered,althoughinthatcasethe

    quantityof2.5%oftheexcessgaspressureishigh.Insomecases,verysensitivetothepossible

    increase in working pressure as 10% of the time delay in opening the valve is considered

    discretionary.Fordevicesthattheexistenceofexplosive,toxicorpotentsubstancesarequickly

    Activity Saturate pressure than the pressure of working long enough to accept 0.10.2MPa.

    Saturate pressure on devices that maintain and filtration combustion and explosive

    environmentsandGasesliquidusedinthetable(7)hasbeeninserted.

    Table7:Saturatepressuresindevices

    Forelementspaceswithdifferentpressuresfortheformationofseparate(forexample inthe

    machine with warm shirt or cover) as the Saturate pressure is necessary to separate any

    pressureorpressuregreaterwallthicknesscalculationtakestheelementstobeaccepted.Ifthe

    effectofsimultaneouspressurecomes,runcalculationsinthiscasethepressuredifferencesare

    allowed.Testunderpressureincontainersordevicesshouldbeconsideredunderthepressure

    tocontroltestAssured,safetyandfunctionalityKaranoccurs.

    PMPacalculationpressure

    PCMPaeffectivepressure

    0.01 liquidGaswithoutpressure

    0.1 0.050.07

    1.2PC upto 0.3 >0.07

    0.06

  • 7/26/2019 Work of Shershah Amarkhail

    68/107

    63

    4.1.2CalculatedTemperature

    Temperature directlynot included in calculated formula, but knowingwhere to get profile

    material is necessary. Wall material calculated temperature of the device is equal to the

    ambienttemperaturethatwall iscontact it, istaken. Iftheexistenceofthermal insulation in

    thedeviceequaltothetemperaturelevelwiththewallinsulationtomakecontactwithplus20

    Cistaken.Ifthemachineis heatedbyopenedflamesorelectricheatersandopenupstillhot

    by Gases temperature 250 C and the more heated, the temperature equal to ambient

    calculatedtemperaturetheliningistobe,adding50Cbutnotlessthan250Cistaken.

    4.1.3Reactionarylongitudinalmodel ShowstheabilityofMaterialsanditsstandtough

    againstdeformation.ReactionarylongitudinalmodelPricesfor highcarbonsteelsandmuch

    Lagerincommunicatewithtemperatureshaveinsertinthetable(8)

    Table8:Reactionarylongitudinalmodel

    E.105

    MPa UnderthefollowingtemperatureC

    steel

    350 300 250 200 150 100 20

    1.64 1.71 1.76 1.81 1.86 1.91 1.99 Carbonation

    1.86 1.91 1.94 1.97 1.99 2.00 2.00muchbeen

    laager

    steel

    E.105

    MPa UnderthefollowingtemperatureC

    400450500550600650

    Carbonation1.551.40

    muchbeenlaager1.811.751.681.611.531.45

  • 7/26/2019 Work of Shershah Amarkhail

    69/107

    64

    4.1.4CoefficientSutureStabilityWeld

    In the calculation of containers anddevices thathas Suture Stabilitywelding,mustbe

    includedtheStabilityofconstant factor intheformula .Thiscoefficientshowsconnection

    betweenStabilityofweldandconstructionofbasicmaterials(papersupplement).Priceofthe

    Coefficient Suture Stability Weld is belongs to the Building of weld (connection) and how

    somethingwillbeWeld.AutomaticandManualWeldandbilateralthanunilateralbetter.

    Table9:WeldcoefficientStabilitySutureweldofcontainersanddevices

    ofweldSutureshape

    If stitchlengthwelding

    100%1050%

    Tiptotip,orheadtoheadtwowayapproachto,bare

    Automaticorsemiautomatic1.00.90

    Headonstitchesfromthebuttorheadtoheadbare

    handatwoway1.00.90

    Onewayheadonwithlayers0.90.80

    Headtohead0.80.65

    Headononesidedsemiautomaticorautomatic0.90.80

    Headononewaymanually0.90.65

  • 7/26/2019 Work of Shershah Amarkhail

    70/107

  • 7/26/2019 Work of Shershah Amarkhail

    71/107

    66

    Surplusformetalcorrosionrateequaltothemetalcorrosion(mm/year)vbeatupduringthe

    system t (typically 1210 years) are: C = v t Corrosion of metal speed manual or book of

    laboratorytestset.Surplusformetalcorrosionusually12mm,whichisasfast0.10.2mm/year,

    mustaccept.

    Iftwowaycontactwiththemetalcorrosionsurplusenvironmentformetalcorrosionshouldbe

    increased to compensate. Compensation technologically Surplus wall thinning or elements

    within thedevice inoperation technology: cake,bendpipes,etc.areanticipated.C1andC2

    Surplusof themodesconsider thepriceof5%of their total thicknessexceedsnormal sheet

    metal.

    4.2.1SelectionoftheVirtualInjections

    Injectionsinwhichcertainwork(safety)devicewithoutprovidingsubstanceiscalledBuilding

    VirtualInjectionsberemembered.VirtualInjectionsrelatedtomechanicpropertiesmaterials,

    propertiesBarranditsworkingconditions.VirtualInjectionsdeterminedbythefollows

    formula:

    Dop= (4.3)

    Here: seizure authorized under heat normal Saturate MPa wall of the opinion that the

    constructionmaterialsdevices calculatedunderthetablesaretaken,correctionfactorofthe

    device inwhichworking conditions are considered. Systems for constructionmaterialshave

    negativethermalliningthem;agreethattheirseizuresarethesameasnormfpermittedto20

    Cis.

    IfyouuseNormativeMaterialspresentedinTableseizuresarenotpermittedorintheabsence

    ofheatsaturatepricesinthistable,theseizuresNormativepermittedtobereceivedasfollows:

    1 Ifthetemperatureofcarbonsteelssaturatewallto380Cforsteels3of420Cforsteel

    andmanyofLaagernotexceed525C,inthiscaseastheseizureofthetwopricesNormative

    permittedunderthefollowingisselected:

  • 7/26/2019 Work of Shershah Amarkhail

    72/107

    67

    =B/nB , =T/nT (4.4 )

    Here:BandT LeastlimitorderpriceStabilityfluidityundertemperaturelimitSaturate,

    nB=2.6andnT=1.5 thecoefficientofstorage,respectively,totheextentStabilitycomment

    andismuchfluidity.

    Table11:coefficientsamendmentsauthorizedseizure

    2 IfthewallnormativetemperatureofSaturatepricesparagraph(a)exceedstheseizureas

    permittedunderthefollowingNormativetwopricesthatareacceptable:

    =D/nD , =T/nT (4.5)

    Here:D Stabilitylongtermaveragepricelevelof100thousandhoursundertemperatures

    SaturateandnD=1.5 savingfactorStabilitycommentistoolongStability.

    FortestingconditionsHydrolytedishesanddevicesoflargesteelLaagerbeenauthorized

    seizureofthefollowingformulatodetermine:

    Manner

    riskof

    chemical

    substances

    Permissible

    concentrationlimit

    ofthehealth

    Consideringthe

    Norm mg/m3

    Muchlower

    abilitytoblast%

    Spontaneous

    ignition

    temperatureto

    inflammationCCorrectionfactor

    ILessthan5Lessthan1Lessthan5170.85

    II505513001750.90

    III1000511064503010.95

    IVMorethan1000Morethan10Morethan 4501.00

  • 7/26/2019 Work of Shershah Amarkhail

    73/107

    68

    /nT (4.6)20

    2.0 []np=

    Here:quantitypricelevelflowconditions(underwhichtheseizureremainingelongation

    makesup0.2%)andisnT=1.1.

    4.3MechanicalCalculationofdistillationtower

    Initialfigures:

    1 Internaldiameterofthelowertower: D.=1200mm

    2 LowerTowerHeight: H=1.1M

    3 Temperature: tn=185C

    4 Pressure: P=6 2

    g

    5 MuchStability =3000 2

    g

    6 SavethelimitofstrengthStability: n=2.6

    7 Internaldiameteroftheuppertower: D.=1040mm

    8 UpperTowerHeight: H=3240mm

    9 Temperature: t=192C

    10 Pressure: P=1.6 2

    g

    11 Inadditiontoaskingforcompensationofmetalcorrosion:C=2mm

    12 ConstructionMaterial: L62

  • 7/26/2019 Work of Shershah Amarkhail

    74/107

    69

    4.3.1CalculationCylindricalBodyofthetower

    ACylinderwallthickness(bottom)determinewithhelpofthisrelationshipasfollows:

    Cp

    DP

    S

    +

    = ][2

    .

    (4.7)

    28.11536.2

    3000][

    ==

    mmcmS 12.5512.02.0312.02.06.2301

    0.7202.0

    618.11532

    0.1206==+=+=+

    =

    TheS=6mmwallthicknessareacceptable.

    Permissiblepressureintheselectedwallthickness[P]andseizureagainstthetopwallare

    calculatedas

    )(

    )]([2][

    CSD

    CSP

    +

    =

    (4.8)

    267.74.120

    84.923

    )2.06.00.120(

    )2.06.0(8.115312][

    P ==+

    =

    22.78592.0

    4.722

    )2.06.0(13.2

    )2.06.00.120(6

    )(3.2

    )(

    CS

    CSDP==

    +=

    +=

    B Cylindricalbodywallthickness(upper)determinedwithhelpoffollowsrelationship:

    CP

    DPS +

    =

    ][2. (4.9)

    mmcmS 72.2272.02.0072.02.02306

    4.1663.0

    6.118.11532

    0.1046.1==+=+=+

    =

  • 7/26/2019 Work of Shershah Amarkhail

    75/107

    70

    TheS=6mmwallthicknessareacceptable

    Permissiblepressureintheselectedwallthickness[P]andseizureagainstthetopwallby

    formula(4.8)arecalculatedas:

    )(

    )]([2][

    CSD

    CSP

    +

    =

    284.84.104

    04.923

    )2.06.00.104(

    )2.06.0(8.115312][

    P ==+

    =

    25.18192.0

    04.167

    )2.06.0(13.2

    )2.06.00.104(6.1

    )(3.2

    )(

    CS

    CSDP==

    +=

    +=

    4.3.2Calculationofellipticalcapandbottom

    A Ellipticalbottomwallthicknessdeterminedbythehelpoffollowingformula:

    CP

    RPS +

    =

    ][2 (4.10)

    mmcmS 12.5512.02.06.2301

    0.7202.0

    68.11532

    0.1206==+=+

    =

    Thebottomwallthicknessequalto6mmisaccepted.

    AuthorizedPressureandseizureonthetopwall arecalculatedas:

  • 7/26/2019 Work of Shershah Amarkhail

    76/107

  • 7/26/2019 Work of Shershah Amarkhail

    77/107

    72

    Permittedpressure[P]andseizureagainstthewallabovebyformula(4.11)arecalculatedas:

    284.84.104

    923

    )2.06.0(0.104

    8.11531)2.06.0(2

    ][

    P ==+

    =

    28.2088.0

    04.167

    1)2.06.0(2

    )2.06.00.104(6.1

    )(2

    )(

    CS

    CSRP==

    +=

    +=

  • 7/26/2019 Work of Shershah Amarkhail

    78/107

    73

    5.Safetyaspectsofairdistillationprocess

    5.1MajorhazardsofchemicalProduction

    Keyrisksandchemicalrisksfollow:

    1 Level entitywarm, sharp steam flow, if thatmakes combustion acid thermal burns and

    chemicalrepresented.Opinionbecause37%occurinunfortunatesituations.

    2 Mechanicinjuriesthatcausehazardsandrepresentedmechanicinjuriesadversescenarios.

    Is14%constituted?

    3 Levelentityharmfulgases,toxicsubstances,toxicthatareuniquelypoisoningmakeup13%

    oftheseeventsscenarioshorrible.

    4 Theexistenceisofelectriccurrentsbecauseelectricaldamageandeventsrepresented.This

    happenedof11%formalladversescenarios.

    5 Otherhazardssuchasfallsfromhighway,trafficoccursinsidethefactoryandothersmake

    up25%ofevents.

    5.2Materialpropertiesinplant(separationofair)wasplanning

    Nitrogen: Nitrogen look fromPhonologyTl, theconcentrationof large In theair than82%

    (lowratioOxygen)consistsoftherepression.

    Nitrogenpureformofindustrialpressureballoon150atthesteelissoldgreen.Inthechemical

    industry,gastransmissionpipelinesNitrogen,aredenotedingreen.

    Oxygen:isthemostabundantchemicalelement.InadditiontoitspresenceasMolecule

    diatomicO2intheair,ascombinedwiththeHydrogenH2O,withmetalsandotherelements,

    canbefound.Inaddition,manymembersalsocontaincitrusOxygenatomsare.OxygenO2gas

    iscolorlessandodorless.Oxygennotburned,butburningofothermaterialsisnecessary.

    Oxygenpureliquidformintanksasacoldorhasgashighpressure,uptoabout150at,insteel

    blueballoonistransportation.Inthechemicalindustry,transportNellOxygenmarkedwith

  • 7/26/2019 Work of Shershah Amarkhail

    79/107

    74

    blueare.

    Carbondioxide:odorlessgasis.Thantwotimesheavierthanair,andcausedshortagesin

    Oxygenair.

    5.3Majorrisksintheproductionsystem(airseparation)

    a liquiddecompositionproductsexistthathavetheairtemperatureislow,allowingaportion

    oftheicefrostsuchasonthehumanbody,hands,etc.footshasplaces.

    bNitrogenexistenceandthepossibilityofcreatingcarbonTetracollaredarechokingand

    poisoning.

    c SodiumHydroxidepossiblesolutionsexisttocreatechemicalburnsintheeye,zinc,etc.are

    available.

    dAttributepossiblecauseexplosionsapartpressure,thetransitionandtheinjuryisNell.

    e AttributeflowmaybecausedelectricalfiresLane.

    f AttributeUsefulmovingpartsandopenMechanicalvectormaybecausinginjurymechanic.

    g Theexistenceofsteam,hotpartsCondensateandequipmentmaybecausingtheburning

    partBodyhumans.

    h CottonGlassattributes(cottoncandy)maycauseeyeirritationandillnessistherespiratory

    tract.

    i Theexistenceofammoniaintheneighboringbranchesmaybecausingtoxicity.

    j OxygenentitymixedOxygenAirFirelessmaterialsmaycausefireandexplodeFireless

    materialsareclothingandhair.

  • 7/26/2019 Work of Shershah Amarkhail

    80/107

    75

    5.4SafeConditionsfromoperationofcompressor

    Practical contraction inGases dangers with increasing pressure, temperature and chemical

    operations can lead toexplosionsand injure,Updatedrawn. If the temperatureCompressor

    contractingasevereformofincreasedgasanditwillbecalculatedbythefollowingformula.

    mmPPTT /11212 )/(

    =

    (5.1)

    Here:

    T2 AbsolutetemperatureofgasaftercontractingtheCalvinK

    T1 AbsolutetemperatureofthegaspriortocontractingCalvinK

    P1 Absolutepressuregaspriortocontraction

    P2AbsolutepressureofgastoContraction

    m IndicatorsMonetaryTrope

    Ifthecontractionofairoranyothergaswithoutmakingcold(Practicaladiabatic)temperature

    willincreasestrongly.Iftemperaturesincreaseenergyconsumptionforcontractionwastoo

    muchgas,metalTightlyCompressorbeenlow,extremelyfastdecompositionOilsGreasyand

    thepossibilityexplosionwerecaused.

    5.5FacilityforDefenseemployeesindividual

    Individualmeansofprotection for employees include gasmask, glasses defense, special

    clothing is and shoe.Allemployees frommaterialsnoxious anddingerorganismmeans that

    intoxicationAndfromPowerlossorlossofsightcausedvolumesofburnsismaintainedpicks.

    ForthemembersofsubstancesharmfultotherespiratorygasmaskstoprotectIwouldusethe

    shouldbe.Gasmaskstothemembersofthehumanorganismbreathingnoxiousfumesofthe

    impact it will protect. In separators provides protection from dust. Comment gas masks to

    protectthefilterPrincipevisitorsaredivided intoandvisitors.Aidedgasmaskfilterbreathing

    vapoursvisitorsdropbyaspreliminaryfilterandclearandwillbreathethroughit.Insulatorgas

  • 7/26/2019 Work of Shershah Amarkhail

    81/107

    76

    mask filterwithadifferenceofvisitors fromallmembersofthehumanrespiratoryeffectsof

    harmfulsubstancesshallprotect.

    5.6Sourcesoffireignitionmaterials

    Fireignitionsourcematerialsinclude:

    1.Heatsources,sparkignition,hotsurfacesandopenfire.

    Sparks shotor a resultof frictionwitheachothermetallicmaterialsora resultofelectric

    charge arise.Toavoidproducingsparksinhazardousenvironmentsandexplosivecombustion

    bytheapplicationofcoppercoveredsteelanddevisessecondlybytheapplicationoffattyoilin

    theirneighborhoodsandthirdcarpetmaterialnotbematchedstones.Fireandtheninfactory

    do soWelding,D. R.Dash around in smoking effects stop smoking comes and for grow on

    smoking should consider pulling be special place to be. Not working at Welding Gases and

    combustiblevaporspenetrate,theDashshouldbesothatthetower isroundandreactors In

    effectof FlameWind It shouldbe close todangerousgear.TheDash then separatedby the

    wallsofthegearis.DashandcontinuestoturnoffthefirebyfirefightersLaneisavailable.

    2.Electronicresources(Staticselectronicresources)

    PowerIneffectofStaticsusuallywillfillandemptygastank,opentheflowofgasolinewith

    airpowercreatesChargeStaticsistheresultwecanconnecttotheearthdestroyed.

    IfChargeengendersnegativeandpositiveaircleanerincaselightningcomestheresultcanalso

    connect to the earth destroyed to prevent ignition sources said and from. Explosive device

    when production comes from about the explosives concentrations in the air exceeds its

    allowed. Prevent the need for room and is explosive places Gases wind is available and is

    equippedwithfireequipment.

    5.7Wayofmakingofffire

    Makingoffthroughfireinclude:

    1) ComethroughPinetemperaturematerialsfireplace.

  • 7/26/2019 Work of Shershah Amarkhail

    82/107

    77

    2)StopmakingOxygenreachthefireposition.

    Howinclusionofwaterwordsaremakingofffire.Firestilldifferentbysomesolublesalt,soda

    anddrawnoff.

    Andsolutionbluewatershouldbeusedisthefollowing:

    1. Gasesfireformakingoff.

    2.Formakingoffundervoltageelectricalplantsareworking.

    FormakinglowconcentrationortocutofftheflowOxygenpositionPalmthefireisused.For

    example,inafiretakesplacethisdeviceintothedevicewhenPalmmakeallthemateriallevel,

    tissuesandorganswilloccupyfirepreventionOxygenreachthesurfacematerialisfire.Palmas

    tononinterruptedwhilefire isofftakesplace.Howeveractuallymakingoff inkusedtofire if

    the fuel tankswhichwill fire simultaneously into the tanks are Palm out by the coldwater

    make.InadditiontobeingsomeGases,Moblaile,ammonia,electricalwirefireriskVequipment

    andmarkscarbonmonoxidevisitorscounterfirePalmDP3andDP5isused.F.Antifirecarbon

    dioxideconsistsofconventionalsteelballoonfilledwithcarbondioxide is.Valveballoonneck

    closedwith visitorsNell sailfony length is 13meters above the valveopened anti fire over

    sourceoffireistopushtheballoonPashaspalmproducingabatchistoopenthevalveandthe

    balloon and the acid solutionAlkali there. In case of opening valvesAlkalimixedwith acid,

    resulting inpalm interaction isproduced. In addition to fireoff the sand andotherbuilding

    materialsarealsoused.

    5.8Electricalsafety

    HighelectricalcurrentthehumanorganismtoseveredamagedGaywontheRemyand

    sometimesleadtodeath.Thusallstaffandpersonnelregulationsandaseriesoffactoriesto

    securityPolytechnicTotalbenefitknow.Electricalequipmentinfactoriesbecausethepumps

    andhighvoltagecompressor(watt380)providesthatintermsoftechnicalworkisdangerous.

    Thefactoryworkersmusttakethefollowingrulesshallobservegoodandaccurate.

    1.AllelectricalappliancesmustbespecifiedunderNormusedtobethrown.

  • 7/26/2019 Work of Shershah Amarkhail

    83/107

    78

    2.Allpartsoftheelectricalequipmentofthepowerpassesmustbeinsulatedcover.

    3.CrosssectionofnonconducivetoanyformofelectricityshouldnotTransitelectricity.

    4.ElectricmachinegunmustSignalserversandautomaticallyturnoffelectricalcurrentdonors

    indangeroussituations.

    5.Electricaldevicesmustconnecttoprotectiveearthorbywirefailureisprotective.

    6.Whilerepairingelectricaldevicesshouldbediscontinued.

    7.WithmachineryandelectricaldevicesmustbetheonlyoneDowork.

    5.9RulesofthetechnicalRepairofCompressorwhenitsbenotdanger

    Whilecompressorrestoredfollowingtherulesandregulationsbeinattention

    1.Compressorofconformityinstructionsgivenareatostopworking.

    2.Compressorwillbeemptyfrompressure

    3.PressureRestabsencedeinthecompressorisgivenbyMonometer.

    4. Compressorisemptyfromgas.

    5.Electricityiscuttingfromcompressor.

    6. CompressorbyNitrogenthatamountuntiltheventilationintheneithercombustionGases

    ventilationnormorethen%5/0is.

    7.Compressorconnectionofotherequipmenttobedisconnected.

    8.CompressorisdrawinguntiltheamountofairOxygenlessthan21percentinvolumeand

    valueGasesharmfulandtoxicnotexceedthelimits.

    9.DuringrepairoperationsmustberestoredCompressoremployeesTechnicalrecipessafeto

    observejoinsseriously.

  • 7/26/2019 Work of Shershah Amarkhail

    84/107

    79

    5.10Ventilationproductsanditskinds

    VentilationProductsAirDirtytomakeoutofworkandintoneighborhoodswherefreshairand

    tocontinuetoavoidcreatinganexplosiveconcentrationisconsidered.Becauseotherwiseit

    mightwork,therecomestoexplosiveconcentrations.Practicalinmanufacturing,especiallyin

    thepumphouse,houseandCPOCompressorcomposedofartificialventilationareused.Itis

    stillroomairfieldisalsoconsidered.AirProductsmustmeetthefollowingdemands.

    1. Concentrationinthecombustionmixtureshoulddropislessthanexplosive.

    2. Ventilationshouldbetheultimatelimitofconcentrationtoholdtherooms.

    3. ForStartingFanElectronicmotorswithStartingvisitorsmustsecurepointwithexplosive

    wasused.

    4. Topreventtheformationoffrictionorimpactsparks,iftherouterFanbodyismadeof

    coloredmetals.

    5. VentilatedroomsmeansaroominwhichheisFanshouldbeplacedwithnoncombustion

    materialsandtheproductionoftheroomsarecompletelyseparate.

  • 7/26/2019 Work of Shershah Amarkhail

    85/107

    80

    6.Controlofairdistillationcolumns

    We start by analyzing the degrees of freedom to establish how many and which control

    parameters it ispossibletocontroland/ormanipulate.Thenwemoveontodiscussdifferent

    waystocontrolmanyvariables.Generally,thevariablesintable( )needtobecontrolled.

    Table12:Typicalvariablesthathavetobemaintainedinadistillationcolumn.

    Thetwomostimportantparameters:compositionatthetopofthecolumnandthepressureof

    thecolumn.Differentcontrolstructures.

    6.1DegreesofFreedomAnalysis

    Todeterminethenumberofcontroldegreesoffreedominadistillationcolumn.Therearetwo

    equivalentproceduresbasedontheequation C.D.F.=TotalNo.ofStreamsNo.ofPhases

    Present+1Allwehavetodoiscountallthestreamsintheprocess.Separatelycountthetotal

    numberofextraphasesi.e.addupalloccurrencesofphasesgreaterthanoneinallunits.The

    numberofcontroldegreesoffreedomisthedifferencebetweenthesetwonumbers.Figure(39

    )belowshowsthismethod.

  • 7/26/2019 Work of Shershah Amarkhail

    86/107

    81

    Figure39: DegreesofFreedomAnalysisofDistillationColumn

    TotalStreams=8

    ExtraPhases=3

    DegreesofFreedom=5

    So the number of degrees of freedom is 5. However, a typical control strategy for such a

    processwoulduseonly4of these federate,columnpressure, topandbottomcomposition.This is because the column and condenser are normally maintained at the same pressure.

    However,avalvecouldbeplaced in the linebetween.Thiswouldactuallybeundesirableas

    reducingthecondenserpressurewilldecreasethetemperaturedrivingforceavailablefromthe

    coolingmedium.

    6.2ControllingPressureinDistillationInadistillationcolumnitisusuallynecessarytoregulate

    thepressureinsomeway.Belowtherearefivedifferentmethodsdescribedfordoingthis.

    VenttoAtmosphere

    CoolingWater

    FloodedCondenser 1

    FloodedCondenser 2

  • 7/26/2019 Work of Shershah Amarkhail

    87/107

    82

    PartialCondenser

    Onethingtonoteisthatinnoneofthemisavalvesimplyplacedonthevapourline.This

    wouldleadtotheuseofalargeexpensivecontrolvalve.Insteadthepressureiscontrolled

    indirectlyinvolvingtheuseofthecondenserand/orrefluxdrum.

    6.2.1VenttoAtmosphereFigure(40)belowshowstheeasiestwaytocontrolthepressureina

    columnoperatingatatmosphericpressure.

    Figure40:VenttoAtmosphere

    Inthiscasethecoolingwaterflowstaysconstantandtherefluxdrumisventedtoatmosphere.

    Thus the reflux drums and hence the top of the column are at atmospheric pressure. The

    advantageofthisschemeisthatitrequiresonelesscontrolvalve.Thedisadvantageisthatthe

    topshavetobesubcooledsothataminimalamountofvapourislostthroughthevent.Hence

    moreenergyisrequiredfromthereboilerwhentherefluxisaddedtothetopofthecolumn.

    6.2.2CoolingWater:Figure(41)showsthemostcommonmethodforcontrollingthepressure

    adjustmentofthecoolingwaterflow.

  • 7/26/2019 Work of Shershah Amarkhail

    88/107

    83

    Figure41:CoolingWater

    Inthiscaseifthecoolingwaterflowisincreasedthenmorevapouriscondensedandthe

    vapourpressureisreduced(andviceversa).

    6.2.3FloodedCondenser 1:Figure(42)showstheclassicfloodedcondenserapproach.

    Figure42FloodedCondensers 1

    Againinthissetup,aswiththefirstexample,thereisnovalveonthecoolingwater.Insteadthe

    valveisintheliquidlinebetweenthecondenserandrefluxdrum.Ifthisvalveisclosedthenthe

    condensedvapori.e.liquidwillbuildupandfloodthecondenser.Thishastheeffectofreducing

  • 7/26/2019 Work of Shershah Amarkhail

    89/107

  • 7/26/2019 Work of Shershah Amarkhail

    90/107

    85

    Figure44:PartialCondenser

    Theaboveschemeisusediftheoverheadproductisrequiredasavapour.

    6.3ControllingTopsCompositioninDistillation:Aswellaspressure,theotherparametermost

    likelytobecontrolledisthecompositionofthetopsproduct.Thereasonisthatthefinal

    productwillmostprobablycomefromthetopofthecolumnanditisimportanttoknowits

    composition.Again,aswithpressure,therearemanydifferentwaysofcontrollingthetops

    composition.Threemethodsaredescribedbelow.

    RefluxRate

    RefluxRatio

    DistillateRate

    6.3.1RefluxRateInthisfirstexampletherefluxrateisadjustedtocontrolthecompositionof

    thetopsproduct.Astheamountofrefluxischangedsothetemperatureprofileinthecolumn

    changesandhencethecomposition.

  • 7/26/2019 Work of Shershah Amarkhail

    91/107

    86

    Figure45:RefluxRate

    6.3.2RefluxRatioThesecondexampleusestherefluxratioasthecontrolparameter

    Figure46:RefluxRatio

    Whendesigningadistillationcolumnitisusuallytherefluxratiothatisdetermined.Thiscanbe

    keptconstantthroughoutoperationbyusingtwoflowindicatorsandaratiocontroller.

    6.3.3DistillateRateThethirdexampleisforhighpuritytops.Itusesthedistillateflowrateto

    controlthedistillatecomposition.

  • 7/26/2019 Work of Shershah Amarkhail

    92/107

    87

    Figure47:DistillateRate

    Itcanbeshownthatforahighpuritycolumni.e.onewithalargereflux,thatthecomposition

    ofthedistillateissensitivetothedistillateflowbutinsensitivetotherefluxrate.Thereforefor

    ahighpuritycolumnthecontrolschemeoutlinedaboveisused.Itshouldbenotedthattight

    controlonthelevelintherefluxdrumisrequiredusingtherefluxrate.

    6.4DistillationColumnControlExamples

    Thefollowingexamplesdescribealternativecontrolstrategiesoffairlystandardform.

    Pressure,OverheadsRateandComposition

    Pressure,BottomsRateandComposition

    Pressure,BottomsRateandOverheadComposition,WithPartialCondenser

    Pressure,OverheadRateandBottomsComposition

    Pressure,BottomsRate,OverheadRateandComposition

    Inallcasesactualcompositioncontrollersareshown.Thesecouldofcoursebereplacedby

    inferentialmeasurementfromtemperature,withorwithoutcascadeofasloweranalyzer.

    Unlessotherwisestated,ithasbeenassumedthatthefeedratetothesystemisnotavailable

    asamanipulatedvariable.

  • 7/26/2019 Work of Shershah Amarkhail

    93/107

    88

    1.Pressure,OverheadsRateandCompositionThisisafairlystandardconfigurationforasingle

    product column, i.e. when the bottoms streams is a byproduct, recycle or goes to further

    processing.Althoughtheoverheadscompositionisregulatedbyadjustingthesteamrateatthe

    baseofthecolumn,theresponseofthecolumntoheatinputchangesisquiterapid,andsothis

    strategy is acceptable.Pressure controlon condenser coolingwater is shown;of course any

    otherpressurecontrolschemewouldbeacceptable.

    Figure48:OverheadsRateandComposition

    2. Pressure, Bottoms Rate and Composition This is the analogous situation to theprevious

    case, in the rather less usual circumstances where a main product is withdrawn from the

    bottom of the column. This does not work well, since either the bottom level, as here, or

    composition,hastoberegulatedbyadjustingtherefluxrate.Ineithercasetheloopinvolvesa

    longdelaydue to thehydraulic lagsoneachtray. It isprobablymarginallybetter to regulate

    compositionbysteamratesincethisisamoreimportantquantitythanlevel,althoughthetwo

    loopscouldbeinterchangedwiththesteamadjustingthelevel,whichisquiteagoodscheme,

    andtherefluxmanipulatingthebottomscomposition,whichisverypoor.Fortunatelythisisan

    unusual requirement, as main products normally come from the top of columns for other

    reasons.Astandardfloodedcondenserpressurecontrolsystemisshown.

  • 7/26/2019 Work of Shershah Amarkhail

    94/107

    89

    Figure49:BottomsRateandComposition

    3.Pressure,BottomsRateandOverheadComposition,WithPartialCondenser

    Thisisnotaparticularlycommonstrategy,butthearrangementsforacolumnwithpartial

    condenseraretypical.Thepressureinsuchasystemisalmostalwaysmanipulatedbyavalve

    onthevaporproductline.Thereisnorefluxdrum,andrefluxrateisoftensetimplicitlyby

    adjustingthecoolingloadonthecondenser.

    Figure50:BottomsRateandOverheadComposition,WithPartialCondenser

  • 7/26/2019 Work of Shershah Amarkhail

    95/107

    90

    4.Pressure,OverheadRateandBottomsCompositionThisschemeshouldworksatisfactorily

    asalladjustmentsaremadeatthesameendofthecolumnastherelatedmeasurements.The

    pressurecontrolschemeisthesocalledhotgasbypass.Notethatthelayoutofcondenserand

    refluxdrumshown iscriticaltotheoperationofthismethod,which isactuallyavariationon

    thefloodedcondenserapproach.Thebypass isaverysmallpipewhichbleedsvapor into the

    refluxdrumwhere itdoesnot immediatelycondense.Thepressure inthesystemrisesasthe

    bypassvalveisopened.

    Figure51:OverheadRateandBottomsComposition

    5.Pressure,BottomsRate,OverheadRateandComposition:Sincethreeregulatedquantities

    are specified, the feed to theunitmustbe available as an adjustment.Apart from this, the

    arrangementsaresimilartothoseofthefirstexample.Levelcontrolonthecolumnbaseisnot

    verysatisfactoryduetothelagsbetweenthefeedandthebottomofthecolumn,butanyother

    arrangementwouldbeworse.

  • 7/26/2019 Work of Shershah Amarkhail

    96/107

    91

    Figure52:BottomsRate,OverheadRateandComposition

  • 7/26/2019 Work of Shershah Amarkhail

    97/107

    92

    6.Economicevaluationofairdistillation

    Inthischaptertheeconomicsoftheairdistillationprocessisevaluated.Forbuildinganair

    distillationplanttheinitialcostofequipmentsandoperationalcostsareimportant.

    6.1Capitalinvestmentcosts

    Inanairdistillationplantthereareusedanumberofexpensivedevices.Mostimportantof

    themarecompressors,distillationcolumns,andheatexchangers.UsingAspenEconomic

    Evaluationwehavecalculatedthecostofequipmentusedinthesimulationscheme(Figure26)

    andalsofeedaircompressors.TheresultsofthesecalculationsareshowninTable13.Thetotal

    Investmentcostswerecalculatedas29720000USD.Consideringa15yearperiodofplant

    operationtheannuallyinvestmentcostsare:1981333USD.

    Table13:calculationofinvestmentcosts

    NO Name Type DirectCost

    (USD)

    NO Name Type Direct

    Cost(USD)

    1 B1 DGCCNTRIF 15726500 15 C3refluxpump DCPCENTRIF 34800

    2 B2 DGCCNTRIF 2163300 16 C3tower DTWTRAYED 2758400

    3 B4 DHEFLOATHEA 90500 17 C4cnodacc DHTHORIZDRU 127200

    4 C1condacc DHTHORIZDRU 219500 18 C4reb DRBUTUBE 65400

    5 C1 refluxpump DCPCENTRIF 61200 19 C4refluxpump DCPCENTRIF 24100

    6 C1 tower DTWTRAYED 450700 20 C4tower DTWTRAYED 165900

    7 C2 cond DHEFIXEDTS 572400 21 Expander DTURTURBOEX 63000

    8 C2reb DRBUTUBE 143000 22 HE1 DHEFLOATHEA 294600

    9 C2refluxpump DCPCENTRIF 338600 23 HE2 DHEFLOATHEA 207200

    10 C2tower DTWTRAYED 5183100 24 HE3 DHEFLOATHEA 278700

    11 C3cond DHEFIXEDTS 25 HE4 DHEFLOATHEA 374700

    12 C3condacc DHTHORIZDRU 147600 26 HEN2 DHEFLOATHEA 94000

    13 C3 reb DRBUTUBE 41600 27 HEO2 DHEFLOATHEA 94000

    14 total 25138000 28 total 4582000

    TOTAL = 29720000USD

  • 7/26/2019 Work of Shershah Amarkhail

    98/107

    93

    6.2Operationalcosts

    Theoperationalcostincludesmainlythefollowing:

    a Costofrawmaterials,basicmaterialsandsemimanufacturingproductsandauxiliary

    materials.

    b FuelcostsfortheStateoftechnologicalwork

    c Water

    d Electricity

    e Steam

    f workers,technicalengineeringemployees

    Table14: calculatethebasicmaterialcostsandauxiliarymaterials,fuelcosts,electricity,watervaporandair

    Costsofrawmaterials,electricity,waterandsteamaregiveninTable14.Thestaffcostis

    calculatedandincludedinTable15.

    NO NameMeasurement

    Unit

    Normof

    consumptio

    nunit

    Annual

    production

    capacity

    Thetotal

    consumptio

    ninyear

    Pricesper

    unit

    Thetotal

    priceof

    (USD)

    1 A 2 3 4 5 6 7

    1 at. Air Nm3/hr 135572

    222688000m

    3

    O2

    1084576000 0.01 10845760

    2 Silicagel kg/27836m3O2 0.08 640 0.5 320

    3sodiumhydro

    oxidekg/27836Nm

    3O2 2.8 22400 0.375 8400

    4 Aluminiumoxide kg/27836Nm3O2 0.06 480