workshop may 20th 2013 (2)

94
WORKSHOP May 20 th 2013 ACQUA PER USO FARMACEUTICO Speaker Pasquale Della Valle ELETTRACQUA Technical and Sales Manager 1

Upload: durbcomsono

Post on 29-Dec-2015

35 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

ACQUA PER USO FARMACEUTICO

Speaker

Pasquale Della Valle ELETTRACQUA Technical and Sales Manager

1

Page 2: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

1. Introduzione

AGENDA

2

2. Opzioni di Pretrattamento

3. Opzioni di Trattamento Finale

4. Stoccaggio e Distribuzione

5. Validazione

6. Comparison Compendial Water ANVISA vs USP35 and EP7th Ed.

Page 3: Workshop May 20th 2013 (2)

1. INTRODUZIONE

3

INTRODUCTION

Page 4: Workshop May 20th 2013 (2)

INTRODUZIONE

La selezione della qualità necessaria per l'acqua o vapore puro

è potenzialmente la fase più critica

nella pianificazione di un nuovo progetto di

produzione di acqua per uso farmaceutico o sistema di vapore puro, da un punto di vista normativo,

tecnico e finanziario.

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

4

Page 5: Workshop May 20th 2013 (2)

L’uso dell’Acqua nel settore farmaceutico include le seguenti applicazioni :

- Come ingrediente nella formulazione di specialità farmaceutiche

- Come ingrediente nella produzione di principi attivi (API)

- Come risciacquo finale durante Clean in Place (CIP) delle apparecchiature di produzione

- Come solvente o diluente per i processi di ricerca o di laboratorio

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

5

INTRODUZIONE

Page 6: Workshop May 20th 2013 (2)

Il design,costruzione,commissioning e validazione del sistema acqua per l’industria farmaceutica rappresenta una importante sfida poiché deve essere conforme alle prescrizioni delle cCMP,oltre che rispettare tutte le leggi e le regolatorie locali.

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

6

WATER OPTIONS:I requisiti qualitativi delle acque impiegate nelle produzioni farmaceutiche sono guidate dalle

caratteristiche del prodotto.Le monografie ufficiali(USP e EU) definiscono I requisiti minimi per ciascun tipo d’acqua.In ogni

caso la scelta finale della qualità dell’acqua in relazione all’impiego al quale è destinata,resta di specifica responsabilittà della Azienda Farmaceutica .

Le acque di uso farmaceutico sono divise in due categorie:

Compendial water e Non compendial water

INTRODUZIONE

Page 7: Workshop May 20th 2013 (2)

Le pharmacopee più importanti:

• United States Pharmacopoeia (USP),

• European Pharmacopoeia (EP)

• Japanese Pharmacopoeia (JP)

Definisco due Compendial Water and Steam

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

7

Purified Water (PW)

Water far Injection (WFI)

Pure Steam (PS)

Highly Purified Water(HPW),EU only

INTRODUZIONE

Page 8: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

8 P

HA

RM

AC

EU

TIC

AL

WA

TE

R Q

UA

LIT

Y

DE

CIS

ION

TR

EE

INTRODUZIONE

Page 9: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

9

Il controllo di tutti i parametri critici di processo sono necessari, quando possono avere diretta conseguenza sul prodotto finale.

I requisiti minimi per i metodi di produzione, la qualità dell'acqua di alimentazione, e gli attributi di qualità per le acque compendial sono

definite nelle specifiche monografiche.

INTRODUZIONE

Page 10: Workshop May 20th 2013 (2)

La figura mostra la GUIDE LINE utile nel processo decisionale, nella definizione iniziale della tipologia di acqua necessaria e quindi determinare il progetto del sistema necessario

dal pretrattamento al trattamento finale.

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

10

INTRODUZIONE

Page 11: Workshop May 20th 2013 (2)

2. PRETREATMENT OPTION

11

INTRODUCTION

Page 12: Workshop May 20th 2013 (2)

Pretrattamento viene definito l’insieme di tutte le fasi di trattamento necessarie a garantire che la qualità dell'acqua di alimentazione

diventi di qualità adeguata ad ottimizzare le prestazioni del trattamento finale.Esse sono

definiti nei seguenti step.

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

12

Control of fouling :rimozione della torbidità e colloidi

Control of scaling :rimozione o controllo della durezza e metalli

Control of Organics:riduzione delle sostanze organiche e batteriche

PRETREATMENT OPTION

Page 13: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

13

Control of fouling :rimozione della torbidità e particolati

PARTICOLATI

Tipicamente sono minerali insolubili. In particolare silice coloidale.

TORBIDITA’

È causata da materiale in sospensione e colloidale, che può essere di natura organica o inorganica ed altri microorganismi .

PRETREATMENT OPTION

Page 14: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

14

La rimozione della torbidita’ e particolato è fondamentale per evitare lo sporcamento dello step finale del trattamento, in

particolare l’intasamento delle membrane di Osmosi Inversa

I metodi più utilizzati per rimuovere la TORBIDITA’ E PARTICOLATO,sono:

• Filtrazione multimedia

• Ultrafiltrazione

PRETREATMENT OPTION

Page 15: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

15 F

ILT

RA

TIO

N S

PE

CT

RU

M

PRETREATMENT OPTION

Page 16: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

16

Filtrazione Dualmedia :sono formati da contenitori in pressione,con all’interno materiale filtrante formato da quarzite e carbone antracite.

Advantage: • Large capacity per unit cost • Low cost of operation

Disadvantage: • Particle reduction

limited to 10µm (approx) • Can become a source of

microbiological contamination if improperly maintained, designed or operated

PRETREATMENT OPTION

Page 17: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

17

Ultrafiltration

Vantaggi : • La Ultrafiltrazione è una barriera

invalicabile per tutti microorgnismi (virus e batteri) e tutti quei composti che formanno la torbidittà oltre che per la totalittà dei colloidi. L’efficacia del processo della filtrazione è indipendente della caratteristica dell’acqua di alimentazione.

UF pore rating : 1000-100,000 Daltons cut-off. UF membrane sono in polysulfone in configurazione fibra cava(hollow fiber). UF membrane hanno pori di filtrazione in un range 0,01-0,1 microns.

PRETREATMENT OPTION

Page 18: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

18

VANTAGGI DELLA ULTRAFILTRAZIONE Rispetto ai processi di trattamento convenzionale:

• Alcune particelle colloidali hanno una dimensione inferiore 0,2 micron (per essempio silice colloidale) Quindi non sono trattenute dal dual media filter che è limitato a circa 10μm, ne dalla filtrazione a cartuccia. E hanno un impatto drammatico sulla membrana di RO causando un rapido sporcamento e il fuori servizio.

Fasi di trattamento successive avranno maggiore efficienza e affidabilità dovuta al fatto che tutta la torbidita’ ed i colloidi saranno stati completamente eliminati. .

PRETREATMENT OPTION

Page 19: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

19

CASE STUDY:

Laboratório Teuto Brasileiro

PROBLEMATICHE DELL’ACQUA DI

ALIMENTAZIONE

TORBIDITA’: 0.22-11.1 NTU

INDICE DEI COLLOIDI: SDI O,3-8

IL PARTICOLATO COLLOIDALE PASSA SIA IL DUALMEDIA FILTER

E IL FILTRO A CARTUCCIA

IMPATTANDO DRAMMATICAMENTE SULLE MEMBRANE DI

OSMOSI INVERSA CAUSANDO LA

PRETREATMENT OPTION

Sostituizione delle membrane circa 6 mesi con notevole costo di essercicio e fuori servizio di produzione

PROBLEMATICHE RILEVATE SULL’ IMPIANTO PRE ESISTENTE,FORNITO DA ALTRO SUPPLIER DA 7/8 ANNI

Page 20: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

20

DRAMATICALLY IMPACT on the RO Performance

• reduction of capacity of PW production • high frequency of cleaning • reduction of RO membrane life: replacement every 6/8 months

ELETTRACQUA HA FORNITO NEL 2011 UN NUOVO IMPIANTO DI PRODUZIONE WFI,REALIZZATO CON MEMBRANE DI RO.IL SISTEMA DI PRETRATTAMENTO E’ STATO PROGETTATO CON UF

L’ACQUA PRETRATTATA INVIATA AL PRIMO PASSO DI RO HA I SEGUENTI PARAMETRI CHIMICO FISICI:

• Turbidity: less 0.1 NTU • SDI: less 0.1

UN ANNO DI FUNZIONAMENTO SENZA NESSUN CLEANING CHIMICO DELLE MEMBRANE.VIENE CONFERMATO IL LIFE TIME DELLE MEMBRANE DI RO NON INFERIORE A 5 ANNI.

IN SEGUITO A QUESTI RISULTATI TEUTO HA COMMISSIONATO LA INSTALLAZIONE DI UN NUOVO SISTEMA DI UF A MONTE DEL VECCHIO IMPIANTO DI PW

PRETREATMENT OPTION

Page 21: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

21

In both the plant Elettracqua has supply DOW UF modules that utilize a double-walled hollow fiber H-PVDF membrane with a very small pore diameter (0,03µ nominal pore) for excellent removal of particulate matter and bacteria, and most viruses and colloids.

PRETREATMENT OPTION

Page 22: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

22

PROCESS OPERATIONS Filtration Step • Outside-In flow configuration for high tolerance to feed solids • UF is operated at a constant permeate flow. • The transmembrane pressure (TMP) will naturally increase over time, and the module

can be cleaned by back-washing and air-scouring to remove the fouling layer for longer service life.

VIRUS BACTERIA

IN

IN

FIL

TR

AT

E

PRETREATMENT OPTION

Page 23: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

23

Air

Sc

ou

r S

tep

Cleaning Step The frequency of the cleaning step dependent on the feed water quality

Ba

ck

wa

sh

(B

W)

Ste

p

Ch

em

ica

lly

En

ha

nc

ed

B

ac

kw

as

h

(C

EB

) s

tep

Cle

an

In

Pla

ce

Cle

an

ing

(C

IP)

Ste

p

PRETREATMENT OPTION

Page 24: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

24

Control of scaling :controllo della durezza

METHODS of CONTROL include :

- Addolcimento con resine a scambio ionico

- Dosaggio di prodotti antiprecipitanti(antiscalant)

Il controllo della durezza(Ca+Mg) è necessario per evitare la precipitazione di composti incrostanti,come carbonati sulle membrane di Osmosi Inversa.

I sistemi di controllo includono

PRETREATMENT OPTION

Page 25: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

25

Softening by Ion Exchange

Ion exchange resins reduce the hardness by replacing magnesium and calcium with sodium

Ca2+, Mg2+, Na+, K+ HCO3

-, Cl-, NO3-,

SO42-, SiO2

NaCl 10 %

Regenerant Waste

SAC

Na+, HCO3

-, Cl-, NO3-,

K+ , SO42-, SiO2

PRETREATMENT OPTION

Page 26: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

26

Softening by Ion Exchange

The typical Brazilian Raw Water analysis shows: • low hardness: less 50ppm as CaCO3 • low TDS • high Turbidity (TSS, heavy metal and colloids, specially colloid silica)

Softening by Ion Exchange is a very popular pretreatment step, but in case of low hardness content

it is easy to control the hardness by Antiscalant Dosing before the 1st Pass RO

PRETREATMENT OPTION

Page 27: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

27

Antiscalant Dosing

L’Antiscalant sono dei composti chimici organo’fosfonati, a elevatissimo peso molecolare

L’antiscalant, dosato in piccola quantittà in acqua di alimentazione (3-5 mg/L) vanno chimicamente a legarsi al calcio, magnesio, ferro e silice in

forma ionica - elevando il loro prodotto di solubilittà,quindi questi composti chimici,restano perfettamente in soluzione nell’acqua e vengono totalmente rigettati delle membrane di Osmosi Inversa senza che vengono contaminate

APPROVATI by FDA-EPA-EP-WHO

PRETREATMENT OPTION

Page 28: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

28

SANITIZAZIONE

I necessarie metodi di santizazione per evitare eccessiva crescittà microbica sono : • Sanitizazione chimica,oppure termica • Controllo di Temperatura,a valori inferiori a 18°C

Periodic Hot Water Sanitization Temperatures above 80°C result the complete killing of all non-resistant bacteria.

> 80°C

15°C

Operating Temperatures below 15°C avoid the bacterial growth

PRETREATMENT OPTION

Page 29: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

29

The UV light, 254 nm wavelength, deactivates DNA in the microorganisms, preventing duplication and leading to a reduction in bacteria. The feed water to a UV system needs to be free of suspended solids, which can "shadow" bacteria, preventing adequate UV contact. UV lights can not be used as sole means of microbial or organic contaminant control, but must be as a part of a total microbial control plan.

DEBATERIZAZIONE RAGGI ULTRAVIOLETTI (UV)

PRETREATMENT OPTION

Page 30: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

30

IPOCLORITO DI SODIO

Municipalities frequently use chlorine, often introduced as sodium hypochlorite to disinfect water before and during distribution. Chlorine is fed into the system to kill bacteria at typical dosage levels of 0.2 ppm to 2.0 ppm. Chlorine concentration should be monitored in the feed water and in parts of the pretreatment system prior to its removal.

PRETREATMENT OPTION

Page 31: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

31

IPOCLORITO DI SODIO

Deve essere totalmente eliminato prima di alimentare le membrane di Osmosi Inversa, che essendo di materiale

Poliamide vereberro iremediabilmente ossidate.

PRETREATMENT OPTION

PRINCIPALI SISTEMI DI RIMOZIONE IPOCLORITO DI SODIO:

• Activated Carbon

• Reduction with Sodium Bisulfate dosing

Page 32: Workshop May 20th 2013 (2)

3. FINAL TRATMENT OPTIONS

32

INTRODUCTION

Page 33: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

33

FINAL TREATMENT OPTIONS - NON-COMPENDIAL WATER and COMPENDIAL PURIFIED WATER

The most common PW system design implement a Single Reverse Osmosis Pass with

another Reverse Osmosis Pass

RO + RO

a continuous electrodeionization stage

RO + EDI

or

PW, HPW and Non-compendial water can be produce by an extensive combination of unit processes in various

combination as

• membrane degasification (CO2 removal)

• Ultrafiltration

• microfiltration

• ultraviolet light

• Reverse Osmosis

• Electrodeionization

Page 34: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

34

PERMEATE FLOW

PERMEATE

FEED WATER

CONCENTRATE

REVERSE OSMOSIS Utilizing semi-permeable membrane, means that the membrane is permeable for water while impermeable for salts, acids, bases, colloids, bacteria and endotoxins. For Pharmaceutical water production, RO membrane have a spiral wound configuration and are available in cellulose acetate or thin film composite (polyamide). The majority of pharmaceutical systems utilize thin film composite membranes. The optimum membrane selection is based upon an analysis of capital cost, operating cost, membrane life, rejection and bacteria control.

Advantages • highest rejection of contaminants • operate effectively at lower temperatures

(4°C and higher) • operate effectively at low pressure (7 bar g

and higher) • longer life expectancy

Disadvantages • higher initial capital cost • low tolerance for chlorinated feed water

CONCENTRATE

FINAL TREATMENT OPTIONS - NON-COMPENDIAL WATER and COMPENDIAL PURIFIED WATER

Page 35: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

35

REVERSE OSMOSIS LIMITATIONS

• RO cannot remove 100% of contaminants from water and has either very low or no capacity for the removal of several extremely low molecular weight dissolved organics.

• A concentrate flow is essential to remove the contaminants that are rejected by the membrane. The waste stream from an RO unit may be used for cooling tower make-up water or compressor cooling water, etc.

• Recovery is defined as the percentage of feed water that becomes purified product water. Recovery can range

from 20% (or less) up to 90%, depending on factors such as:

feed water quality provided to the RO unit

system capacity/configuration

life cycle costs requirements

A recovery unit with a high percentage output may have less waste to achieve the desired output rate, but will

tend to have higher maintenance costs due to the fouling/scaling effects of the concentrate.

Produced water quality is dependent but not limited to membrane type, operating pressure, feed water quality.

FINAL TREATMENT OPTIONS - NON-COMPENDIAL WATER and COMPENDIAL PURIFIED WATER

Page 36: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

36

Carbon dioxide pass directly

through an RO membrane and

will be in the RO product

stream at the same level as that

in the feed water stream.

Carbon dioxide in the RO

product stream may increase

the product conductivity

beyond the PW Stage 1

conductivity limit.

To reduce these potential

issues, a degasification unit

operation could be added

before or after the RO process.

FINAL TREATMENT OPTIONS - NON-COMPENDIAL WATER and COMPENDIAL PURIFIED WATER

Page 37: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

37

Liquid Inlet

HYDROPHOBIC HOLLOW FIBER MEMBRANE The purpose is to remove the carbon dioxide (CO2)

Water on one side and strip gas on the other.

The strip gas can be drawn by vacuum or pressurized on the inlet.

The strip gas lowers the partial pressure of the gas phase which causes the gases from the liquid phase to diffuse

through the membrane into the gas phase.

Advantages simple design and maintenance

chemical free method simple installation low operation costs

Disadvantages more expensive than

sodium hydroxide dosing

FINAL TREATMENT OPTIONS - NON-COMPENDIAL WATER and COMPENDIAL PURIFIED WATER

Page 38: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

38

SODIUM HYDROXIDE DOSING SYSTEM In case of feed water CO2 value lower than 10ppm

Raising the pH value to 8.3, is possible to convert the Carbon Dioxide to Bicarbonate, which is more readily rejected by the RO membrane.

FINAL TREATMENT OPTIONS - NON-COMPENDIAL WATER and COMPENDIAL PURIFIED WATER

Page 39: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

39

FINAL TREATMENT OPTIONS - NON-COMPENDIAL WATER and COMPENDIAL PURIFIED WATER

RO PRETREATMENT REQUIREMENTS

SCALING MINIMIZATION

Scaling is possible since the feed water contaminants are being concentrated into waste water. Scale control is normally prevent by • Using of water softening upstream of the membranes • Injection of acids to lower the pH of feed water stream • Dosing an antiscalant compound to prevent precipitation of dissolved ions

FOULING MINIMIZATION

RO membrane fouling is reduced through the use of back-washable filters (multi-media, cartridge and ultrafiltration) and various microbial control pretreatment methods to reduce biological fouling

OXIDATION MINIMIZATION

The main causes of membrane degradation are oxidation of certain membrane materials and heat degradation. Thin film composite membrane system incorporate various compound for dechlorination, while protection against high temperature is normally incorporated where membrane material cannot tolerate high temperature.

Page 40: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

40

FINAL TREATMENT OPTIONS - NON-COMPENDIAL WATER and COMPENDIAL PURIFIED WATER

RO PERFORMANCE Single pass RO typically reduce the contaminants more than 99%, but produced water don’t meet the

conductivity requirements of most compendial PWs Double pass RO can produce water than can pass the Stage 1 conductivity requirements.

Membrane selection should be based upon:

Pre-treatment requirements Operating performance characteristics

Sanitization options Warranties

Capital and operating costs Feed water source

RO unit should incorporate sufficient membrane area for reliable operation.

On of the most important factors to optimize this are is fouling and scaling potential understanding. The Silt Density Index (SDI) reading gives an indication of the tendency of feed water to foul the membranes.

Lower SDI means low membrane cleaning frequency. SDI optimal value is ≤ 3

RO system typically are designed at a specific operating temperature and pressure; any deviations from the

baseline condition could changes the amount or the quality of produced water.

Ex. An increase in temperature above the design temperature could lead to increase permeate flow, but potentially decrease product water quality due increasing salts passage in the permeate.

Page 41: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

41

FINAL TREATMENT OPTIONS - NON-COMPENDIAL WATER and COMPENDIAL PURIFIED WATER

CONTROL AND INSTRUMENTATION

Proper instrumentation for monitoring and controlling critical and non-critical parameters of operation is essential to any RO system design.

The product water quality from RO system is directly related to the feed water quality.

The most important parameters to control and measure are

FEED WATER

TEMPERATURE PRESSURE

PRODUCED WATER

CONDUCTIVITY TEMPERATURE

PRESSURE FLOW RATE

WASTE WATER

FLOW RATE PRESSURE

Page 42: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

42

FINAL TREATMENT OPTIONS - NON-COMPENDIAL WATER and COMPENDIAL PURIFIED WATER

REVERSE OSMOSIS CONCENTRATE REUSE Pretreated Water

BREAK TANK

FIRST PASS RO γ = 75%

SECOND PASS RO γ = 85%

4,2 m3/h

0,5 m3/h

4,7 m3/h

1,2 m3/h

3,5 m3/h

3 m3/h

RO DOUBLE PASS SYSTEM WITHOUT CONCENTRATE RECOVERY SYSTEM (CRS)

TOTAL RECOVERY γ = 71,4%

0,5 m3/h

Page 43: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

43

FINAL TREATMENT OPTIONS - NON-COMPENDIAL WATER and COMPENDIAL PURIFIED WATER

Pretreated Water

BREAK TANK

FIRST PASS RO γ = 75%

3,42 m3/h

1,28 m3/h

4,7 m3/h

1,2 m3/h

3,5 m3/h

3 m3/h

RO DOUBLE PASS SYSTEM WITH CONCENTRATE RECOVERY SYSTEM (CRS)

CONCENTRATE RECOVERY SYSTEM

γ = 65%

0,42 m3/h

0,5 m3/h

0,78 m3/h

1,28 m3/h

TOTAL RECOVERY γ = 87,7%

SECOND PASS RO γ = 85%

Page 44: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

44

FINAL TREATMENT OPTIONS - NON-COMPENDIAL WATER and COMPENDIAL PURIFIED WATER

RO MEMBRANE CLEANING IS NEEDED

CHEMICAL CLEANING

Carry out by chemical cleaners •Acid based cleaners to remove metals and salts •Alkaline cleaners to remove silt and organic foulants

Dedicated tank and pump are needed

Salt passage increasing

Differential pressure exceeding 2,5 bar

Product flow rate decreasing

THERMAL CLEANING

Carry out by Hot Water at 85°C Specially constructed membranes are needed

Page 45: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

45

FINAL TREATMENT OPTIONS - NON-COMPENDIAL WATER and COMPENDIAL PURIFIED WATER

CONTINUOUS ELECTRODEIONIZATION

CEDI

ION EXCHANGE RESINS

ION SELECTIVE MEMBRANE

ELECTRICAL FIELD to continuously remove ionized species

and regenerate the resins

+

+

=

Continuous, not in batch or intermittent

Ionic transport properties of the ion exchange are primary sizing parameter

Page 46: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

46

FINAL TREATMENT OPTIONS - NON-COMPENDIAL WATER and COMPENDIAL PURIFIED WATER

Ionized species are drawn from the water passing alone the ion depleting cells and transferred into concentrate

water stream passing across the ion exchange membranes that are permeable to ionized species and

not to water. Power supply create a Direct Current electric field between cathode and anode that contributes to the

ionic transport far.

Purifying Compartment Concentrate

compartment

High voltage cause water splitting into H+ and OH- that

regenerate continuously the cationic and anionic exchange.

This continuous high regeneration level, allows the consistent

production of high purified water.

CEDI is commonly used after RO unit in order to produce

water with low conductivity and organic levels, RO+CEDI

system may produce water with conductivity 0,1 µS/cm or

lower.

CEDI unit performance is a function of feed water quality.

ANODE CATODE

FEEDING WATER

Co

nc

en

tra

te

Co

nc

en

tra

te

Co

nc

en

tra

te

Co

nc

en

tra

te

PU

RIF

IED

W

AT

ER

PU

RIF

IED

W

AT

ER

PU

RIF

IED

W

AT

ER

Page 47: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

47

FINAL TREATMENT OPTIONS - NON-COMPENDIAL WATER and COMPENDIAL PURIFIED WATER

ULTRAVIOLET LIGHT TREATMENT for Polishing and Removal of specific contaminants

UV light treatment aims to decrease the bacteria

growth inside the treated water

254 nm units are used for limiting bacteria

contamination, breaking the microorganism outer

membrane to modify the DNA in order to avoid the

replication

UV wavelengths and intensity level required depend on the expected

function

185 nm units are used for TOC (Total

Organic Carbon) reduction

Advantages • Simple design and

maintenance • No waste stream

• Heat, ozone and chemical sanitization are possible

Disadvantages • Can be used only as part of a

total microbial control plan • No ion or endotoxin removal

• No disinfection residual • Particulate can shield organism

from UV light • Dead organism are not removed

from the water

Page 48: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

48

FINAL TREATMENT OPTIONS

WATER FOR INJECTION

WFI

Page 49: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

49

FINAL TREATMENT OPTIONS – WATER FOR INJECTION (WFI)

Page 50: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

50

FINAL TREATMENT OPTIONS – WATER FOR INJECTION (WFI)

Distillation normally is used as the final processing step for quality WFI system

To select appropriate technologies, the manufacturer of products should first consider where the products will be distributed and what regulations are applicable to those market

Distillation technologies require adequate pre-treatment to prevent/minimize corrosion and scale formation and allow final unit operations to meet compendial requirements

WFI should be produced using different technologies as Multiple Effect Water Still (ME) or Vapor Compression Still (VC), but normally the production steps are

•Water is evaporated, producing steam

•By means separation devices, steam will be disengage from water droplets that contain dissolved solids, non-volatiles and other impurities

•Pure Steam is condensed into WFI

Page 51: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

51

FINAL TREATMENT OPTIONS – WATER FOR INJECTION (WFI)

BASIS FOR ECONOMIC COMPARISON

The three primary factors affecting the operating costs of any still design are

INDUSTRIAL STEAM

ELECTRICITY COOLANT

CONSUMPTION

Using these estimates and the local cost of each utility, expense can be projected based on anticipation volume.

The appropriate selection should be based on a comparison of

operating cost versus capital cost

Page 52: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

52

FINAL TREATMENT OPTIONS – WATER FOR INJECTION (WFI)

CONTRUCTION MATERIALS and SURFACE FINISHING

The recommended material for the equipment is Stainless Steel AISI 316L, finishing Ra ≤ 0,6 µm, polished and passivated, while for gasket materials should be suitable for the maximum temperature to which they will be exposed, normally silicone or

PTFE FDA approved gasket are used

Page 53: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

53

FINAL TREATMENT OPTIONS – WATER FOR INJECTION (WFI)

COOLING WATER

FEEDING PURIFIED WATER

PURE STEAM

WFI

OFF-SPEC WFI

CONDENSATE

INDUSTRIAL STEAM

PURE STEAM

PURE STEAM CONDENSE

CONDENSATE LIQUID DISCHARGE

CONDENSATE DISCHARGE

Page 54: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

54

FINAL TREATMENT OPTIONS – WATER FOR INJECTION (WFI)

FEED WATER PRE-HEATER and FINAL CONDENSER

In order to reduce the energy consumption and operation costs, two DTS Heat Exchanger are installed before the first distillation column. The exchanger recover and transfer the heat from

produced Pure Steam and WFI to feed water

1st condenser Cool side : Feed Water Heat side : Pure Steam

2nd condenser Cool side : Cooling Water Heat side : Pure Steam

Pre-Heater Cool side : Feed Water Heat side : Condensate Discharge

Page 55: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

55

FINAL TREATMENT OPTIONS – WATER FOR INJECTION (WFI)

FIRST DISTILLATION COLUMN

•Double Tube Sheet (DTS) design to safety the separation between aseptic product and industrial steam

•High steam velocity design

•Efficient heat transfer design

•Automatic control of feed water flow rate by means dedicated 4-20 mA level transmitter

•Automatic control and regulation of produced WFI according to WFI Storage Tank inside level

•Less thermal variations

•More continuatives operation

Page 56: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

56

FINAL TREATMENT OPTIONS – WATER FOR INJECTION (WFI)

SECOND and OTHER DISTILLATION COLUMN

•Each column use as heating steam the pure steam coming from the previous column

•High steam velocity design

•Efficient heat transfer design

•Single tube design, because heating steam is pure steam

•Automatic control of feed water flow rate by means dedicated 4-20 mA level transmitter

•Every added column increase capital cost but reduce required industrial steam and cooling water amount (operating costs)

Plant steam pressure 8 bar ÷ 175°C

Capacit

y

lt/h

Steam Consumption

kg/h

Effects number

4 5 6 7

2.300 783 630 528 456

Page 57: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

57

FINAL TREATMENT OPTIONS – WATER FOR INJECTION (WFI)

CYCLONE SEPARATION SYSTEM

The heart of WFI production system is the separation of water droplets containing contaminants from the pure steam, by means a cyclone system installed inside each evaporation column. Two basic principle are used for this process:

•High Steam speed creating centrifugal forces that separate any entrained water particles and throw them to the outer wall of separator to drain.

•Double 180 turns: The pure steam flow direction is forced to double 180° turns inducing gravity separation of larger water droplets.

Page 58: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

58

FINAL TREATMENT OPTIONS – WATER FOR INJECTION (WFI)

VAPOR COMPRESSION DISTILLATION Two circuits supplied by the same water, primary circuit produces distillate from feed water while secondary circuit is responsible for the heat recovery. The feed water enters the system and is heated up in the heat exchanger by the leaving distillate. The energy for evaporation is delivered by the steam of secondary circuit which condensate in the heat exchanger. Large evaporation produces dry steam nearly without droplets; this steam passes the cyclone for last

droplets removing by means centrifugal force. The clean steam reaches the condenser and condenses to sterile distillation. The water of secondary circuit evaporates, is taken in by pump and raised to an higher pressure and temperature thus the steam can be used as heating medium for feed water evaporation.

Page 59: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

59

FINAL TREATMENT OPTIONS – WATER FOR INJECTION (WFI)

QUALITY DESIGN OF MATERIAL, FINISHING, CONSTRUCTION AND PROCESS

CONTROL, INCLUDED IN THERMOCOMPRESSION WATER STILL SYSTEM

Quenched Waste System

SS 304 L – cooling spray nozzles, automatic cooling water valve

SS 316 L Finishing Surfaces

All the SS 316 L material in contact with pure steam have a roughness < 0,6 µm Ra

Welding piping, Welding Map and Welding Report

All tubing and fittings are welded by orbital machine, wherever technically possible.

Welding map and welding report are included

Support Frame

All components are assembled on a SS 304 Support Frame

Page 60: Workshop May 20th 2013 (2)

4. STORAGE AND DISTRIBUTION

60

INTRODUCTION

Page 61: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

61

STORAGE AND DISTRIBUTION

Storage Tank supply the facility peak

consumptions without the necessity of over sizing the

purification system.

Distribution Loop transport the water to use points (POUs) at the required flow, temperature and pressure.

Page 62: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

62

STORAGE AND DISTRIBUTION

Page 63: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

63

STORAGE AND DISTRIBUTION

ADVANTAGES •Reserve capacity during purification outage

•Atmospheric air break for loop return

•Service of upstream water purification equipment

•Minimize purification system instantaneous demand capacity

•Contact tank for ozone sanitization

STORAGE TANK

POTENTIAL DISADVANTAGES

•Storage tank capital costs

•Associated equipment capital costs (pumps, vent filter, instrumentation, etc...)

Usually less than water purification equipment size increasing to handle the peak demand

Page 64: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

64

STORAGE AND DISTRIBUTION

In order to prevent biofilm contamination, periodic sanitization and continuous circulation of the water are needed.

A tank spray ball is recommended to allow the wetting of the entire internal tank surface.

Page 65: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

65

STORAGE AND DISTRIBUTION

TANKS SIZING and DESIGN CONSIDERATION

Criteria affecting storage capacity are user’s existing and future demand, amount of use, duration, timing and number of POUs simultaneously opened Vessels should be designed and installed using appropriate standards that don’t compromise the water quality or system operation Horizontal tanks may be used to address space issues, while vertical orientation is the most common based on the following advantages:

•Lower cost

•Less dead volume

•Simpler spray ball design

•Less floor space require

Page 66: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

66

STORAGE AND DISTRIBUTION

Page 67: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

67

STORAGE AND DISTRIBUTION

PUMPS

Sanitary centrifugal pumps are commonly employed and

designed on flow, pressure, temperature and velocity.

Frequency control device that control the pump motor speed,

may be used to maintain a constant internal loop speed in

every operating condition

VENT FILTERS

The tank should be vented to allow filling and emptying, and a

filter should be used at the vent to avoid microbial contamination.

Typically are made in hydrophobic PTFE, PP, or PVDF to prevent wetting. Filters should

be capable of withstanding sanitization and sized based on

vessel design characteristics

HEAT EXCHANGER

Heat Exchanger equipment is used to heat or cool distributed water to desirable levels or to

maintain temperatures.

Equipment part in contact with distributed water should be specified with appropriate

materials, finishes and connections.

Page 68: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

68

STORAGE AND DISTRIBUTION

DISTRIBUTION LOOP TUBAZIONI Attrezzature farmaceutiche e sistemi di tubazioni per il PW, HPW, WFI e la distribuzione del vapore puro, devono in acciaio inox AISI 316L, resistente alla corrosione, necessaria a soddisfare le condizioni di funzionamento e metodi di sanificazione. La produzione dei tubi e la installazione devono rispondere alle specifiche norme (ad esempio, ASTM, ASME BPE, ISO, DIN, SMS, BS, JIS-G), oltre ad altri requisiti (21 CFR 211.65). Saldatura automatica è il metodo preferito per unire i sistemi di tubazioni di elevata purezza, a causa del maggiore controllo dei parametri critici di saldatura , tuttavia saldatura manuale può essere richiesto e utilizzato in situazioni specifiche.. I sistemi di stoccaggio e di distribuzione devono essere installati in conformità con cGMP. VALVOLE Valvole a membrana generalmente sono utilizzati in sistemi ad elevata purezza. Altri tipi di valvole, quali valvole a sfera e valvole a spillo , in genere non vengono utilizzati.

Page 69: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

69

STORAGE AND DISTRIBUTION

LOOP DIMENSIONAMENTO Il flusso di acqua nella tubazione deve essere di tipo turbolento per controllare lo sviluppo del biofilm sulla parete tubazione. La capacità del sistema dovrebbe essere tale che la quantità desiderata di acqua può essere utilizzata in qualsiasi momento senza rischiare la perdita di pressione di ritorno. Tipicamente il dimensionamento del loop deve garantire la velocità interna nella tubazione in un range 1 ÷ 3 m / sec. In ogni condizione di lavoro. PROGETTAZIONE CONSIDERAZIONE È considerato pratica comune per consentire il completo svuotamento del circuito di distribuzione per evitare il ristagno di acqua. Rami morti (dead leg) dovrebbero essere ridotti al minimo o eliminati. Una condizione turbolenta può essere mantenuto se la lunghezza dei tronchetti è limitata,non superiore a 3 diametri.

Page 70: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

70

STORAGE AND DISTRIBUTION

STRUMENTI Strumentazione appropriata dovrebbe garantire il corretto monitoraggio di un sistema di acqua ad elevata purezza. I componenti possono variare da indicatori visivi locali di dispositivi in grado di integrazione con i sistemi elettronici che offrono il controllo, allarme, trend. I parametri tipici monitorati in acqua farmaceutica sono temperatura, pressione, livello del serbatoio e della conducibilità. Ulteriori parametri possono includere flusso, la velocità della pompa e TOC.

Page 71: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

71

STORAGE AND DISTRIBUTION

CONSIDERAZIONI GENERALI Numerosi criteri devono essere considerati quando si valuta progetti alternativi per i sistemi di stoccaggio e distribuzione. I vantaggi / svantaggi di progettazione devono essere conformi ai requisiti utente per l'acqua. La progettazione ottimale di un deposito di acqua farmaceutica e sistema di distribuzione dovrebbe includere le seguenti voci: - Mantenere la qualità chimica e microbica delle acque entro limiti accettabili; - Ridurre al minimo le condizioni e le posizioni che favoriscono la crescita microbica; - Garantire la necessaria portata istantanea a più punti di utilizzo.; - Ridurre al minimo di capitale e costi operativi; - Considerazione la possibilità di una futura espansione.

Page 72: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

72

STORAGE AND DISTRIBUTION

Continuous Circulation?

POU Temperature

Required?

Hot Usage Only?

Limited Quantity of Cooled Use

Point

Method of Sanitization?

Hot Distribution, Cooled Sub-Loop

Primary/Secondary Distribution (cooled)

Hot Distribution, Cooled Branch Use

Point, Heat Sanitized

Parallel Distribution Loops (cooled)

Hot Distribution, Cooled Use Point,

Slip Stream

Hot Storage, Hot Distribution

Primary/Secondary Distribution (Hot)

Branched/ One Way Distribution

Ambient or Reduced Temperature Storage and

Distribution

Ozonated Storage and Distribution

Hot Storage, Cooled and Reheated Distribution

OR Hot Storage, Cooled Bypass

Circulating Distribution OR

Ambient or Reduced Temperature Storage and

Distribution

No

No

No

Yes

Yes

Yes

or or

or

or

Heat

Ozone

Chemical

Ambient Only

Hot or Multiple Temperatures

Distribution Decision Flowchart

Page 73: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

73

STORAGE AND DISTRIBUTION

PW cold Storage and Distribution with Continuous Polishing - Heat sanitizable

Advantages

• Water quality continuously maintained • Can maintain water quality stored over

extended periods of low or no use

Page 74: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

74

STORAGE AND DISTRIBUTION

Ozonated PW Storage and Distribution

Advantages

Compatible non-metallic material of construction may be considered

Tank and pump continuously sanitized

Excellent microbial control Low cost of operation

No heat hazards during sanitization Return water sanitized in tank

Short sanitization time

Page 75: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

75

STORAGE AND DISTRIBUTION

WFI Hot Distribution with cooled Use Point, Slip-Stream

Advantages

Can be used for single or multiple cooled, localized use point

Lower energy consumption than cooling entire loop

Use point can be hot or cooled Continuous flow through slip-stream

Page 76: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

76

STORAGE AND DISTRIBUTION

The same configuration can be applied for a cold PW Storage and Distribution system

with heated POUs and Thermal Sanitization.

The PW should be maintained <15°C and greater turbulence in order to minimize

bacteria growth and biofilm contamination

Page 77: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

77

STORAGE AND DISTRIBUTION

USE POINTS (POUs) CONFIGURATION

characterized for each use point. Each POU should be identified with following proper values

•Unique identifier (tag)

•Maximum instantaneous flow rate

•Periodic consumption requirements (e.g. Daily, weekly) and duration

•Pressure requirement

•Temperature requirement

•Method of delivery (automatic or manual)

In general terms, FLOW RATE is primarily used for sizing distribution lines

Page 78: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

78

STORAGE AND DISTRIBUTION

HOW TO DRAWN THE WATER?

The distribution loop topic key in design considerations is minimized, or eliminated where possible, the DEADLEGS. A turbulent condition may be maintained in short dead ended pipe stubs. There are two valve configuration to solve this problem

MINIMUM DEAD LEG (standard valve configuration)

ZERO DEAD LEG VALVE

Page 79: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

79

STORAGE AND DISTRIBUTION

The standard valves configuration (Minimum dead leg) will be

installed at the minimum distance from the distribution loop in order

to minimize the dead legs

The user points valves type butt welds, will be installed directly on the main loop piping in order to

avoid dead legs.

Page 80: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

80

STORAGE AND DISTRIBUTION

Estese indagini su sistemi acquatici hanno dimostrato che oltre il 99% di tutta l’attività microbica avviene in biofilm.Il biofilm è definito come cellule batteriche aderenti tra loro e / o alle superfici di contatto e sono ricoperte da una sostanza vischiosa (lipopolisaccaride), che agisce come uno scudo, proteggendo il biofilm da attacchi fisici e chimici.

Lo spessore di un biofilm è essenzialmente funzione di: - la concentrazione di nutrienti disponibili - velocità dell’acqua - regime biocida, - pratiche di sanificazione, ecc

CARICA MICROBICA E BIOFILM CI SONO PROVE SCIENTIFICHE CHE I BATTERI PREFERISCONO VIVERE IN BIOFILM,

Page 81: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

81

STORAGE AND DISTRIBUTION

In order to maintain low the biofilm level in compendial water the combination of the following strategies should be considered:

1. Minimization of nutrient concentration in the PW compendial

TOC less 100ppb

2. Selection material with internal finishing less 0.6 µm Ra to make cleaning easier

3. Maintain high flow rate in the distribution piping > 1m/sec and turbulent flow Reynolds N > 10.000

4. Compendial Water Temperature heated > 85°C (WFI) or cooled < 15°C (PW)

5. Install U.V. light 254 nm on PW loop

6. Design Continuous PW Storage Tank sanitization by Ozone (O3) and weekly extension of Ozone sanitization to the PW distribution loop

7. Proceed on intermittent sterilization (121°C) of WFI storage and distribution loop

STRATEGY APPROACHES TO CONTROL BIOFILM

Page 82: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

82

STORAGE AND DISTRIBUTION

STRATEGY APPROACHES TO CONTROL BIOFILM

Nota: Sterilizzazione del biofilm con, per esempio, il vapore uccidere tutti i batteri presenti, tuttavia, il vapore non rimuove completamente il biofilm (all'occorrenza). Tuttavia, l'asportazione di un biofilm può essere molto importante, poi che evitta che divente nutriente a sua volta per i nuovi batteri invasori.

sec-min sec-min hours-days

days-years

I vantaggi di biocidi (ad esempio, l'ozono) hanno un doppio effetto : indeboliscono le forze dinamica di legame dei batteri tra loro ed alla superficie, riducendo in tal modo le forze di taglio necessari per la loro rimozione del biofilm stesso

Page 83: Workshop May 20th 2013 (2)

5. VALIDATION ACTIVITIES

QUALIFICA DI COMPENDIA WATER

83

INTRODUCTION

Page 84: Workshop May 20th 2013 (2)

LA VALIDAZIONE DI UN IMPIANTO cGMP COMPLIANT DEVE STRETTAMENTE

SEGUIRE LE SEQUENZE DEFINITE DALLE AUTORITA’ DI RIFERIMENTO: Usp 35 Eur Pharmacopeias 7.0 cGMP- requirements Guidelines of the drug control authorities (FDA) Gamp 5

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

84

VALIDATION ACTIVITIES

• LA QUALIFICA DEL SISTEMA ACQUA

Le procedure di qualificazione hanno lo scopo di dimostrare che il sistema messo in esercizio produce in modo consistente acqua della qualità di specifica, nelle differenti condizioni, operando secondo le procedure definite.

• Le procedure di qualifica includono le seguenti fasi:

• Redazione dei Protocolli di Installation Qualification (IQ);

• Redazione dei Protocolli di Operational Qualification (OQ);

• Redazione dei Protocolli di Performance Qualification (PQ).

Page 85: Workshop May 20th 2013 (2)

Qualifica - IQ • 1.1 Qualifica di Installazione – IQ

• L’attività di IQ consiste nella verifica che il nuovo impianto realizzato, risulti conforme ai documenti di progetto e sia stato correttamente realizzato in accordo con le specifiche di progetto.

• Il protocollo di IQ dovrà indicare con chiarezza e sinteticità le attività previste per la qualifica dell’installazione, definendo lo scopo, i prerequisiti, il metodo, le attività da svolgere in campo, le responsabilità e i criteri di accettabilità.

• Al termine della qualifica di installazione, ad ogni protocollo dovrà corrispondere:

• Il rapporto della documentazione controllata (disegni, specifiche, schemi…)

• I rapporti per i controlli visivi di installazione relativi alla corrispondenza tra i documenti di progetto e gli impianti realizzati

• I rapporti relativi ai test fisici di post-installazione(es. test hardware sistemi computerizzati, test di pressatura idraulica, passivazione…)

• Il rapporto finale della qualifica con l’elenco di tutti i rapporti e l’elenco delle deficienze riscontrate, con le relative azioni di correzione messe in atto

85

Page 86: Workshop May 20th 2013 (2)

Qualifica - OQ • 1.2 Qualifica di Funzionamento – OQ

• La fase di OQ consiste nella verifica che i sistemi funzionino correttamente e garantiscano risultati in totale accordo alle specifiche funzionali di progetto.

• Prerequisito per l’esecuzione della fase di OQ è il completamento positivo della fase IQ.

• Il protocollo OQ dovrà indicare con chiarezza e sinteticità le attività previste per la qualifica del funzionamento degli impianti, definendo lo scopo, i prerequisiti, il metodo, le azioni, i criteri de accettabilità, il numero di ripetizioni o la durata delle prove e la strumentazione da utilizzarsi.

• Ad ogni protocollo di IQ dovranno corrispondere:

• I rapporti relativi alle calibrazioni degli strumenti critici (Instruments calibration Reports)

• I verbali con i dati relativi alle prove di funzionamento del sistema

86

Page 87: Workshop May 20th 2013 (2)

Qualifica - PQ

Fase Obiettivi Durata della Fase

1 - Sviluppare gli appositi range operativi - Sviluppare e finalizzare le procedure operative, per

il cleaning e per la manutenzione - Dimostrare che il sistema è in grado di produrre

acqua della qualità richiesta

2÷4 settimane

2 - Dimostrare che l’impianto performa all’interno dei range prestabiliti

- Dimostrare la coerenza tra la qualità dell’acqua prodotta e la qualità richiesta

2÷4 settimane

3 - Dimostrare che l’impianto è in grado di mantenere in maniera stabile e a lungo termine i parametri di progetto

1 anno

87

1.3 Qualifica di Performance - PQ

La qualifica di performance si suddivide in tre fasi con obiettivi differenti:

Page 88: Workshop May 20th 2013 (2)

Criteri di Accettazione

88

• 1.4 Criteri di Accettazione

• FASE 1 e 2

• I risultati ottenuti dalla fase 2 di convalida dovranno rispecchiare l’andamento dei campionamenti di fase 1 dimostrando l’alta qualità dell’acqua prodotto dall’apparecchio di generazione

• I parametri indagati dovranno essere conformi alle specifiche USP e EP e ai limiti b più restrittivi definiti nel protocollo di convalida.

• L’acqua prodotta dall’impianto dovrà dimostrarsi idonea all’utilizzo produttivo.

• FASE 3

• I risultati ottenuti dovranno rispecchiare l’andamento dei campionamenti di fase 2 dimostrando l’alta qualità dell’acqua prodotta.

• I parametri indagati dovranno essere conformi alle specifiche USP e EP e ai limiti più restrittivi definiti nel protocollo di convalida.

• L’acqua prodotta dall’impianto dovrà dimostrarsi idonea all’utilizzo produttivo.

• Dopo le attività di convalida vengono convalidate la frequenza delle attività di sanitizzazione / sterilizzazione del reparto produzione, le frequenze delle attività di sanitizzazione / sterilizzazione del reparto stoccaggio e distribuzione e vengono meglio precisati gli Alert e Action Limit.

Page 89: Workshop May 20th 2013 (2)

6. COMPARISON COMPENDIA

89

INTRODUCTION

Page 90: Workshop May 20th 2013 (2)

COMPARAZIONE COMPENDIAL WATER

ANVISA versusUSP35 - EP7

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

90

COMPARISON COMPENDIA

USP 35 United States Pharmacopeia

EP 7th Ed European

Pharmacopoeia

ANVISA Agência Nacional de

Vigilância Sanitária

•Purified Water •Water for Injection

•Purified Water •Water for Injection •Highy Purified Water

•Purified Water •Water for Injection Compendial

Water

≤ 1.1 µS/cm @ 20°C ≤ 1.3 µS/cm @ 25°C

≤ 4.3 µS/cm @ 20°C ≤ 5.1 µS/cm @ 25°C

PW Conductivity

•Multiple Effect Still •Vapor Compression Still •Double Pass RO

•Multiple Effect Still •Vapor Compression Still MANDATORY.

WFI Generation

Methods

•Multiple Effect Still •Vapor Compression Still •RECOMMENDED

≤ 1.1 µS/cm @ 20°C ≤ 1.3 µS/cm @ 25°C

Page 91: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

91

COMPARISON COMPENDIA

Highy Purified Water

The definition of HPW makes it an alternative to WFI in those processes where the quality of WFI is desirable, but not

required.

Advantages: • generally less expensive than WFI • generally chemical free method • generally low operating costs

The quality attributes of HPW are the same as the quality attributes of EP WFI, but distillation is not a required final treatment process. Typical production methods include one more unit process compared to production of PW

Disadvantages: • cannot replace WFI in all

applications, for ex.: large volume parenterals

Page 92: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

92

COMPARISON COMPENDIA

WFI Generation Methods

Today the use of Reverse Osmosis to prepare WFI is considered acceptable by the USP but non by the EP

EP is mandactory and ANVISA Recommend that WFI to be prepared by distillation

THE MAJOR OBJECTION ARE:

• RANGE of SEPARATION for Reverse Osmosis

• VALIDATION and MAINTENANCE of devices

• MICROBIOLOGICAL ASPECTS Biofilm formation on both sides RO membranes

Page 93: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

93

COMPARISON COMPENDIA

Page 94: Workshop May 20th 2013 (2)

WORKSHOP May 20th 2013

WATER FOR PHARMACEUTICAL PURPOSES

94

COMPARISON COMPENDIA – ANVISA