wp1615: sec-mals for absolute biophysical characterization

19
Summary Accurate characterization of biomacromolecules is es- sential for successful programs of research and develop- ment in the life sciences and biopharmaceuticals. The basic biophysical properties of these molecules include molecular weight, size, conformation, degree of conjuga- tion, aggregation and complex-forming interactions. Size-exclusion chromatography is commonly used to sep- arate and analyze proteins and other biomacromole- cules. However, in order to reliably determine their basic biophysical properties in solution, an absolute, inde- pendent means of characterization must be added downstream of the separation step. Multi-angle light scattering and dynamic light scattering instruments, combined with UV and RI detectors, fulfill that need, making them essential in every lab that pro- duces, uses or characterizes proteins, peptides, nucleic acids, polysaccharides or bionanoparticles constructed of these building blocks. This article explores the tech- nology, capabilities and applications of light scattering paired with size-exclusion chromatography for biophysi- cal characterization. Introduction The need for biophysical characterization Reliable analysis of the molecular weight (MW) of pro- teins in solution is essential for biomolecular research 1–4 . MW analysis informs the scientist if the correct protein has been obtained and if it is suitable for use in further experimentation 5,6 . As described on the web sites of pro- tein networks P4EU 7 and ARBRE-Mobieu 8 , protein quality control must characterize not only the purity of the final product, but also its oligomeric state, homogeneity, iden- tity, conformation, structure, post-translation modifica- tions and other properties. Biophysical properties determined by light scattering A solution-based measurement of MW identifies the form of the protein that is present in an aqueous envi- ronment. While for many proteins the goal is to produce monomers, for others a specific native oligomer is key to biological activity 9–12 . Incorrect oligomeric form or the presence of non-native aggregates will adversely impact structural determination by crystallography, NMR or small-angle x-ray scattering (SAXS); they may also create artifacts or inaccuracies in functional assays that quantify binding and interactions, e.g. isothermal titration calo- rimetry or surface plasmon resonance 2,13 . For biotherapeutics such as monoclonal antibodies (mAbs), solution-based MW analysis serves a similar pur- pose of quality control and product characterization. Ex- cessive aggregates and fragments are indicative of an un- stable product that is not suitable for human use. Regu- latory agencies require careful characterization, not only WP1615: SEC-MALS for absolute biophysical characterization Daniel Some, Ph.D., Wyatt Technology

Upload: others

Post on 26-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: WP1615: SEC-MALS for absolute biophysical characterization

SummaryAccuratecharacterizationofbiomacromoleculesises-sentialforsuccessfulprogramsofresearchanddevelop-mentinthelifesciencesandbiopharmaceuticals.Thebasicbiophysicalpropertiesofthesemoleculesincludemolecularweight,size,conformation,degreeofconjuga-tion,aggregationandcomplex-forminginteractions.

Size-exclusionchromatographyiscommonlyusedtosep-arateandanalyzeproteinsandotherbiomacromole-cules.However,inordertoreliablydeterminetheirbasicbiophysicalpropertiesinsolution,anabsolute,inde-pendentmeansofcharacterizationmustbeaddeddownstreamoftheseparationstep.

Multi-anglelightscatteringanddynamiclightscatteringinstruments,combinedwithUVandRIdetectors,fulfillthatneed,makingthemessentialineverylabthatpro-duces,usesorcharacterizesproteins,peptides,nucleicacids,polysaccharidesorbionanoparticlesconstructedofthesebuildingblocks.Thisarticleexploresthetech-nology,capabilitiesandapplicationsoflightscatteringpairedwithsize-exclusionchromatographyforbiophysi-calcharacterization.

Introduction

TheneedforbiophysicalcharacterizationReliableanalysisofthemolecularweight(MW)ofpro-teinsinsolutionisessentialforbiomolecularresearch1–4.MWanalysisinformsthescientistifthecorrectproteinhasbeenobtainedandifitissuitableforuseinfurtherexperimentation5,6.Asdescribedonthewebsitesofpro-teinnetworksP4EU7andARBRE-Mobieu8,proteinqualitycontrolmustcharacterizenotonlythepurityofthefinal

product,butalsoitsoligomericstate,homogeneity,iden-tity,conformation,structure,post-translationmodifica-tionsandotherproperties.

Biophysicalpropertiesdeterminedbylightscattering

Asolution-basedmeasurementofMWidentifiestheformoftheproteinthatispresentinanaqueousenvi-ronment.Whileformanyproteinsthegoalistoproducemonomers,forothersaspecificnativeoligomeriskeytobiologicalactivity9–12.Incorrectoligomericformorthepresenceofnon-nativeaggregateswilladverselyimpactstructuraldeterminationbycrystallography,NMRorsmall-anglex-rayscattering(SAXS);theymayalsocreateartifactsorinaccuraciesinfunctionalassaysthatquantifybindingandinteractions,e.g.isothermaltitrationcalo-rimetryorsurfaceplasmonresonance2,13.

Forbiotherapeuticssuchasmonoclonalantibodies(mAbs),solution-basedMWanalysisservesasimilarpur-poseofqualitycontrolandproductcharacterization.Ex-cessiveaggregatesandfragmentsareindicativeofanun-stableproductthatisnotsuitableforhumanuse.Regu-latoryagenciesrequirecarefulcharacterization,notonly

WP1615:SEC-MALSforabsolutebiophysicalcharacterizationDanielSome,Ph.D.,WyattTechnology

Page 2: WP1615: SEC-MALS for absolute biophysical characterization

ofthetherapeuticmoleculebutalsopotentialdegra-dantsthatmaybepresentinthefinalproduct14–17.

SomeofthemostwidespreadmethodsforanalyzingproteinMWareSDS-PAGE,capillaryelectrophoresis(CE),nativePAGE,massspectrometry(MS),size-exclusionchromatography(SEC)andanalyticalultracentrifugation(AUC).Ofthese,SDS-PAGE,CEandMSarenotper-formedinthenativestateandtypicallyleadtodissocia-tionofoligomers,complexesandaggregates.Oftentheyareunabletocorrectlyanalyzeglycoproteinsandothermodifiedforms.

AlthoughnativePAGEdoes,theoretically,retainthena-tivestate,itisdifficulttooptimizeformanyproteins,andresultsarenotveryreliable.AUC,whetherbysedimenta-tionvelocityorsedimentationequilibrium,isquantita-tiveandcandetermineMWfromfirstprinciples,butitisquitecumbersome;AUCinvolvesmuchmanuallaborandrequiressignificantexpertiseindatainterpretation,longexperimenttimeandaveryexpensiveinstrument.

AnalyticalSEC:promising,withcaveatsSECisaquantitativeandrelativelyrobust,simpleandfastmethodforseparatingmacromolecules18–20.How-ever,separationofdifferentspeciesbySECdoesnotde-penddirectlyonMW;itdependsonsizeanddiffusionproperties21.

Size-exclusionchromatographyseparatesmoleculesbyhydrodynamicsize

InanalyticalSECacalibrationcurve,suchasthatinFig-ure1,isconstructedusingaseriesofreferencemole-cules,relatingtheMWofthemoleculetoitselutionvol-ume.Forproteins,thereferencemoleculesarewell-be-haved,globularproteinsthatdonotinteractwiththecolumnviachargeorhydrophobicsurfaceresidues.

Notably,theanalysisofMWinSECreliesontwokeyassumptionsregardingtheproteinstobecharacterized:

1. Theysharewiththereferencestandardsthesameconformationandspecificvolume(inotherwords,thesamerelationshipbetweendiffusionpropertiesandMW);

2. Likethereferencestandards,theydonotinteractwiththecolumnexceptbystericproperties—theydonotsticktothecolumnpackingviaelectrostaticorhydrophobicinteractions.

Figure1.SECcalibrationcurvesusereferencestandardstorelatemolecularweighttoelutionvolume,assumingglobularconfor-mationandidealstericinteractionswiththeSECcolumn.

Whentheseassumptionsarenotfulfilled,thecalibrationcurveisinvalidanditsusewillleadtoerroneousMWvalues.Manyclassesofprotein,includingtheADHte-tramerandkinasefragmentexamplesinFigure2,donotmeettheassumptions:

• Intrinsicallydisorderedproteinshavecomparativelylargehydrodynamicradiiduetotheirextensiveun-structuredregions22,23;

• Non-sphericalorlinearoligomericassemblies10are,bydefinition,non-globular;

• HeavilyglycosylatedproteinsarealsolargerthanpureproteinswiththesameoverallMW19,sincegly-cansaregenerallylinearratherthancompactlyfolded;

• Detergent-solubilizedmembraneproteinselutefromSECaccordingtothetotalsizeofthepolypeptide–

Page 3: WP1615: SEC-MALS for absolute biophysical characterization

detergentor-lipidcomplexratherthantheoligo-mericstateandmolarmassoftheproteinalone24,25;

• Proteinswithchargedorhydrophobicsurfaceresi-duesmayinteractwiththestationaryphaseandelutenon-ideallydependingoncolumnchemistry,pHandsaltconditions26,27.

Figure2.Elutionvolumesofvariousproteinsandmolarmassdeter-minedbyMALS.ADHtetramereluteslaterthanBSAdimereventhoughithaslargermolarmass,whilealowermolarmasskinasefragmentelutesatthesamevolumeasBSAdimer.SeeAN1607.

Thesolution:lightscatteringSECbecomesmuchmoreversatileandreliableforMWdeterminationwhencombinedwithmulti-anglelightscattering(MALS),UV280anddifferentialrefractiveindex(dRI)detectors3,4,11,28–31.TheUVdetectormeasurespro-teinconcentrationviaabsorbanceatawavelengthof280nm.ThedRIdetectordeterminesconcentrationbasedonthechangeinsolutionrefractiveindexduetothepresenceoftheanalyte.TheMALSdetectormeasurestheproportionoflightscatteredbyananalyteintomultipleanglesrelativetotheincidentlaserbeam.CollectivelyknownasSEC-MALS,thisconfigurationde-terminesMWindependentlyofelutiontimesinceMWcanbecalculateddirectlyfromfirstprinciplesusingEquation1,

𝑀 = # $

%& '(')

* (1)

whereMisthemolecularweightoftheanalyte,R(0)thereducedRayleighratio(i.e.,theamountoflightscatteredbytheanalyterelativetothelaserintensity)determinedbytheMALSdetectorandextrapolatedtoanglezero,ctheweightconcentrationdeterminedbytheUVordRIdetector,dn/dctherefractiveindexincrementofthean-alyte(essentiallythedifferencebetweentherefractiveindexoftheanalyteandthebuffer),andKasystemcon-stant28.

Multi-anglelightscatteringmeasureslightscatteredbytheanalyteintoseveralanglesrelativetothelaserbeam.

InSEC-MALS,theSECcolumnisusedsolelytoseparatethevariousspeciesinsolutionsothattheyentertheMALSandconcentrationdetectorcellsindividually.Theactualretentiontimehasnosignificancefortheanalysisexceptasfarashowwelltheproteinsareresolved.Sincetheinstrumentsarecalibratedindependentlyofthecol-umnanddonotrelyonreferencestandards,SEC-MALSisconsideredan‘absolute’method.

MALScanalsodeterminethesize(physicaldimension)ofmacromoleculesandnanoparticleswithdiameterlargerthanabout25nmbyanalyzingtheangularvariationofthescatteredintensity28.Forsmallerspeciessuchasmonomericproteinsandoligomers,adynamiclightscat-tering(DLS)modulemaybeaddedtotheMALSinstru-mentinordertomeasureradiifrom0.5nmandup32.

WhileeitherUVordRIconcentrationanalysismaypro-videthevalueofcinEq.1,useofdRIispreferredfortworeasons:1)dRIisauniversalconcentrationdetector,suit-ableforanalyzingmoleculessuchassugarsorpolysac-charidesthatdonotcontainaUVchromophore;and2)theconcentrationresponsedn/dcofalmostallpurepro-teinsinaqueousbufferisthesametowithinoneortwopercent(0.185mL/g)33,sothereisnoneedtoguessorcalculatefromsequencetheUVextinctioncoefficient.

Page 4: WP1615: SEC-MALS for absolute biophysical characterization

Instrumentation

SECSEC-MALSdetectorsgenerallyworkwithanygood-qual-itysizeexclusionchromatographincludingHPLC,UHPLCorFPLCsystems.InmostcasesthedetectorsmaybesimplyaddeddownstreamoftheLC’sUVdetectorwithappropriateinterfacingtotheUVanalogoutputsignalandanauto-injectcontactclosureswitch.Wyattdetec-torsaremostcommonlyusedwithHPLCorUHPLCsys-temsfromAgilent,Waters,Thermo,andShimadzu,andwithFPLCsystemsfromGEandBio-Rad.

TheDAWN18-angleMALSdetectorprovidesthehighestsensitivityandwidestmeasurementrangeforHPLC-,FPLCandFFF-MALS.

MALSdetectors

WyattTechnology’sDAWNâisthepremierMALSdetec-torforHPLCandFPLC,offeringthehighestsensitivity,widestmeasurementrangeandmostoptions:

• Rangeofmolarmass:200Da-1GDa(SECtypicallyworksforproteinsuptoafewmillionDaltons,buttheDAWNmaybeusedwithotherseparationtech-niquessuchasFFFtoaddresstheupperrange)

• RangeofrmsradiusRg:10–500nmusingtheangu-lardependenceofscattering

• Sensitivityrating:200nginjectedmassofmono-mericBSAinPBSonastandard7.8mmx300mmSECcolumn

• Numberofdetectionangles:18,whichdeterminethesizerangecoveredandaddbuilt-inredundancy

toovercomethemostcommonsourceofnoiseinSEC-MALS,particulatesshedbythecolumn

• Temperaturecontroloptions:ambient,-20°Cto+150°Candroomtemperatureto+210°C

Wyatt’sminiDAWNâisabasicMALSdetectorthatoffersaslightlylowermeasurementrangeandfeweroptionsthantheDAWN,butisstillappropriateformostSECwork:

• Rangeofmolarmass:200Da-10MDa

• RangeofrmsradiiRg:10-50nm

• Sensitivityrating:500ngofBSAmonomerinPBS,in-jectedonastandardSECcolumn.

• Numberofdetectionangles:3

TheminiDAWN3-angleMALSdetectorcoverstheentiresizerangeofstandardHPLC-orFPLC-SEC.

TheonlyMALSdetectordesignedspecificallyforUHPLC’slow-volumepeaksisWyatt’smicroDAWNâ.ItissimilartotheminiDAWNintermsofnumberofanglesandtherangesofmolarmassandsize,withasensitivityratingof70ngofBSAmonomerwheninjectedona4.6mmx150mmUHP-SECcolumnwithsub-2µmbeads.

Page 5: WP1615: SEC-MALS for absolute biophysical characterization

ThemicroDAWN3-angleMALSdetectorworkswithUHP-SEC.

AdditionalMALSfeatures

AuniquefeaturecommontoallthreeMALSinstrumentistheForwardMonitor(FM)detectorwhichmeasureslighttransmittedthroughthecell.WhiletheFMhassev-eraluses,oneofthemostimportantisforanalysisofmoleculesthatabsorbattheinstruments’laserwave-lengthof660nm,e.g.heme-containingproteins.TheFMdetectsandcompensatesforthisabsorptionphenome-noninordertoreportthecorrectMW,whichotherwisewouldbeincorrect.

TheDAWN,miniDAWNandmicroDAWNallincludeabuilt-inultrasonicflowcellcleanertominimizemanualcellcleaning,andaremodularforrapidfieldservice.In-dicatorsonthefrontpanellettheuserknowwhentheSEC-MALSsystemisequilibrated,cleanandreadytomakehigh-qualitymeasurements.

TheCOMETmoduleappliesultrasonicagitationtodislodgeparticlesfromtheglass,reducingopticalnoise.

TheDAWNmayalsobefittedwithfluorescence-blockingfiltersincaseoffluorescently-taggedmoleculesorotheranalytesthatfluoresceunder660nmexcitation,inordertoprovideaccuratemolecularweights.

DLSdetectorsInordertominimizeflowpathsanddispersion,Wyatt’sonlineDLSdetectionoptionsutilizetheMALSflowcellandlaserbeam.DLSdetectionmaybeconfiguredintwoways:

1. AWyattQELSÔembeddedDLSmodule,connectedviaopticalfibertotheflowcell,residesinsidetheMALSdetector;or

2. Anexternal,stand-aloneDLSdetectorisreconfig-uredtoconnectviaopticalfibertotheMALSflowcell.BoththeDynaProâNanoStarâcuvette-basedDLSdetectorandtheMobiusâflow-throughDLS/PALSdetectorofferthisinteroperability.

dRIdetectorsThepreferreddRIdetectorforusewithSEC-MALSisWy-att’sOptilabâ.BenefitsoftheOptilab:

• Sensitivityrating:7.5×10-10RIU,equivalenttothebestHPLCdRIdetectorsonthemarket

• Wavelength-matchedtotheDAWNandminiDAWNformaximumaccuracyinmolarmassdetermination;

• ReaddigitallybyWyatt’schromatographysoftwareinordertotakefulladvantageofitssensitivity

• Range:±4.7×10-3RIU,10-20xmorethanstandardHPLCdRIdetectors,withnoneedtoswitchgainset-tingsorlossofsensitivity

• HardwaretimebasesynchronizationwithWyattMALSdetectorstoeliminatedriftbetweenthesignals

• Neverneedsrecalibration

Ahigh-concentrationversionoftheOptilabisavailableforspecializedmeasurementssuchassemi-preparativeMALSandcouplingofMALStoion-exchangechromatog-raphy34,35.ItissimilartotheOptilabsaveforahigherrange:-2.6×10-3to+3.4×10-2RIU,andslightlylowersensi-tivity,1.5×10-9RIU.

Page 6: WP1615: SEC-MALS for absolute biophysical characterization

ForUHPLCSEC-MALS,WyattoffersthemicroOptilabâwhichissimilartotheOptilabsaveforreducedvolumeandslightlylowersensitivity,1.5×10-9RIU.ThemicroOp-tilabcoupleswiththemicroDAWNinUHPLCSEC-MALS.

InlieuofanOptilabormicroOptilab,standard(U)HPLCdRIdetectorsmaybeused.However,theyrequireuseofanalogoutputsignalswhichmayreduceeffectivesensi-tivity.Theywillusuallyuseabroadbandlightsourceoranarrow-bandsourceatawavelengthdifferentfromtheMALSdetectorandarenottimebase-synchedinhard-ware,reducingMWaccuracy.

Software

ASTRAâsoftwareforSEC-MALSisrequiredforusewithWyatt’sMALS,DLSanddRIdetectors.Itoffersrobustdataacquisition,straightforwarddataprocessingandacomprehensivesetofanalysesforbiophysicalcharacteri-zationincludingmolarmass,size,distributionsandaver-ages,percentaggregate,percentrecovery,conjugateanalysis,conformationalanalysisanddeterminationofextinctioncoefficient.Keyresultsformultiplesamplesmaybeconsolidatedintoonetable(EASITable)andthegraphicaldatasuchaschromatograms,absoluteMWorsizeversuselutionvolume,anddistributionsconsoli-datedintoonegraphforside-by-sidecomparison(EASIGraph).

ASTRAmaybesetuptocontrolselectHPLCmodulessuchaspumps,UVdetectorsandautosamplersormaybeusedside-by-sidewithnativeHPLCsoftware.

Reportsarecustomizable,allowingforasmuchoraslit-tleinformationasdesired.ForGMPuse,21CFR(11)dataintegrityandadministratorhierarchysupportisavailable.

AcompleteSEC-MALSexperimentalsetupforproteinanalysisincludesastandardHPLCorFPLCsystemwithUVdetector,anappropriatecolumn,aDAWNorminiDAWNMALSinstrumentandanOptilabdRIinstrument.ThemicroDAWNandmicroOptilabareusedwithUHPLC-basedSEC.

Controlofindustry-leadingHPLCmod-ulesisintegratedintoASTRAalong-sidecontrolofWyattinstruments.

Page 7: WP1615: SEC-MALS for absolute biophysical characterization

ApplicationsofSEC-MALS

Monomers,oligomers,aggregatesandimpuritiesTheuseofSEC-MALSinproteinresearchisquiteexten-sive.Byfarthemostcommonapplicationsareestablish-ingwhetherapurifiedproteinismonomericoroligo-mericandthedegreeofoligomerization,andassessingaggregates3,10,11,17,30,36–38.

Qualitycontrol

Aproteinpurificationrunoftendoesnotcompletelyeliminateallundesirableformsorimpurities.AsshowninFigure3,SEC-MALSreadilyidentifiesandquantifiesthepurityandhomogeneityoftheprotein.Uniformmo-larmass,calculatedindependentlyateachelutionslice,isfoundacrossthemonomerpeakandthewell-resolvedsolubleoligomers.Wherethespeciesarenotfullyre-solvedbySEC,themolarmassesdeterminedbyMALSdecreasewithincreasingelutionvolume.

Ofparticularnoteistheshoulderonthetrailingedgeofthemonomerpeak.Suchshoulderscanarisefromafewcauses:

• Tailingresultingfromproteinstickingtothecolumn;

• Dynamicdissociationofcomplexesastheconcentra-tiondecreases;

• Low-molecular-weightspecies.

Figure3.BSAmonomer,solubleaggregatesandalow-molecular-weightshoulderidentifiedasafragmentusingFPLCandaGEIn-creaseSECcolumn.MolarmassesdeterminedbyMALSoverlaidwithUVchromatogram.

WhilesimpleSEC-UVcannotdeterminetowhichofthesetheshouldercorresponds,MALS-dRIimmediatelyprovidestheanswer–herea42kDafragment.ThoughtheproteinisunknownaprioriandhencetheUVextinc-tioncoefficientisunknown,dRIcanalwaysbeusedtoanalyzeunknownproteins.

Monoclonalantibodyaggregates

Theaggregatesproduceduponstressoragingofthera-peuticIgGmustbethoroughlycharacterizedforregula-toryfilingsandbiosimilarityassessments.ThisneedismetbyseparatingonUHP-SECandanalyzingonlinebyMALS.Inparticular,amicroDAWN-microOptilabsetuppairedwith30-cmBEHUHPLCcolumnprovidesexcellentcharacterizationcapabilities,asshowninFigure4,wheretheverylowdispersionoftheinstrumentspreservespeaksthatareverycloseinmolecularweight.

Theinstruments’sensitivitypermitsrobustcharacteriza-tionevenwhentheheightofeachaggregatepeakislessthan1%ofthemainmonomerpeak.Themolarmassesofthedistinctpeakscorrespondtothoseofacompletedimeraswellasdimersmissingoneheavychain(ortwolightchains),oneheavy+onelightchain,andtwoheavychains.

Figure4.High-resolutionUHP-SECseparationofaggregatesofastressedIgG,molarmassesdeterminedbyMALS(red)overlaidwithdRIchromatogram.Thevariouspeakscorrespondtofulldimer(307kDa)andcombinationsofdimerwithmissinglightandheavychains.

Page 8: WP1615: SEC-MALS for absolute biophysical characterization

Monoclonalantibodyfragments

StressedIgGmaydegradeintofragmentsaswellasag-gregate.UHP-SECusing30-cmBEHcolumnsprovidesex-cellentresolutionofmonoclonalantibodies,aggregatesandfragments,demonstratedinFigure5.HerepeakselutinglaterthantheIgGmonomerat8minutesaresus-pectedtobefragmentsbasedontheirmolarmasses,whichcorrespondtodualheavychain,singleheavychainorduallightchain,andsinglelightchain.TheanalysisutilizesdRImeasurementsforconcentrationsincethespeciesarenotknownapriori.

Figure5.Fragmentsproduceduponstressingamonoclonalantibodyarewell-separatedbyUHP-SECanda30-cmBEHcolumnwith1.8µmbeads,molarmassesdeterminedbyMALS(red)overlaidwithdRIchromatogram.Theinsetshowsthelate-elutingportionmagnified50x.MolarmassesdeterminedbyMALSanddRIcorrespondtotheexpecteddegradationproducts.

Peak Mw[kDa] ExtinctionCoefficient[mL/(mg×cm)]

1 145 1.53

2 95 1.54

3 45 1.53

4 24 1.46

Table1.UV280extinctioncoefficientsdeterminedfromSEC-UV-dRIanalysisofthemonomerandpurportedfragmentpeaks.Thenearlyidenticalvaluesconfirmthattheseare,infact,fragmentsofthemonomer.

ConfirmationofthisassignmentisprovidedbyanalyzingtheUVextinctioncoefficient.TheanalysisconsistsofcomparingtheareasofthepeaksinUVanddRI.Table1liststhecalculatedextinctioncoefficients,showingthatthelate-elutingpeakshavethesameextinctioncoeffi-cientasthemonomerandthereforeare,infact,frag-ments.

Insulinoligomerizationunderdifferentbufferconditions

Figure6showstheresultsofanalyzinginsulinintwobuffers,oneofwhich(Sample1,red)maintainsmostlymonomerswhiletheother(Sample2,blue)promotesself-association39.MALSclearlyidentifiestheuniformmolarmassacrossthemainpeakofSample1,includingthetrailingedgewhichinthiscaseissimplytailing.Con-versely,forSample2,theprimarypeak—includingitstrailingedge—ishexameric,whichwouldnotbede-ducedfromtheUVtracealone.

Figure6.UVchromatogramsandmolarmassesfromMALSofinsulinundertwodifferentbufferconditions.Sample1(reddashedline)isprimarilymonomericwithsmallaggregatesthatreachhexamer.Sample2(bluesolidline)isprimarilyhexamericinform,withasmallamountofproteininmonomer-dimerequilibrium.SeeAN1605.

ThesecondarypeakofSample2isshownbyMALStotransitionfromdimertomonomer.Whileasingleexperi-mentcannotdetermineifthisshiftisaresultofpoorly-resolved,irreversibledimersordynamicequilibrium,afurtherexperimentpresentedintheapplicationnotein-jecteddifferentconcentrationsofSample2andshowed

Page 9: WP1615: SEC-MALS for absolute biophysical characterization

unequivocallythattheequilibriumshiftswithconcentra-tion,ahallmarkofself-associationindynamicequilib-rium.

Largeaggregatesanddifferentconformation

Incontrasttothelow-molar-massproteinofFigure6thatdonotaggregatebeyondhexamer,Figure7pre-sentstheSEC-MALSanalysisoftwohigh-molar-massproteinsthataggregateextensively.BothapoferritinandIgMexhibitwell-resolvedmonomer,dimerandtrimerpeakswithuniformmolarmassesacrosseachasdeter-minedbyMALS,withunresolvedaggregatetailsextend-ingintothetensofmillionsofDalton.

Figure7.SEC-MALSanalysesoftwoproteinswithverydifferentcon-formationsthatexhibitextensiveaggregation,wellbeyonddimerandtrimer,intothetensofmillionsofDa.ThedimerofapoferritinelutesataverydifferentvolumethanthemonomerofIgMeventhoughtheyhaveapproximatelythesamemolecularweight,duetodifferentconformations.

Notably,theapoferritindimerhasaboutthesamemolarmassasIgMbutelutesataverydifferenttime.Thisisaconsequenceoftheirverydifferentconformations–apoferritinisglobularwhileIgMisextendedandpartiallyglycosylated.Despitethedifferentelutionbehavior,MALShasnoproblemascertainingthecorrectMWval-ues.

Aggregationduetolabeling

Labelingaproteincanoftenaffectitsbehaviorinsolu-tionandonSEC.AsdescribedindetailinAN1606:Pro-teinAggregateAssessmentofLigandBindingAssay(LBA)

ReagentsUsingSEC-MALS,ELISA-basedligand-bindingassaysusedtomeasurelevelsofbiologicdrugsoranti-drugantibodiesdependonreliablereagents.Therea-gentsareantibodieslabelledwithbiotinanddigoxigenin.SECmaybeusedforLBAreagentqualitycontrol,butSEC-MALSisrequiredforreliableinterpretationofthepurityandaggregateformspresent.Figure8showsthedifferenceinretentiontimeinducedbythelabel(despitemaintaininganidenticalandfullyhomogeneousmolarmass)aswellasdifferentaggregationlevelsandformspresent,relativetotheunlabeledantibody.

Figure8.SEC-MALSresultsforamonoclonalantibodydrug,unconju-gated(red),andthreedifferentlotsconjugatedtodigoxigeninforuseinELISA-basedligand-bindingassays(blue,purple,green).LSchromatogramsoverlaidwithMALSdata(symbols).Theconjugateincreasesretentiontimeofthemonomericspeciesandincreasesag-gregatelevels,affectingtheefficacyoftheassay.SeeAN1606.

ProteincomplexesSEC-MALSisusedproductivelyinstructuralbiologyandstructuralvirologytoinvestigatetheformationandabso-lutestoichiometryofbiomolecularcomplexes9–12,23,25,40–44.Akeybenefitistheabilitytodeterminethemolecularweightofalltypesofcomplexes,whethernon-globularorinherentlydisordered,evenifthecomponentsarenotentirelyproteinaceous;theformation(orlackthereof)andabsolutestoichiometry(asopposedtostoichio-metricratio)ofheterocomplexesincludingprotein-pro-tein,protein-nucleicacidandcomplexes23,41,42,44–47anddeterminingthemonomer-dimerequilibriumdissocia-tionconstant.41,43,48

Page 10: WP1615: SEC-MALS for absolute biophysical characterization

Oligomerizationofwildtypeandmutants

Thenativeoligomericstateofmanyproteinsisdimeric,trimeric,tetramericorhexameric.Mutationsareoftenusedtoprobethespecificdomainresponsibleforoli-gomerization,exemplifiedinAN1610:StoichiometryofIntrinsically-DisorderedProteinComplexes.AsshowninFigure9,differentmutationscanmodifythenativeoligo-merfromtetramertodimerandevenmonomer.How-ever,thetetramerisnotextremelystableundertheseconditionsandtheSEC-MALS-derivedMWexhibitsdis-sociationatdecreasedconcentrations,ontheleadingandtrailingedgesofthepeak.

Figure9.Wild-typep53DNA-bindingproteinformstetramersinso-lutionwhiletheL344AandL344Pmutationsonlyformdimersandmonomers,respectively.Solidchromatogramsarelightscatteringin-tensitywhiledashedchromatogramsarerefractiveindexsignals.SymbolsindicatemolarmassfromMALS.Thepronouncedconcen-trationdependenceofthew.t.molarmassindicatesdynamicequi-librium,presumablybetweendimersandtetramers.SeeAN1610.

Protein-proteincomplexes

Whiletraditionaltitrationassayscanonlydeterminethemolarratioofproteinsinaheterocomplex,theaddi-tionalinformationprovidedbySEC-MALSenablestheconfirmationofabsolutestoichiometry,i.e.thenumberofcopiesofeachtypeofproteininthecomplex.ThisisaccomplishedbyincubatingdifferentratiosofthetwoproteinsandmeasuringtheresultingmolarmassesbySEC-MALS.AN1610:StoichiometryofIntrinsically-Disor-deredProteinComplexesfurtherdescribesaseriesofex-perimentsdesignedtostudythecomplexesformedbyp53wildtypeandmutants,withS100B,anativedimer.

Figure10presentstheSEC-MALSresultsfortheL344Pmutant.AtexcessL344P,substantialamountsofdimericS100BandmonomericL344Parefound,alongwithsmallamountsofcomplex.AstherelativeamountofS100Bin-creases,moreandmorecomplexesform,thoughinallcasesonlyonespeciesisidentified:onedimerofS100Bboundtoasinglemonomerofp53mutant.TheresultsofthecompletesetofexperimentsaresummarizedinTable2.

ForbothmutantsthecomplexconsistsofaS100Bdimerandap53monomer,eventhoughtheL344Amutantdi-merizesintheabsenceofS100B.ApparentlytheaffinityofL344AforaS100Bdimerismuchgreaterthanforan-otherL344Amutantprotein.

Figure10.FormationofS110B:L344PcomplexesuponincubationofvariousstoichiometricratiosofS100BandL344P.LSchromatograms(solidlines)overlaidwithMWdeterminedbyMALS(symbols).SeeAN1610.

Thoughwildtypep53bindstoS100Binthesamestoi-chiometricratioasthemutants,thecomplexthatformsismuchdifferent:fourS100Bdimersbindtoatetramerofp53,thefunctionaloligomer.TheoverallaffinityofS100Bforp53isnotveryhigh:relativelyweakdynamicequilibriumisindicatedbythedecreaseofmolarmassawayfromtheapexofeachpeak.

Page 11: WP1615: SEC-MALS for absolute biophysical characterization

Nativestate:S100Bdimer

w.t.tetramer

L344Adimer

L344Pmonomer

Stoichiometry ComplexformswithS100B?

1:1 - - -

2:1 - Ö Ö

2:2 - - -

4:1 - - -

8:4 Ö - -

Table2.AbsolutestoichiometryofcomplexesthatformbetweenS100Bandp53,wildtypeandmutants.Forbothmutantsthecom-plexconsistsofaS100Bdimerandap53monomer,eventhoughtheL344AmutantdimerizesintheabsenceofS100B.

Protein-nucleicacidcomplexes

ASTRAoffersapowerfulmethodforanalyzingbinarycomplexes,ProteinConjugateAnalysis,describedinmoredetailbelow.ThismethodisapplicablewhenthetwocomponentsdiffersufficientlyineitherUVextinc-tioncoefficient,differentialrefractiveincrement,orboth.Whiletheanalysisisnotsuitableformostprotein-proteincomplexes,itoftenisforprotein-nucleicacidcomplexesbecauseofstrongabsorptionat280nmbynucleicacidsrelativetoproteins.

Figure11.AnalysisofprototypefoamyvirusintasomeboundtoU5DNAusingASTRA'sProteinConjugateAnalysismethod.UVchroma-togram(solidline)overlaidwithmolarmassvaluesofprotein,DNAandtotal,ateachelutionslice(symbols).SeeWP3001.

Theanalysisofacomplexbetweentheprototypefoamyvirusintegrase(PFVIN)proteinandaDNAsegment,U5,

isdescribedinWP3001:SEC-MALSandCG-MALScharac-terizeprotein-DNAinteractions.PFVINisanative~170kDatetramer.U5consistsof19basepairs,equivalentto11kDa.Figure11presentstheresultsoftheanalysis,in-dicatingthattheintasometetramerbindstwostrandsofU5toforma~200kDacomplex,thoughsomedissocia-tionispresentandthesmallerPFVINcomplexbindsjustoneU5strand.Similaranalysesmaybeperformedforsmallviruses49,orforlargervirusesusingFFFseparation.

Transientcomplexes

Asanaliquotofsolutioncontainingproteincomplexesindynamicequilibriumpassesthroughasize-exclusioncol-umn,thecomplexesaredilutedandpossiblysheared,re-sultinginpartialdissociation.Ontheonehand,thisphe-nomenoncomplicatesanalysisofthecomplexitself,butontheotherhandisbeneficialinprobingthepresenceofdynamicequilibriumandbindingaffinity.Insomein-stancesismaybeutilizedtoestimatethemonomer-di-merequilibriumdissociationconstant41,43,48asshowninFigure12anddemonstratedforadomainantibodyinAN1608:TransientProteinSelf-AssociationDeterminedbySEC-MALS.Formorerobustcharacterizationofself-associatingandhetero-associatingproteins,todeter-mineKdandabsolutestoichiometry,MALSisusedwithcompositiongradients,CG-MALS50.

Figure12.Analysisofatransiently-associatingdimerwithinjectionofthreeproteinquantities.Eachquantityresultsinadifferentcon-centrationprofileacrossthepeak.ThemolarmassesdeterminedbySEC-MALSreachamaximuminthevicinityoftheapexofthepeakanddecreasesoneitherside,indicatingdissociation.SeeAN1608

Page 12: WP1615: SEC-MALS for absolute biophysical characterization

ConjugatedproteinsProteinsareoftenconjugatedtoothermaterials,whethernaturally(asinglycoproteins)orsynthetically(asinPEGylatedproteinsorantibody-drugconjugates,ADCs).ConjugationtypicallycausesgreatdeviationfromtheMW/Rhratioofunmodifiedglobularproteins,im-partinglargeuncertaintiestomethodssuchasanalyticalSEC,SDS-ornativePAGE.Conversely,theaddedmoietycouldinteractwiththeSECcolumnandchangetheelu-tionpropertiesforotherreasons.

Standardtwo-detectorSEC-MALScannotusuallyprovidethemostaccuratecharacterizationofsuchconjugatesbecausetheconcentrationresponseofthespecificde-tector(UVorRI)isdifferentforeachcomponent.Inthiscase,athree-detectortechnique,combiningMALS,UVandRIisapplied4,30.TheresultsprovideduponanalysisinASTRAarenotjustthemolecularweightoftheentirecomplex,butthemassesoftheproteinandmodifierin-dividuallyaswell.Theanalysisalsoprovidestheproteinfractionandtheoverallweight-averagespecificrefractiveindexincrementdn/dc.Thisanalysiscanbeappliedtoestablishingthedegreeofpost-translationalmodificationandpolydispersityofglycoproteins,lipoproteinsandsim-ilarconjugates4,30,46,51–53.Theabilitytoanalyzedetergent-solubilizedmembraneproteinsthatcannotbecharacter-izedbytraditionalmeansisespeciallyprized,andde-tailedprotocolsforthishavebeenpublished30,54–58.

Post-translationalmodificationsindifferentcelllines

Choiceofcelllineforproteinexpressioniscrucialforgly-coproteins,sincethedegreeofglycosylationwillvarywithcelltype.Figure13illustratesthedifferencesandsimilaritiesofaglycoproteinexpressedintwodifferentcelllines,oneinsectandtheothermammalian.ASTRA’sProteinConjugateAnalysismethodindicatesthattheproteincomponentsofbothsamplesare,asexpected,identicalinmolarmassanduniformityacrossthechro-matographicpeaks(solidlines).Ontheotherhand,thedegreeofglycosylationvariesabout50%betweenthecelllines,withmammaliancellsproducinghigherde-greesofglycosylation.Inadditiontothetotalamountofglycans,theheterogeneityisalsodeterminedthroughtheglycanmassateachelutionvolume.

Figure13.ConjugationanalysisbySEC-MALSofaglycoproteinex-pressedintwodifferenthostcells,insectandmammalian.UVchro-matograms(solidlines)overlaidwithmolarmassvalues(symbols).

Membraneproteins

Detergent-solubilizedmembraneproteinsarepartiallyenvelopedbyamphiphilicmoleculesthatenlargetheirhydrodynamicvolumegreatlyrelativetothemolarmassofthepureprotein.Thereforeitisimpossibletorelyoncolumncalibrationwithglobularproteins,ornativePAGE,todeterminethemolarmassandquaternarystateoftheprotein.ThesecomplexesmustbeanalyzedbymeansofSEC-MALS-UV-RI,whichcalculatesnotonlytheproteinmassbutalsothatofthedetergentorothermodifier.AnexampleisprovidedinFigure14,whichteststhemostappropriatedetergentforretainingthenative/functionaloligomericstateoftheprotein.

Intheanalysis,describedinmoredetailintheApplica-tionNote,LDAOisfoundtoleadtomonomericCorApro-tein.However,thefunctionalconfigurationisapen-tamer,whichwasmaintainedwithDDM(thoughsomedissociationisobserved).HenceDDMisasuitabledeter-gentforsolubilizingfunctionalCorA.ANadditionalexam-pleisprovidedinAN1602:Lipid-MembraneProteinComplexes.

Page 13: WP1615: SEC-MALS for absolute biophysical characterization

Figure14.UVChromatogramsofCorAmembraneproteinsolubilizedinLDAO(left)andDDM(right)overlaidwithmolarmassvaluesoftheprotein,detergentandtotaldeterminedbyASTRA’sproteincon-jugateanalysis.DespitethesharpelutionprofileinLDAO,onlyDDMmaintainsthefunctional,pentamericform.SeeApplicationNote.

PEGylatedproteins

PEGylationisusedtoenhancePK/PDpropertiesofthera-peuticproteinsandpeptides,increasingthehalf-lifeinthebloodstream.SEC-MALS-UV-dRIanalysisisuniquelysuitedtoprovidequantitativeanalysisforprocessdevel-opmentandqualitycontrolofPEGylateddrugproduct,sinceitindicatesthenatureofthemoleculeineachelu-tionvolume(protein,PEGorPEGylatedprotein),thede-greeofPEGylation,andthemonomericoraggregationstate.

Figure15.SEC-MALSanalysisofaPEGylationprocess,showingtheLSchromatogram(solidline)overlaidwithmolarmassdeterminedateachelutionvolumebyMALS-UV-dRIanalysis(symbols).SeeAN1612.

TheresultsofsuchananalysisinthecourseofprocessdevelopmentispresentedinFigure15,withfurtherde-tailsprovidedinAN1612:ProteinPEGylationProcessesCharacterizedbySEC-MALS.Similaranalysesmaybeper-formedforprotein-polysaccharidecomplexes.45,47

ADCdrug-antibodyratio

Modifiersthatmakeupaslittle5%ofthetotalmassinaconjugatedproteinmaybequantifiedbySEC-MALS-UV-dRI.ApplicationnoteAN1609:ADCdrug-antibodyratiobySEC-MALSdescribestheresultsofanalyzingtwoanti-body-drugconjugates(ADC)samplesbasedonthesamemAbanddrug-linkersystembutdifferentconjugationprocesses.AsseeninFigure16,reproducedfromthatnote,themolarmassescalculatedforthemAbareiden-ticaltowellwithinexperimentalprecision.Thedrug-anti-bodyratio(DAR),calculatedfromtheknownlinker-drugmassof1260g/mol,is12.6forADC1and8.1forADC2.Separateexperiments,notshown,determinedthemodi-fier’sUVextinctioncoefficientanddn/dcvalueforuseintheconjugateanalysisalgorithm.

Figure16.Conjugateanalysisoftwoantibody-drugconjugates,withUVchromatograms(solidlines)overlaidwithprotein,drugandtotalmolarmasses(symbols).SeeAN1609.

ProteinconformationInformationprovidedbySEC-MALS-DLSisinvaluableinevaluatingoverallproteinconformationinsolution,evenifcirculardichroismdoesnotindicatechanges.59,60

Conformationalstabilizationbyligandbinding

Page 14: WP1615: SEC-MALS for absolute biophysical characterization

Itisnotunusualforprotein-proteincomplexestoeluteearlierthantheconstituentproteinsduetothein-creasedsizeofthecomplex.Laterelutionisnotverycommon,butitdoesoccurandmayresulteitherfromnon-idealinteractionwiththecolumnmatrix,orfromareductioninoverallhydrodynamicsizewhentheligandstabilizesapartially-disorderedprotein.Thelatterbehav-iorisexhibitedbytheinterleuken-4trap:interleukin4(IL4)complex,depictedinFigure17.Thecauseoflaterelution—stabilizationofthepartially-disorderedtrapbythemuch-smallerIL4—maybededucedfromthesimul-taneously-acquiredDLSdatawhichshowasmallerhydrodynamicradiusforthecomplexthanforthetrap.

Figure17.Conformationalchangeininterleuken-4trapduetobind-ingofinterleuken4.Thecomplexeluteslaterdespiteitshighermo-larmass.Thiscounterintuitivebehaviorisexplainedbythedecreaseinhydrodynamicradius,measuredbyonlineDLS,ratherthancolumninteractions.

EvaluatingchromatographicconditionsOfthethreemAbpeaksshowninFigure18,acquiredasUVchromatogramsonUHP-SEC,onlyPeak1appearsintheelutionvolumecorrespondingtoitsexpectedmolec-ularweightwithanicelysymmetricshape.Peak2isde-layedandstretchedasaresultofhydrophobicadhesiontotheSECcolumnpacking,whilePeak3issymmetricbuteluteslateduetoelectrostaticrepulsionfromthecolumnmaterial.

Despitethenon-idealbehaviorsofPeaks2and3,SEC-MALScorrectlyidentifiestheirmolarmasses.SEC-MALSoftenaccompaniesmethoddevelopmentforoptimiza-tionoftheSECcolumnandbuffer,guaranteeingthatthe

elutingpeakscontinuetorepresentintact,unaggregatedandpureprotein(orothermacromolecule,asthecasemaybe).

Figure18.UVUHP-SECchromatograms(solidlines)ofthreemono-clonalantibodiesoverlaidwithmolarmassvaluesdeterminedbyMALS(symbols).Despitetheirdifferentelutionbehavior,allthreehavemolarmassesthatarecloseinvalue.

Figure19.SameasFigure18,withhydrodynamicradius(symbols)in-steadofmolarmass.AllthreemAbshavesameRh,indicatingthattheirdifferentelutionvolumesdonotderivefromdifferentconfor-mations.

Additionalinformationaboutthemolecularpropertiesandthepossiblecauseofnon-idealelutionisprovidedbyaddingonlinedynamiclightscattering,e.g.withaWyattQELSembeddedDLSmodule.AsseeninFigure19,thehydrodynamicradiiofallthreemAbsisthesame,confirmingthatthedifferentelutionvolumesarenot

Page 15: WP1615: SEC-MALS for absolute biophysical characterization

relatedtodifferencesinconformation,buttoprotein-columninteractions.

AdditionalbiomoleculesBeyondproteins,SEC-MALSisinvaluableforcharacteri-zationofpeptides61,62,broadlyheterogeneousnaturalpolymerssuchasheparins63andchitosans.64,65

Smallpeptides

Multi-anglelightscatteringcoversaverybroadrangeofmolarmass,fromhundredsofDaltonstohundredsofmillions.Whilemostoftenusedtocharacterizeproteinsandpolymersabove10kDa,smallermoleculesareread-ilymeasuredaswell(aslongastheycanbeproperlysep-aratedonthecolumn).AN1613:PeptideCharacteriza-tionbySEC-MALSpresentstwoexamplesoftherapeuticpeptides,Bradykinin(a1060Dapeptideaccordingtose-quence)andLeucine-Enkephelin(556Daaccordingtosequence).

Figure20.SEC-MALSanalysisofamixtureoftwostandardproteinsandtwotherapeuticpeptides,BradykininandLeucine-Enkephelin.UVchromatogram(solidline)overlaidwithmolarmassvalues(sym-bols).SeeAN1613.

ThechromatogramsandmolarmassesareseeninFigure20.Themeasuredvaluesdifferedbyjustafewpercentfromthesequenceweights,possiblyaconsequenceofuptakeofcounterionsfromthesolution.Theresultswererepeatabletowithinjust2-3%.Sincesmallpeptidesdonotusuallyhavethesameuniversaldn/dcvaluesasproteins,theirrefractiveincrementsweremeasuredus-inganOptilab(theycouldalsohavebeencalculated

fromthesequence,justliketheUVextinctioncoeffi-cient).

Mono-anddisaccharides,low-andhigh-molecularweightpolysaccharides

Polysaccharidesare,bynature,quiteheterogeneousandspanabroadrangeinmolarmass.Analysisofthreein-jectedmassesofmaltodextrindemonstratejustapor-tionoftheDAWN’smeasurementrangeaswellasitsex-quisitesensitivity:eventhemonomermasscanbequan-tifiedwithamoderateinjectedmassof200µg(becauseofitslowmass,itscattersverylittlelightrelativetoitsconcentration).

Themolarmassesofallthreesampleloadingsoverlayquiteclosely.Thisisasignoftheidealityofthechroma-tography,theabsenceofintermolecularinteractionsandexcellentrepeatabilityofthedetectors.Theobservedloglinearity,togetherwiththeslopeoftheline,areindica-tiveofuniform,randomcoilconformationwithnobranching.Withanappropriateseriesofcolumnsorsep-arationbyAF4,theinstrumentscancoverarangeintothehundredsofmillionsofg/mol.

Figure21.Maltodextrinsolution,1mg/mL,injectedatthreevol-umestoassesssensitivity.Lightscatteringplotsaredashed,refrac-tiveindexplotsaresolid.Dotsindicatemolarmasses.Molarmassvaluesofthemonomerpeakwereonlyobtainedforthelargestin-jection,200µg.

Page 16: WP1615: SEC-MALS for absolute biophysical characterization

SupportingQCofmultivalentpolysaccharidevaccines

Multivalentpolysaccharidevaccinescontainmanyimmu-nogeniccomponents,eachofwhichmustbecharacter-izedseparately.WhileSEC-MALSisnotsuitableforqual-itycontrolofthesemulti-componentmixtures,thefinalqualitycontroltechniquemustbetraceabletoreliableanalyticalmethodssuchasSEC-MALS.InAN1306:Poly-valentpneumococcalpolysaccharidevaccinebySEC-MALS,theuseofSEC-MALStocharacterizeindividualserotypesusedinMerck’sPNEUMOVAX23productisde-scribed.Theanalysisquantifiesthereductionofpolymerweight-averagemolarmassfrom270kDato110kDauponultrasonicationandtheirresultscorrelatedwithratenephelometry,anempiricalmethodappropriateforqualitycontrolpurposes.

SummaryMulti-angleanddynamiclightscattering,combinedwithsize-exclusionchromatography,areessentialbiophysicalcharacterizationtechnologiesapplicableacrossawiderangeofanalytes.SEC-MALSinstrumentationinformsre-searchanddevelopment,bothfundamentalandapplied,fromqualitycontroltounderstandinginteractions.

Theexamplesofbiomolecularcharacterizationmen-tionedinthisdocumentarejustafewofthousandsofpublishedinstances.Anextensivebibliographymaybefoundintheliterature66andonlineathttp://www.wy-att.com/bibliography,whileapplicationnotesareavaila-bleontheWyattwebsiteatwww.wyatt.com/AppNotes.

AcknowledgementsWegreatlyappreciatesharingofdataandexamplesofusingSEC-MALStoovercomecharacterizationchallengesintheapplicationnotescontributedbyourcustomers,including(butnotlimitedto)TesalDesai,JohnHennes-seyJr.,ChrisBroomell,DavidVeesler,ManishBurman,OliverSchoen,KusholGupta,JanvanDieck,JustinLow,MehrabanKhosraviani,Sylvia(Kyung-Joo)Lee,JihongYang,Per-OlofWahlund,JoeyPollastriniandShawnCao.

FurtherthankstoMarioLebendikerandHadarAmartelyforsuggestionsandreferences.

References

1. Acton,T.B.etal.RoboticcloningandProteinProductionPlatformoftheNortheastStructuralGenomicsConsortium.MethodsEnzymol.394,210–243(2005).

2. Acton,T.B.etal.PreparationofproteinsamplesforNMRstructure,function,andsmall-moleculescreeningstudies.MethodsEnzymol.493,21–60(2011).

3. Folta-Stogniew,E.&Williams,K.R.Determinationofmolecularmassesofproteinsinsolution:ImplementationofanHPLCsizeexclusionchromatographyandlaserlightscatteringserviceinacorelaboratory.J.Biomol.Technol.10,51–63(1999).

4. Kendrick,B.S.,Kerwin,B.A.,Chang,B.S.&Philo,J.S.Onlinesize-exclusionhigh-performanceliquidchromatographylightscatteringanddifferentialrefractometrymethodstodeterminedegreeofpolymerconjugationtoproteinsandprotein-proteinorprotein-ligandassociationstates.Anal.Biochem.299,136–146(2001).

5. Hughes,C.S.,Longo,E.,Phillips-Jones,M.K.&Hussain,R.Qualitycontrolandbiophysicalcharacterisationdataof.DataBr.14,41–47(2017).

6. Muthurajan,U.etal.InVitroChromatinAssembly:StrategiesandQualityControl.MethodsEnzymol.573,3–41(2016).

7. P4EU|ProteinQualityStandardPQS.Availableat:https://p4eu.org/protein-quality-standard-pqs.(Accessed:16thDecember2018)

8. ArbreMobieu|GuidelinesonProteinQualityControl.Availableat:https://arbre-mobieu.eu/guidelines-on-protein-quality-control/.

Page 17: WP1615: SEC-MALS for absolute biophysical characterization

(Accessed:16thDecember2018)

9. Bowman,A.etal.ThehistonechaperonesVps75andNap1formring-like,tetramericstructuresinsolution.NucleicAcidsRes.42,6038–6051(2014).

10. Bowman,G.R.etal.Oligomerizationandhigher-orderassemblycontributetosub-cellularlocalizationofabacterialscaffold.Mol.Microbiol.90,776–795(2013).

11. Folta-Stogniew,E.Oligomericstatesofproteinsdeterminedbysize-exclusionchromatographycoupledwithlightscattering,absorbance,andrefractiveindexdetectors.MethodsMol.Biol.328,97–112(2006).

12. Vieux,E.F.,Wohlever,M.L.,Chen,J.Z.,Sauer,R.T.&Baker,T.A.DistinctquaternarystructuresoftheAAA+Lonproteasecontrolsubstratedegradation.Proc.Natl.Acad.Sci.U.S.A.110,E2002-8(2013).

13. Group,N.S.useofSEC-MALSincrystallizationQC.2018,

14. Ahrer,K.,Buchacher,A.,Iberer,G.,Josic,D.&Jungbauer,A.AnalysisofaggregatesofhumanimmunoglobulinGusingsize-exclusionchromatography,staticanddynamiclightscattering.J.Chromatogr.A1009,89–96(2003).

15. Narhi,L.O.,Schmit,J.,Bechtold-Peters,K.&Sharma,D.Classificationofproteinaggregates.J.Pharm.Sci.101,493–8(2012).

16. Spiess,C.etal.Bispecificantibodieswithnaturalarchitectureproducedbyco-cultureofbacteriaexpressingtwodistincthalf-antibodies.Nat.Biotechnol.31,753–758(2013).

17. Philo,J.S.Acriticalreviewofmethodsforsizecharacterizationofnon-particulateproteinaggregates.Curr.Pharm.Biotechnol.10,359–372(2009).

18. Stellwagen,E.Gelfiltration.MethodsEnzymol.463,373–385(2009).

19. Burgess,R.R.Abriefpracticalreviewofsizeexclusionchromatography:Rulesofthumb,limitations,andtroubleshooting.ProteinExpr.Purif.150,81–85(2018).

20. Healthcare,G.SizeExclusionChromatography:PrinciplesandMethods.(2014).

21. Uliyanchenko,E.Size-exclusionchromatography-fromhigh-performancetoultra-performance.Anal.Bioanal.Chem.406,6087–6094(2014).

22. Dunker,A.K.,Silman,I.,Uversky,V.N.&Sussman,J.L.Functionandstructureofinherentlydisorderedproteins.Curr.Opin.Struct.Biol.18,756–764(2008).

23. Hsiao,H.H.etal.Quantitativecharacterizationoftheinteractionsamongc-myctranscriptionalregulatorsFUSE,FBP,andFIR.Biochemistry49,4620–4634(2010).

24. Hayashi,Y.,Takagi,T.,Maezawa,S.&Matsui,H.Molecularweightsofalphabeta-protomericandoligomericunitsofsoluble(Na+,K+)-ATPasedeterminedbylow-anglelaserlightscatteringafterhigh-performancegelchromatography.Biochim.Biophys.Acta748,153–167(1983).

25. Folta-Stogniew,E.J.MacromolecularInteractions:LightScattering.inEncyclopediaofLifeSciences(JohnWiley&Sons,Ltd,2009).doi:10.1002/9780470015902.a0003143

26. Hong,P.,Koza,S.&Bouvier,E.S.P.Size-ExclusionChromatographyfortheAnalysisofProteinBiotherapeuticsandtheirAggregates.J.Liq.Chromatogr.Relat.Technol.35,2923–2950(2012).

27. Chakrabarti,A.SeparationofMonoclonalAntibodiesbyAnalyticalSizeExclusionChromatography.inAntibodyEngineering(InTech,2018).doi:10.5772/intechopen.73321

28. Wyatt,P.J.Lightscatteringandtheabsolutecharacterizationofmacromolecules.Anal.Chim.Acta272,(1993).

29. Takagi,T.Applicationoflow-anglelaserlightscatteringdetectioninthefieldofbiochemistry:reviewofrecentprogress.J.Chromatogr.A506,51–63(1990).

30. Wen,J.,Arakawa,T.&Philo,J.S.Size-exclusionchromatographywithon-linelight-scattering,absorbance,andrefractiveindexdetectorsforstudyingproteinsandtheirinteractions.Anal.Biochem.240,155–166(1996).

31. Mogridge,J.Usinglightscatteringtodeterminethestoichiometryofproteincomplexes.MethodsMol.Biol.1278,233–238(2015).

32. Larkin,M.&Wyatt,P.J.Light-ScatteringTechniquesandtheirApplicationtoFormulationandAggregationConcerns.inFormulationandProcessDevelopmentStrategiesforManufacturingBiopharmaceuticalsdoi:doi:10.1002/9780470595886.ch12

33. Zhao,H.,Brown,P.H.&Schuck,P.Onthedistributionofproteinrefractiveindexincrements.Biophys.J.100,(2011).

34. Amartely,H.,Avraham,O.,Friedler,A.,Livnah,O.&Lebendiker,M.CouplingMultiAngleLightScatteringtoIonExchangechromatography(IEX-MALS)forproteincharacterization.Sci.Rep.8,6907(2018).

35. Amartely,H.,Lebendiker,M.&Some,D.WP8003:

Page 18: WP1615: SEC-MALS for absolute biophysical characterization

IEX-MALS-amethodforproteinseparationandcharacterization.(2019).

36. Serebryany,E.,Folta-Stogniew,E.,Liu,J.&Yan,E.C.Homodimerizationenhancesbothsensitivityanddynamicrangeoftheligand-bindingdomainoftype1metabotropicglutamatereceptor.FEBSLett.590,4308–4317(2016).

37. Arakawa,T.&Wen,J.Size-exclusionchromatographywithon-linelightscattering.Curr.Protoc.ProteinSci.Chapter20,Unit20.6(2001).

38. Müller,R.etal.High-resolutionstructuresoftheIgMFcdomainsrevealprinciplesofitshexamerformation.Proc.Natl.Acad.Sci.110,10183–10188(2013).

39. Wahlund,P.,Roessner,D.&Jocks,T.IdentificationofInsulinOligomericStatesusingSEC-MALS.

40. Mitchell,S.L.,Ismail,A.M.,Kenrick,S.A.&Camilli,A.TheVieBauxiliaryproteinnegativelyregulatestheVieSAsignaltransductionsysteminVibriocholerae.BMCMicrobiol.15,59(2015).

41. Kapoor,N.etal.Nucleobindin1isacalcium-regulatedguaninenucleotidedissociationinhibitorofG{alpha}i1.J.Biol.Chem.285,31647–31660(2010).

42. Crichlow,G.Vetal.DimerizationofFIRuponFUSEDNAbindingsuggestsamechanismofc-mycinhibition.EMBOJ.27,277–289(2008).

43. Reshetnyak,A.Vetal.ThestrengthandcooperativityofKITectodomaincontactsdeterminenormalligand-dependentstimulationoroncogenicactivationincancer.Mol.Cell57,191–201(2015).

44. Pirruccello,M.,Swan,L.E.,Folta-Stogniew,E.&DeCamilli,P.RecognitionoftheF&HmotifbytheLowesyndromeproteinOCRL.Nat.Struct.Mol.Biol.18,789–795(2011).

45. Lockyer,K.,Gao,F.,Derrick,J.P.&Bolgiano,B.Structuralcorrelatesofcarrierproteinrecognitionintetanustoxoid-conjugatedbacterialpolysaccharidevaccines.Vaccine33,1345–1352(2015).

46. Micoli,F.,Adamo,R.&Costantino,P.ProteinCarriersforGlycoconjugateVaccines:History,SelectionCriteria,CharacterizationandNewTrends.Molecules23,(2018).

47. Steinbach,T.&Wurm,F.R.DegradablePolyphosphoester-ProteinConjugates:“PPEylation”ofProteins.Biomacromolecules17,3338–3346(2016).

48. Das,S.,Stivison,E.,Folta-Stogniew,E.&Oliver,D.ReexaminationoftheroleoftheaminoterminusofSecAinpromotingitsdimerizationandfunctionalstate.J.Bacteriol.190,7302–7307(2008).

49. Porterfield,J.Z.&Zlotnick,A.ASimpleandGeneralMethodforDeterminingtheProteinandNucleicAcidContentofVirusesbyUVAbsorbance.Virology407,281–288(2010).

50. Some,D.Light-scattering-basedanalysisofbiomolecularinteractions.Biophys.Rev.5,(2013).

51. Hastie,K.M.etal.CrystalstructureoftheprefusionsurfaceglycoproteinoftheprototypicarenavirusLCMV.Nat.Struct.Mol.Biol.23,513–521(2016).

52. Pallesen,J.etal.StructuresofEbolavirusGPandsGPincomplexwiththerapeuticantibodies.Nat.Microbiol.1,16128(2016).

53. Li,J.etal.CharacterizingtheSizeandCompositionofSaposinALipoproteinPicodiscs.Anal.Chem.88,9524–9531(2016).

54. Slotboom,D.J.,Duurkens,R.H.,Olieman,K.&Erkens,G.B.Staticlightscatteringtocharacterizemembraneproteinsindetergentsolution.Methods46,73–82(2008).

55. Miercke,L.J.,Robbins,R.A.&Stroud,R.M.Tetradetectoranalysisofmembraneproteins.Curr.Protoc.ProteinSci.77,29.10.1-30(2014).

56. Gimpl,K.,Klement,J.&Keller,S.Characterisingprotein/detergentcomplexesbytriple-detectionsize-exclusionchromatography.Biol.Proced.Online18,4(2016).

57. Korepanova,A.&Matayoshi,E.D.HPLC-SECcharacterizationofmembraneprotein-detergentcomplexes.Curr.Protoc.ProteinSci.Chapter29,Unit29.5.1-12(2012).

58. Roy,A.,Breyton,C.&Ebel,C.AnalyticalUltracentrifugationandSize-ExclusionChromatographyCoupledwithLightScatteringforCharacterizationofMembraneProteinsinSolution.inMembraneProteinsProductionforStructuralAnalysis(ed.Mus-Veteau,I.)(Springer,2014).

59. Zambelli,B.etal.UreG,aChaperoneintheUreaseAssemblyProcess,IsanIntrinsicallyUnstructuredGTPaseThatSpecificallyBindsZn2+.J.Biol.Chem.280,4684–4695(2005).

60. Ren,X.etal.HybridStructuralModeloftheCompleteHumanESCRT-0Complex.Structure17,406–416(2009).

61. Moriarty,D.F.,Fiorillo,C.,Miller,C.&Colón,W.AtruncatedpeptidemodelofthemutantP61AFISformsastabledimer.Biochim.Biophys.Acta-ProteinsProteomics1774,78–85(2007).

62. laGarza,C.E.etal.Analysisoftherapeuticproteinsandpeptidesusingmultianglelightscatteringcoupledtoultrahighperformanceliquidchromatography.J.

Page 19: WP1615: SEC-MALS for absolute biophysical characterization

Sep.Sci.38,1537–1543(2015).

63. Beirne,J.,Truchan,H.&Rao,L.Developmentandqualificationofasizeexclusionchromatographycoupledwithmultianglelightscatteringmethodformolecularweightdeterminationofunfractionatedheparin.Anal.Bioanal.Chem.399,717–725(2011).

64. Wang,W.etal.Anewgreentechnologyfordirectproductionoflowmolecularweightchitosan.Carbohydr.Polym.74,127–132(2008).

65. Kaderli,S.etal.Anovelbiocompatiblehyaluronicacid-chitosanhybridhydrogelforosteoarthrosistherapy.Int.J.Pharm.483,158–168(2015).

66. Minton,A.P.Recentapplicationsoflightscatteringmeasurementinthebiologicalandbiopharmaceuticalsciences.Anal.Biochem.501,4–22(2016).

©WyattTechnologyCorporation.Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyformbyanymeans,electronic,mechanical,photocopying,recording,orotherwise,withoutthepriorwrittenpermissionofWyattTechnologyCorporation.

OneormoreofWyattTechnologyCorporation'strademarksorservicemarksmayappearinthispublication.ForalistofWyattTechnologyCorpo-ration'strademarksandservicemarks,pleaseseehttps://www.wyatt.com/about/trademarks.