workshop 1 crush of filled soda can -...

21
© 2011 ANSYS, Inc. November 1, 2012 1 14.5 Release Workshop 1 Crush of Filled Soda Can Introduction to ANSYS Autodyn part II

Upload: dangtu

Post on 01-Aug-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

© 2011 ANSYS, Inc. November 1, 2012 1

14.5 Release

Workshop 1 Crush of Filled Soda Can

Introduction to ANSYS Autodyn part II

© 2011 ANSYS, Inc. November 1, 2012 2

Workshop Goal and Procedure Goal

Crush an aluminum beverage can

Procedure

– Create an Explicit Dynamics Analysis System

– Import and mesh the soda can geometry

– Define analysis settings and boundary conditions

– Initiate the solution and review the results

© 2011 ANSYS, Inc. November 1, 2012 3

Step 1 Create the Project

• Start ANSYS Workbench

• Create an Explicit Dynamics Analysis system by double-clicking on the system

© 2011 ANSYS, Inc. November 1, 2012 4

Step 2 Define Material Data

• Edit Engineering Data to add new materials

– Double-click on Engineering Data cell

– Select the last slot to add new materials:

• Soda_Can

• Water

• Soda_Can_Failure

© 2011 ANSYS, Inc. November 1, 2012 5

Step 2 Define Material Data

• Add the following Physical Properties by dragging and dropping them to the specified material

– Soda_Can and Soda_Can_Failure

• Density

• Isotropic Elasticity

• Bilinear Isotropic Hardening

– Soda_Can_Failure Only (additional)

• Plastic Strain Failure

– Water

• Density

• Isotropic Elasticity

© 2011 ANSYS, Inc. November 1, 2012 6

Step 2 Define Material Data

• Material property data of Soda_Can

© 2011 ANSYS, Inc. November 1, 2012 7

Step 2 Define Material Data

• Material property data of Soda_Can_Failure

© 2011 ANSYS, Inc. November 1, 2012 8

Step 2 Define Material Data

• Material property data of Water

Poisson’s ratio = 0.49999999

© 2011 ANSYS, Inc. November 1, 2012 9

Step 2 Define Material Data

• Return to the Project Schematic

• Save the project.

– Use the name “crush_soda_can”

© 2011 ANSYS, Inc. November 1, 2012 10

Step 3 Import the Geometry

• Right-click on the Geometry cell to import the geometry file named “filled_soda_can.agdb”

© 2011 ANSYS, Inc. November 1, 2012 11

Step 4 Specify Materials

• Right-click on the Model cell and then Edit to open Mechanical

• Define the properties for Soda, Punch, and Die

© 2011 ANSYS, Inc. November 1, 2012 12

Step 4 Specify Materials

• Define Soda Can properties

© 2011 ANSYS, Inc. November 1, 2012 13

Step 5 Specify Contacts

• Select Body Interactions

– Set Shell Thickness Factor to 1.0

© 2011 ANSYS, Inc. November 1, 2012 14

Step 6 Mesh the Geometry

• Right-click on Mesh and then click on Generate Mesh

© 2011 ANSYS, Inc. November 1, 2012 15

Step 7 Edit Analysis Settings

• Specify End Time to 6E-4 s

• Change the Scope to Eulerian Bodies only (there is no need

to extend the Euler mesh to

cover the punch and die)

• Reduce the Total Cells from 250000 to 25000 (this is a

simple model, so a very fine

Euler mesh is not needed)

© 2011 ANSYS, Inc. November 1, 2012 16

Step 8 Set Boundary Conditions

• Right-click on Explicit Dynamics to insert Fixed Support and then scope it to the Die

© 2011 ANSYS, Inc. November 1, 2012 17

Step 9 Set Boundary Conditions

• Right-click Explicit Dynamics to insert Displacement and then scope it to the Punch

© 2011 ANSYS, Inc. November 1, 2012 18

Step 9 Set Boundary Conditions

• Set up Displacement for X/Y/Z Components

• Enter Tabular Data as follows

© 2011 ANSYS, Inc. November 1, 2012 19

Step 10 Define Result Set

• Right-click on Solution to insert Directional Velocity (Orientation: X Axis)

© 2011 ANSYS, Inc. November 1, 2012 20

Step 11 Run Explicit Dynamics

• Save the project

• Click Solve to run the Analysis

• Choose Solution Information to see progress

© 2011 ANSYS, Inc. November 1, 2012 21

Step 11 Post-Process the Results

The X velocity plot should look like this:

Soda material flows out