wpi pi computational fluid dynamics i

21
P P PI I I W W W Computational Fluid Dynamics I Review of Fluid Dynamics Instructor: Hong G. Im University of Michigan Fall 2001

Upload: others

Post on 23-Dec-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: WPI PI Computational Fluid Dynamics I

PPPPIIIIWWWW Computational Fluid Dynamics I

Reviewof

Fluid Dynamics

Instructor: Hong G. ImUniversity of Michigan

Fall 2001

Page 2: WPI PI Computational Fluid Dynamics I

PPPPIIIIWWWW Computational Fluid Dynamics IOutline

Outline

Basic relations for continuum fluid mechanicsReynolds transport theoremDivergence theorem

Derivation of equations governing fluid flowConservation of massConservation of momentumConservation of energyConstitutive relations

Page 3: WPI PI Computational Fluid Dynamics I

PPPPIIIIWWWW Computational Fluid Dynamics IBasic Relations

),( txφ

∫∫∫ ⋅+∂∂=

CSCVV

dSdVt

dVDtD

sys

)( nuφφφ

Reynolds Transport Theorem

Rate of changein system

For any vector or scalar function that represents a flow property

Rate of changein control volume

Flux through control surface

zw

yv

xu

ttDtD

∂∂+

∂∂+

∂∂+

∂∂=∇⋅+

∂∂= u

Material derivative

Page 4: WPI PI Computational Fluid Dynamics I

PPPPIIIIWWWW Computational Fluid Dynamics I

+ flux out

Basic Relations

At t=t CV

)(tφ

At t=t+dtCV

=CV

)( dtt +φ− flux in

Page 5: WPI PI Computational Fluid Dynamics I

PPPPIIIIWWWW Computational Fluid Dynamics I

The Divergence (Gauss) Theorem:Conversion of surface integral to volume integral

dVdSCVCS∫∫ ⋅∇=⋅ )()( φnφ

Basic Relations

Page 6: WPI PI Computational Fluid Dynamics I

PPPPIIIIWWWW Computational Fluid Dynamics I

Reynolds Transport Theorem:

Basic Relations

: System integral to control volume integral

∫∫∫ ⋅+∂∂=

CSCVV

dSdVt

dVDtD

sys

)( nuφφφ

⋅∇+∂∂=

CV

dVt

)( uφφ

Page 7: WPI PI Computational Fluid Dynamics I

PPPPIIIIWWWW Computational Fluid Dynamics IConservation Equations

),(),( tt xx ρφ =

Conservation of Mass (Continuity)

If RTT yields

Since the equation holds for arbitrary control volume,

dVt

dVDtD

CVVsys∫∫

⋅∇+∂∂== )(0 uρρρ

0)( =⋅∇+∂∂ uρρt

Page 8: WPI PI Computational Fluid Dynamics I

PPPPIIIIWWWW Computational Fluid Dynamics IConservation Equations

Or, in Lagrangian form,

Continuity Equation:

uuu ⋅∇+∇⋅+∂∂=⋅∇+

∂∂ ρρρρρ

tt)(

0=⋅∇+= uρρDtD

0or0)( =⋅∇+=⋅∇+∂∂ uu ρρρρ

DtD

t

Page 9: WPI PI Computational Fluid Dynamics I

PPPPIIIIWWWW Computational Fluid Dynamics IConservation Equations

Conservation of MomentumIf RTT yields),(),( tt xuxφ ρ=

dVt

dVDtD

CVVsys∫∫

⋅∇+∂∂= )( uuuu ρρρ

∫∫ +⋅=CVCS

dVdS fnT ρ)(

[ ]∫ +⋅∇=CV

dVfT ρ

Surface force (stress) Body force (gravity)

Divergence theorem

Page 10: WPI PI Computational Fluid Dynamics I

PPPPIIIIWWWW Computational Fluid Dynamics IConservation Equations

Conservation of Momentum

fTuuu ρρρ +⋅∇=⋅∇+∂∂ )(t

Alternatively, subtracting

⋅∇+∂∂⋅−⋅∇+

∂∂ )()( uuuuu ρρρρ

tt

)continuity(⋅u

fTuuu ρρρρρ +⋅∇==∇⋅+∂∂=

DtD

t)(

fTu ρρ +⋅∇=DtD

Page 11: WPI PI Computational Fluid Dynamics I

PPPPIIIIWWWW Computational Fluid Dynamics IConservation Equations

Constitutive Relation – Stress Tensor

DUuT µµκ 2])32([ +⋅∇−+−= p

In tensor notation

Bulk viscosity = 0 (Stokes assumption)

∂∂

+∂∂+

∂∂−+−=

i

j

j

i

k

kijijij x

uxu

xupT µδµκδ )

32(

Unit tensor

001010100

[ ]T)()(21 uuD ∇+∇= (Deformation tensor)

Page 12: WPI PI Computational Fluid Dynamics I

PPPPIIIIWWWW Computational Fluid Dynamics IConservation Equations

Conservation of Momentum (Final):

[ ] fDuu ρµµκρ +⋅∇+

⋅∇−∇+−∇= 2)

32(p

DtD

[ ]T)()(21 uuD ∇+∇=

Page 13: WPI PI Computational Fluid Dynamics I

PPPPIIIIWWWW Computational Fluid Dynamics IConservation Equations

Conservation of Energy

From RTT, for

⋅+= uuxxφ

21),(),( tet ρ

dVeet

dVeDtD

CVVsys∫∫

⋅+⋅∇+

⋅+

∂∂=

⋅+ )

21()

21(

21 uuuuuuu ρρρ

dVdSdSCVCSCS∫∫∫ ⋅+⋅⋅+⋅−= fuTnunq ρ)()(

[ ]dVCV∫ ⋅+⋅∇⋅+⋅∇−= fuTuq ρ)(

Heat flux Work by stress

Body force work

Divergence theorem

Page 14: WPI PI Computational Fluid Dynamics I

PPPPIIIIWWWW Computational Fluid Dynamics IConservation Equations

fuTuquuuuu ⋅+⋅⋅∇+⋅−∇=⋅+⋅∇+

⋅+

∂∂ ρρρ )()

21()

21( ee

t

Total Energy Equation

0)( =⋅∇+∂∂ uρρt

fuTuquuuuu ⋅+⋅⋅∇+⋅−∇=⋅+∇⋅+

⋅+

∂∂ ρρρ )()

21(

21 ee

t

+⋅∇=∇⋅+

∂∂⋅ fTuuuu ρρρt

][ u:TT)(uT)(u ∇+⋅∇⋅=⋅⋅∇

)(: uTqu ∇+⋅−∇=∇⋅+∂∂ ete ρρ

Page 15: WPI PI Computational Fluid Dynamics I

PPPPIIIIWWWW Computational Fluid Dynamics IConservation Equations

Constitutive Relations

)(:)(: uUuT ∇−=∇ p

Tk∇−=q (Fourier’s Law)

),(),,( ρρ eTTepp == (Equation of State)

If viscous heating is neglected,

)()( uuu ⋅∇−=∇⋅+⋅−∇= ppp

)( uqu ⋅∇−⋅−∇=∇⋅+∂∂ pete ρρ

Page 16: WPI PI Computational Fluid Dynamics I

PPPPIIIIWWWW Computational Fluid Dynamics I

In Convective (Nonconservative) Form

Conservation Equations - Summary

0=⋅∇+ uρρDtD

fTu ρρ +⋅∇=DtD

)(: uTq ∇+⋅−∇=DtDeρ

Page 17: WPI PI Computational Fluid Dynamics I

PPPPIIIIWWWW Computational Fluid Dynamics I

In Conservative Form

Conservation Equations - Summary

0)( =⋅∇+∂∂ uρρt

fuuTu ρρρ +−⋅∇=∂∂ )(t

+⋅−⋅+⋅−∇=

⋅+

∂∂ qTuuuuuu )

21(

21 ee

tρρ

Discretized equations can satisfy the conservation properties more easily

Page 18: WPI PI Computational Fluid Dynamics I

PPPPIIIIWWWW Computational Fluid Dynamics I

In Integral Form (for fixed CV)

Conservation Equations - Summary

0=⋅+∂∂

∫∫CSCV

dSdVt

nuρρ

Useful in Finite Volume Methods

[ ]∫∫∫ ⋅−⋅+=∂∂

SCCVCV

dSdVdVt

)( nuunTfu ρρρ

+⋅+⋅−⋅⋅+

SC

dSqe uuunTnu )21()( ρ

∫∫ ⋅=⋅+∂∂

CVCV

dVdVet

fuuu ρρ )21(

Page 19: WPI PI Computational Fluid Dynamics I

PPPPIIIIWWWW Computational Fluid Dynamics I

Compressible Inviscid Flows

Conservation Equations – Special Cases

0=∂∂+

∂∂+

∂∂+

∂∂

zyxtGFEU

=

Ewvu

ρρρρρ

U

+

+=

upEuwuv

puu

)(

2

ρρρρρ

E

+

+=

vpEvw

pvuvv

)(

2

ρρρρρ

F

++

=

wpEpvw

vwuww

)(

2

ρρρρρ

G

TchTceRTp pv === ,,ρ

ReTepRcv

)1(,)1(,1

−=−=−

= γργγor

Page 20: WPI PI Computational Fluid Dynamics I

PPPPIIIIWWWW Computational Fluid Dynamics I

Incompressible Flows

Conservation Equations – Special Cases

0=DtDρ

0=⋅∇ u

Continuity equation reduces to

0=⋅∇+ uρρDtD

(Divergence-free)

Momentum equation with constant viscosity, κ=0

fuuuu +∇+∇−=∇⋅+∂∂ 2ν

ρp

t

ρµν /= Kinematic viscosity

Page 21: WPI PI Computational Fluid Dynamics I

PPPPIIIIWWWW Computational Fluid Dynamics I

Equation for Pressure

Conservation Equations – Special Cases

Taking divergence of the momentum equation

+∇+∇−=∇⋅+

∂∂⋅∇ fuuuu 2ν

ρp

t

Poisson’s equation

fuuuu ⋅∇+⋅∇∇+∇−=∇⋅⋅∇+⋅∇∂∂ )()()( 2

2

νρp

t

fuu ⋅∇+∇⋅⋅∇−=∇ ρρ )(2 p

which replaces the incompressibility condition.

(To be continued…)