world of energy solutions - boomtimepajaritopowder.boomtime.com/static/ppc_world_of_energy...making...

43
October 8, 2014 Copyright 2014 Pajarito Powder, LLC 1 Precious Metal Free Fuel Cell Catalysts, Concepts and Limits Barr Halevi , Pajarito Powder LLC World of Energy Solutions

Upload: others

Post on 11-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 1

    Precious Metal Free Fuel Cell Catalysts, Concepts and Limits

    Barr Halevi, Pajarito Powder LLC

    World of Energy Solutions

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 2

    Outline

    • What are non‐PGM ORR catalysts?• Identifying the active site/s and mechanism• Key morphology• Making deployable non‐PGM catalysts• Successes• Challenges

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 3

    PPC Introduction

    PPC founded to:Create & ManufactureAffordable Fuel Cell 

    Catalystsin Commercial Quantities 

    Piotr Zelenay

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 4

    PPC Introduction

    PPC founded to:Create & ManufactureAffordable Fuel Cell 

    Catalystsin Commercial Quantities 

    Mix PrecursorsBall‐Mill

    Precrusor storagePrecursor vacuum drying

    Pyrolysis Furnace 1

    HF storageSlurry mixingFilter

    Waste container

    Atmospheric OvenPyrolysis Furnace 2

    Weighing

    Di storage

    Milled mix storage

    P1, boat, dateLabe; sits on shelf in jar

    Pyrolyzed storage

    Labe; sits on shelf in jar

    Etched storage

    Labeled, sits on shelf in jar

    2‐4 P2s

    Testing:BET

    ConductivityCharringMEA

    P2 storage

    Decide P2, P1, and etching

    Packaging ShippingQuality Assurance

    Ball‐Mill

    HNO3 storage

    1.5gr

    50gr10gr

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.5 1 1.5I (A/cm2)

    E (V

    olts

    , unc

    orre

    cted

    )

    Interbatch 1Intrabatch 2AIntrabatch 2BIntrabatch 2CInterbatch 3 (100kg Precursor batch)

    Testing conditions0.5bar O2 100%RH 80

    oC 211 membrane, 45wt% Nafion 1100Anode = 0.2mgPt/cm

    2

    Cathode = 2.3mgcat/cm2

    US20080312073A1,WO2012174335A2,WO2013116754A1,WO2012174344A2,WO2014062639A1,WO2014011831A1,WO2014085563A1,WO2014113525A1,

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 5

    Non‐PGM Catalysts

    Polypyrrole

    Polyaniline

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 6

    Outline

    • What are non‐PGM ORR catalysts?• Identifying the active site/s and mechanism

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 7

    Active Site Identification

    • Electrochemical Analysis– Rotating Ring and Rotating Disk Electrode (RRDE and RDE)

    • Ab‐initio calculations ‐ Density Functional Theory (DFT)• Multiple chemical species & Activity correlation

    – X‐Ray Photoelectron Spectroscopy (XPS)– Aberration Corrected Transmission Electron Microscopy (ACTEM)

    – Raman Spectroscopy– Mössbauer Spectroscopy – X‐Ray Absorption Spectroscopy (XAS)

    – Electrochemical XAS (e‐XAS)• Good statistical analysis and correlation of all of the above!

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 8

    H2O

    T.S. Olson, S. Pylypenko, J.E. Fulghum, P. Atanassov, Journal of the Electrochemical Society, 157 (2010) B54-B63

    Oxygen Reduction Reaction on Non-PGM Catalysts

    • Bi(+?) -functional Mechanism• Two(+?) types of Active Sites

    Multifunctional Site/s

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 9

    Density-Functional-Theory (DFT).• Generalized Gradient Approximation (PBE).• 3-d periodic boundary conditions.• Plane-waves.• Spin polarized: Co. • PAW-potentials.• Fermi-smearing (σ=0.025 eV)

    Boris Kiefer

    Surfaces: • Graphene (32 atoms). • 14 A vacuum.• Molecule(s) pre-optimized.• Dipol correction.

    DFT: Fe(N‐C)4 Most Likely 

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 10

    DFT: Fe(N‐C)4 Most Likely 

    Possible electron arrangements in 3d orbitals of Fe+2 in Fe-N4 sites: a) high spin, b) intermediate spin, and c) low spin states, and d) electronic density of states (DOS) of Fe in graphitic Fe-N4 sites S. Kattel, P. Atanassov and B. Kiefer, PCCP 13800-13806

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 11

    3963984004024041500

    2000

    2500

    3000

    nitrile

    pyridinic

    Nx-Fepyrrolic

    quaternary

    graphitic

    Binding energy, eV

    cps

    7067087107127147167187202600

    2700

    2800

    2900

    3000

    3100

    Fe-Nx

    Fe

    Fe oxides

    satellites

    Binding energy, eVcp

    s

    a)

    XPS: Fe(N‐C)x Exist

    Kateryna Artyushkova

    b)

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 12

    DFT calculations of XPS binding energy shifts

    Both Me-N2 and Me-N4centers are present but their relative amount changes upon exposure to oxidizing atmosphere –stabilization of N4 centers

    Vacuum

    3963984004024044063200

    3400

    3600

    3800

    4000

    4200

    Binding energy, eVcp

    s

    O2, 60oCPolypyridine

    Bipyridine-Fe

    N- pyridinic

    N- pyridinic

    N-Fe

    Ambient pressure XPS

    K. Artyushkova, B. Kiefer, B. Halevi, A. Knop-Gericke, R. Schlogl and P. Atanassov, Chem. Comm, 49 (2013) 2539 – 2541

    Me‐N4 Me‐N2 Me‐N2

    theory +1.1 eV 0.8 eV 1.0 eV

    experiment +0.9‐1.1 eV

    XPS & DFT: Matching

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 13

    Gerd Duscher Matt Chisholm

    ACTEM images proves Nitrogen & Iron single sites in graphene

    ACTEM – Fe/N Sites Exist

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 14

    The relative content of D1 or D2 is high, demonstrating the successful integration of the majority of the iron in FeNxCymolecular sites during pyrolysis.

    The existence of Fe-N coordinations by Mössbauer spectra, (doublets) is also supported by the Fe-N binding energy in XPS at 399.6 eV. Pyridinic &

    disorderedFe-Nx

    Fe-Nx

    Frederic Jaouen, U Montpellier

    Mössbauer: Fe(N‐C)4

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 15

    Sanjeev Mukerjee

    Fe2+-N4 active site at 0.3 V undergoes redoxtransition to a penta-coordinated (H)O−Fe3+−N4 at 0.90 V

    XAS – Fe(N‐C)x & Fe‐Fe

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 16

    U. Tylus, Q. Jia, K. Strickland, N. Ramaswamy, A. Serov, P. Atanassovand S. Mukerjee, J. Phys. Chem. C, 118 (2014) 8999-9008

    eXAS – mechanism?

    Oxygen Reduction Reaction on Non-PGM Catalysts• Bi(+?) -functional Mechanism• Two(+?) types of Active Sites

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 17

    Outline

    • What are non‐PGM ORR catalysts?• Identifying the active site/s and mechanism• Key morphology

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 18

    Pore Structures

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 19

    Pore Structure Role

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 20Kateryna Artyushkova

    Structure-to-Property Relationships

    E 1/2

    N 1s %

    N cyano

    N pyridinic

    N-Fe N pyrrolic

    N quaternary

    N graphitic

    PC1 53.6%

    PC2 20.0%

    Worse performance

    Best performance

    Polymers Low MW organics Chelates

    Different Active Sites

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 21

    Outline

    • What are non‐PGM ORR catalysts?• Identifying the active site/s and mechanism• Key morphology• Making non‐PGM catalysts

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 22

    Making Non‐PGM Catalysts

    • Multiple ways to make non‐PGM catalysts– Need to bring precursors together on nano‐scale then react them to make active sites

    – Some processes are very complex with iterations of mixing, cooking, pyrolysis, etching.

    – Commonality:• Similar precursors 

    – M/N/C compounds (ex: cyanamide) & Metal salts +N/C compounds• Mixing• Pyrolysis at 800‐950C• Etch excess metal particles

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 23

    edge defectsedge defects

    in-plane defectsin-plane defects

    Different Active Sites

    • Edge less stable, more active• In-plane more stable, less active• Need in-plane for stable/durable catalysts!

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 24

    Sacrificial Support Method

    Template: monodispersedamorphous silica

    infused with transition metal saltand N-C precursor

    pyrolyzedin inert atmosphere

    silicaetched by HFand removed

    Fumed Silica: BET-SA ~50-400 m2/g

    N-C Precursor:1,4-Phenylenediamine3-Hydroxytyramine 4-Aminoantipyrine DiethanolamineN-HydroxysuccinimidePhenanthrolineCarbendazime

    TemplatedSelf-supported

    Non-PGM CatalystMetals: Ce, Zr, V, Ti, Ta, Nb, W, Mo, Fe, Ru, Co, Ni, Cu

    Alexey Serov

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 25Ball‐Mill Pyrolysis Etching Centrifuge Filter Dry Pyrolysis

    SSM Catalyst Evolution

    Silica Infused with precursors

    Pyrolizedinfused silica

    Etched pore structure

    Porous non-PGM catalyst

    Pore structure evolution

    Pyrolizedpore structure

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 26

    Precipitated Silica:Sponge-like

    Fumed Silica:Sponge-like

    ECS PEFC SHORT COURSE 2013, SFO (T.J. Schmidt & H.A. Gasteiger)

    Typical Pt/C

    Primary particle size:10-40nm

    Sacrificial support allows for pore sizetailoring to match current Pt/C catalystsSacrificial support allows for pore size

    tailoring to match current Pt/C catalysts

    EvonikAerosil

    SSM Pore Structure

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 27

    0

    100

    200

    300

    400

    500

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 0.5 1 1.5 2

    HFR

    (mΩ

    -cm

    2 )

    Cel

    l Vol

    tage

    (V)

    Current Density (A/cm2)

    55% Nafion

    45% Nafion

    35% Nafion

    ~ 0.92 V OCV Catalyst loading is 4 mgcatalyst/cm2

    0.60

    0.70

    0.80

    0.90

    0.001 0.01 0.1 1

    IR-fr

    ee C

    ell V

    olta

    ge (V

    )

    iR-free Current Density (A/cm2)

    55% Nafion

    45% Nafion

    35% Nafion

    Conditions: Tcell=80C, 100% RH 1.5 bar total pressure. Anode: 0.4 mg cm-2 (Pt/C),Cathode: 4mg cm-2

    Meets DoE target of 100 mA/cm2 at 0.8ViR-free in Oxygen

    Iron Nicarbazin Catalyst

    Fe +

    DOE EERE Project ID# FC086 AMR 2103 report, NTCNA testing

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 28

    DOE EERE Project ID# FC086 AMR 2103 report, NTCNA testing

    0

    100

    200

    300

    400

    500

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 0.5 1 1.5 2

    HFR

    (mΩ

    -cm

    2 )

    Cel

    l Vol

    tage

    (V)

    Current Density (A/cm2)

    Beginning of Life (BoL)End of Life (EoL)

    Conditions: Tcell=80C, 100% RH 1.5 bar total pressure. Anode: 0.4 mg cm-2 (Pt/C),Cathode: 4mg cm-2.

    Load cycling AST – Good!

    Minimal change in performance is observed after 10,000 potentialcycles (load cycling) from 0.6 to 1.0V.

    Minimal change in performance is observed after 10,000 potentialcycles (load cycling) from 0.6 to 1.0V.

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 29

    -30

    -20

    -10

    0

    10

    20

    30

    0 0.2 0.4 0.6 0.8 1

    Curr

    ent D

    ensi

    ty (m

    A/cm

    2 )

    Potential (V)

    after 0 cycles

    after 50 cycles

    after 100 cycles

    after 200 cycles

    after 500 cycles

    after 1000 cycles

    Start/Stop AST – Good!

    DOE EERE Project ID# FC086 AMR 2103 report, NTCNA testing

    EXAFS

    ECSA

    Durability under start/stop similar to Pt/CDurability under start/stop similar to Pt/C

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 30

    Volumetric Projection

    Volumetric Projections

    Volumetric Current (A/cm3)

    0.01 0.1 1 10 100 1000

    Volta

    ge (V

    ), iR

    -free

    0.70

    0.75

    0.80

    0.85

    0.90

    0.95

    MEA 2MEA 10MEA 14

    Sanjeev Mukerjee, NEU

    Sample mV @ 200 A/cm3

    A/cm3 @ 0.8 V (iR free)

    MEA 2 809 400MEA 10 796 150MEA 14 810 400

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 31

    Outline

    • What are non‐PGM ORR catalysts?• Identifying the active site/s and mechanism• Key morphology• Making deployable non‐PGM catalysts

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 32

    100mL

    500mL

    1L

    1”x 6”

    6”x 30”

    2000mL

    500mL

    15mL 50mL

    0.5L

    20L

    Batch Size

    0.5 g

    50 g

    100 g

    Scale‐up process

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 33

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.5 1 1.5I (A/cm2)

    E (V

    olts

    , unc

    orre

    cted

    )

    Interbatch 1Interbatch 2Intrabatch 3AIntrabatch 3BIntrabatch 3CInterbatch 4 (100kg Precursor batch)

    Testing conditions0.5bar O2 100%RH 80

    oC 211 membrane, 45wt% Nafion 1100Anode = 0.2mgPt/cm

    2

    Cathode = 2.3mgcat/cm2

    Improved inter-batch variability illustrated by Samples 1, 2, 3 and 4 Improved intra-batch variability (

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 34

    Proprietary

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.2 0.4 0.6 0.8 1I (A/cm 2)

    E(V

    olts

    , iR

    unco

    rrect

    ed)

    Gen1Gen1AGen1BGen2Gen2AGen2BTargets

    211 Nafion, 45wt% 1100 EW, 4mg/cm 2

    catalyst, 25BC GDL, 100% RH, 2.5bar AirI

    II

    Improved formulation

    Catalyst formulation leading to MEA performance improvementsDoE Target I met, without iR correction – 60% improvement towards target II

    Catalyst formulation leading to MEA performance improvementsDoE Target I met, without iR correction – 60% improvement towards target II

    US20080312073A1,WO2012174335A2,WO2013116754A1,WO2012174344A2,WO2014062639A1,WO2014011831A1,WO2014085563A1,WO2014113525A1,

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 35

    Proprietary0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0.01 0.1 1I (A/cm2)

    E(V

    olts

    , iR

    unco

    rrect

    ed)

    Gen1Gen1AGen1BGen2Gen2AGen2BTargets

    211 Nafion, 45wt% 1100 EW, 4mg/cm 2 catalyst, 25BC GDL, 100% RH, 2.5bar Air

    I

    II

    Improved formulation

    Catalyst formulation leading to MEA performance improvementsDoE Target I met, without iR correction – 60% improvement towards target II

    Catalyst formulation leading to MEA performance improvementsDoE Target I met, without iR correction – 60% improvement towards target II

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 36

    Outline

    • What are non‐PGM ORR catalysts?• Identifying the active site/s and mechanism• Key morphology• Making deployable non‐PGM catalysts• Successes

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 37

    Non‐PGM ORR catalysts

    • Characterization techniques developed• Mostly likely active site/s identified• Iterative approach to synthesis

    – Key factors hypothesized– Catalysts made– Catalysts characterized 

    • Correct surface chemistry • Porosity

    – Key factors identified37

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 38

    Commercialization

    38

    43rd Tokyo Motor Show

    Precious Metal Free Fuel Cell Electric Vehicle

    20132013A. Serov, M. Padilla, A.J. Roy, P. Atanassov, T. Sakamoto, K. Angewandte Chemie Intern. Ed., (2014) DOI: 10.1002/anie.201404734

    B. Pivovar, Alkaline Membrane Fuel Cell Workshop Final Report

    NREL/BK-5600-54297

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 39

    PPC Capabilities

    • Multiple no‐PGM catalyst production methods and formulations scaled to 25‐100gr

    • Fixed Product Line (200gr/day capacity)– NPC‐2000 & 1000: non‐platinum, drop‐in fuel cell catalysts with different performance/price points

    – PHC‐3000: Ultra low loaded platinum content catalyst for higher performance

    • Custom Catalyst Design• Contract Manufacturing

    39

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 40

    Outline

    • What are non‐PGM ORR catalysts?• Identifying the active site/s and mechanism• Key morphology• Making deployable non‐PGM catalysts• Successes• Challenges and Limits

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 41

    Limits

    • Pt/C activity per gram likely unachievable• BUT, Cost/Performance parity exists today

    – $/kW to improve dramatically at scale

    • Additional work is needed– Electrode must be re‐optimized for non‐PGM– Additional durability and stability testing

    41

    $‐$40$80

    10 1,000 100,000Monthly Production (Kg)

    Price/kW

     ($USD

    ) NPC‐2000 Pt Catalyst

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 42

    Thanks

    • Verge Fund• US Department of Energy, Energy Efficiency and

    Renewable Energy Program• University of New Mexico

    • Profs. Plamen Atanassov, Alexey Serov, and Kateryna Artyushkova• New Mexico State University

    • Prof. Boris Kiefer• Northeastern University

    • Prof. Sanjeev Mukerjee and several students• Michigan State University

    • Prof. Scott Calabrese Barton and Nate Leonard• Los Alamos National Laboratory

    • Drs. Piotr Zelenay, Hoon Chung, and Gang Wu• Nissan technical Center North America

    • Drs. Nilesh Dale, Ellazar Niangar, and Taehee Han

  • October 8, 2014 Copyright 2014 Pajarito Powder, LLC 43

    Questions?

    Barr Halevi, CTO & President ([email protected]

    Pajarito Powder, LLC317 Commercial St. NE

    Albuquerque, NM 87102, USA+1 (505) 293‐5367

    www.pajaritopowder.com