x-ray scattering studies of materials using ultra …...soft x-ray spectrograph hard x-ray hutch...

47
X-Ray Scattering Studies of Materials Using Ultra-Short Pulses Roger Falcone UC Berkeley LBNL SLAC and the ALS and SPPS Collaborations “Workshop on 4th Generation Light Sources and Ultrafast Phenomena” December 2005

Upload: others

Post on 29-Jul-2020

16 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

X-Ray Scattering Studies of Materials Using Ultra-Short Pulses

Roger Falcone UC Berkeley

LBNL

SLAC

and the ALS and SPPS Collaborations

“Workshop on 4th Generation Light Sources and Ultrafast Phenomena” December 2005

Page 2: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

Short pulse lasers and synchrotron x-ray sources can create and probe dynamic and transient states of matter

Synchrotron x-ray source

Sample

Laser

Detector

Current facilities: APS, ESRF, SLL, BESSY, ALS

Page 3: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

Laser-initiated bond-breaking, heating, and strain can result in phase transitions

and be probed by time-resolved x-ray diffraction

Lindenberg et al., Phys Rev. Lett. 84, 111 (2000)

Synchrotron x-ray source

Sample

Laser

Detector

Page 4: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

Transient strain can be generated and controlled using multiple ultrashort pump pulses

Single-pulse excitation

Multiple pulse excitation:constructive interference(∆t~35 ps)

Multiple pulse excitation:mode cancellation mode (∆t~18 ps)

Lindenberg et al. Optics Letters, 27, 869 (2002)

Page 5: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

High-energy-density matter can be probed by time-resolved x-ray absorption spectroscopy

solid / liquid carbon

e.g., supports calculations indicating that the low-density phase of liquid carbon is predominately sp-bonded

S. Johnson, et alSilicon: PRL 91, 157403 (2003)Carbon: PRL 94, 057407 (2005)

Foil Sample

Page 6: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

X-ray absorption of liquid carbon

Diamond High ρ liquid

Low ρ liquidGraphite

• Liquid carbon present in the interiors of planets Uranus and Neptune. Liquid carbon not stable ambient pressure.

• Molecular dynamics calculations: High density r liquid predominantly sp3 coordination, low r liquid mainly sp, Glosli and Ree, PRL 82, 4659 (1999)

Page 7: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

Determine structure of molecules in an excited electronic state

Ce3+ Br6

• Theory by L. Seijo and Z. Barandiaran predicts ligand-bond distances:∆R = -0.65A

• D. Lowney, P.A. Heimann, T. Allison, W. Lukens, C. Booth, N. Edelstein, R.W. Falcone

Page 8: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

Perturbed liquid structures and subsequent dynamics can be probed by time-resolved x-ray scattering

x-ray synchrotron beam

liquid jetarea detectorlaser

pulse

multilayer x-ray mirror~ 1 % BW

Page 9: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

(intramolecular term) (intermolecular term)

X-ray scattering as a function of angle

indicates local structure of WDM

• High Q reflects hard-core region, short length-scales

• Intermediate Q reflects lattice spacing; can be compared with EXAFS pair correlation function

• Low Q reflects long-range, mesoscopic properties

Page 10: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

Time-resolved local structural changes in H2O are seen upon charge injection

Difference signal at 100 ps following charge injection

S(Q)

Static scattering signal

• Implies molecular re-orientation around injected charge with similarities to thermally induced changes

Page 11: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

laser wiggler

bendmagnet

mirrorbeamline x-rays

wiggler

femtosecond electron bunch

bend magnet beamline

30 ps electronbunch

femtosecondlaser pulse

spatial separationdispersive bend

λW

electron-photon interaction in wiggler

femtosecond x-rays

e-beam

Ultrashort “sliced” x-ray pulses are available

Proposed by Zholents and Zolotorev, Phys. Rev. Lett., 76, 916,1996

Page 12: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

Prototype Slicing Beamline at the ALS

WIGGLER (W11)

BACK TANGENT PORT

BEAMLINE 5.3..1

LASER SYSTEM

BL 5.3.1X-RAY HUTCH

LASER TRANSPORT TUBE

SR05 SR04

SR06

PHOTON STOP

ALIGNMENT AND TIMING DIAGNOSTICS

Page 13: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

CalculatedElectron Density Distribution

-1200 -1000 -800 -600 -400 -200 0 20080

100120140160

180200

220240260

delay (fs)

-1000 -500 0 500 1000

1800

1900

2000

2100

2200

2300

2400

2500

2600

coun

ts

delay (fs)-1000 -500 0 500 1000

0

.2

.4

.6

.8

1.0

01234

-4-3-2-1

time (fs)

x/σ x

Schoenlein et al., Science, 287, 2237 (2000)

Femtosecond Pulses of Synchrotron Radiation

wiggler

bendmagnet

mirrorbeamline

e-beam

modulated electron bunch

visible synchrotron radiation

Laser System

BBO

ω2 = ~2 eV

ω1 = 1.55 eV

ω1+ ω2

delay

slit

Demonstration Measurements – Beamline 6.3.2

-3σx to +3σx

+3σx to +8σx

Beamline 5.3.1

delay (fs)-800 -600 -400 -200 0 200 400 600 800

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

195 fs(FWHM)

dP/d

ω (µ

W c

m) c

alc.

freq. (cm-1)

Coherent Synchrotron Radiation

-1000 -500 0 500 1000

elec

tric

field

time (fs)

0

Page 14: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

Ultrafast Structural and Electronic Transitions in VO2

Monoclinic RutileT > 340 K

Insulatorlow T

Metalhigh T

T < 340 K

3d//

2s2pσ

2pπ

4s

3dπ

3dσ

π bandsdxz,yz

3d//

2s2pσ

2pπ

4s

3dπ

3dσ

R

esis

tivi

ty

Temperature

Eg ≈ 0.7 eV

d// bandsdxy

V0

V4+

O2-

V4+

O2-

VO2

See talk by Matteo Rini on Thursday

Page 15: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

New Femtosecond Undulator Beamline 6.0 at the ALS

I. Insertion Device

• small-gap undulator/wiggler (1.5 T, 50 x 3cm period)

III. Laser: average power/repetition rate• 30 W (1.5 mJ per pulse, 20 kHz)

sector 6 - proximity to existing wiggler 200 fs x-rays

x102 increase in flux, x103 increase in brightness

x10 increase in flux

• highest possible flux and brightness 0.2-10 keV

II. Beamlines for Femtosecond X-ray Science

IV. Storage Ring Modifications• local vertical dispersion bump – sector 6 and/or 5

• isolation of femtosecond x-ray, 0.2-2 keV, 2-10 keV

wiggler

mirror

beamline

femtosecondx-rayse-beam

undulator

laser

monochromatorspectrograph

bend magnet

Page 16: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

New Beamline 6.0 at the ALS Synchrotron

soft x-ray branchline(250 eV – 2 keV)

hard x-ray branchline(2-10 keV)

soft x-ray spectrograph

hard x-ray hutch

Separate beamlines for 100 fs time resolution studies using hard and soft x-rays

sample chamber(dispersive soft x-ray)

40 kHz choppers

crystal monochromator

40 kHz femtosecondlaser system

Page 17: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

M203

Gratingmono

SampleChamberand slits

M201(behind wall)

First Light10/4/05

Femtosecond Soft X-ray Beamline 6.0.1.2

Page 18: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

X-Ray Chopper• Reduces power on samples and downstream optics• Absorbed power: 440 W • Water-cooled disk with 100 (or 200) slots spinning at 200 Hz • Frequency: 20 kHz matched to laser repetition rate• Opening time 2 microseconds

Page 19: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

Femtosecond Laser System

Electron beam interaction requirements: ~1.5 mJ pulse energy, 60 fs FWHM, at ~800 nm 20 kHz repetition rate, 30 W average power diffraction limited focusing, beam parameter: M2 1.1

Excitation pump pulses for time-resolved experiments: ~1 mJ pulse energy at 800 nm (OPA) 60 fs pulse duration, 20 kHz repetition rate ~500 ns relative delay

60 fs1.5 mJ

Oscillator Stretcher

Compressor2-Pass Amplifier 0.5 ns

2 mJ 0.5 ns300 µJ

<100 fs 2.0 nJ

0.5 ns1.0 nJ

<75 fs2.0 nJ

0.5 ns 300 µJ

Regen(20 kHz)

60 fs1 mJ

Compressor2-Pass Amplifier 0.5 ns

1.5 mJ 0.5 ns5 µJ

~500 ns delay

delay(~500 ns)

Ti:SAPPHIRE RODFARADAY

ROTATOR

Ti:SAPPHIRE ROD

OUTPUT BEAM

INPUT BEAM

HIGH REFLECTOR

PUMP BEAMNd:YLF (2ω)

~90 W, 10 kHz

PUMP BEAMNd:YLF (2ω)

~90 W, 10 kHz

PUMP BEAMNd:YLF (2ω)

~90 W, 10 kHz

PUMP BEAMNd:YLF (2ω)

~90 W, 10 kHz

λ/2 wave plate 77 K

77 K

cryogenic power amplifier

R. Wilcox, R. Schoenlein

Page 20: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

110 x 110 µm

60 x 560 µmSpot size

200 fs200 fsTime resolution (slicing)

20 kHz20 kHzRepetition rate

3 x 10-46 x 10-4Energy resolution (∆E/E)

1 x 109 (1/s)

1 x 1010 (1/s 0.1% bw)

Flux (70 ps pulses, at sample)

1 x 105 (1/s)

1 x 106 (1/s 0.1% bw)

Flux (fs slicing pulses, at sample)

2 – 10 keV120 – 1800 eV

Photon energy range

BL 6.0.1BL 6.0.1.2

70 fsPulse duration

20 kHzRepetition rate

1 mJPulse energy

800 nmλ

Laser system

For information contact: Phil Heimann at ALS, LBNL

Beamline 6.0 Data Sheet

Page 21: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

Femtosecond X-ray Flux

HHG flux from F. Krausz, laser: 10 fs, 3 mJ/pulse, 30 W

Plasma source flux in mrad2 laser: 40 fs, 1 mJ/pulse, 30 W (continuum includes projected 105 improvement)

103 104

104

105

106

107

108

photon energy (eV)

flux

(ph/

s/0.

1% B

W)

bend magnet flux (150 fs, 1 kHz)

undulator flux (200 fs, 20 kHz)(3 cm period, 1.5 m length, Bmax= 1.5 T)

HHG

plasma Kα

fs plasma continuum

ALS typical average x-ray fluxundulator ~1015 ph/s/0.1% BWbend-magnet ~1013 ph/s/0.1% BW

Cu Kα - 1010 ph/s/4π (proj. 1012 with Hg target)cont. 6x107 ph/s/4π (integ. from 7-8 keV)

300

Page 22: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

2008-09 Expected commissioning

Page 23: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

LCLS Science Thrust Areas

• Atomic, Molecular, and Optical (AMO) science

• High-energy-density (HED) science

• Diffraction studies of stimulated dynamics

• Coherent scattering studies of nanoscale fluctuations

• Nano-particle and single-molecule (non-periodic) imaging

See talk by Ingolf Lindau on Wednesday

Page 24: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

• Creating Warm Dense Matter • Generate ∼ 10 eV solid density matter

• Measure the equation of state

• Probing dense matter with Thomson Scattering• Perform scattering from solid density plasmas

• Measure ne, Te, <Z>, f(v)

• Plasma spectroscopy of Hot Dense Matter• Use high energy laser to create uniform HED plasmas

• Measure collision rates, redistribution rates, ionization kinetics

• Probing High Pressure phenomena• Use high energy laser to create steady high pressures

• Produce shocks and shockless high pressure systems

• Study high pressure matter on time scales < 1 ps

• Diagnostics: Diffraction, SAXS, Diffuse scattering, Thomson scattering

High Energy Density Science: One of Five Scientific Thrusts at the LCLS XFEL

CH

Al

FEL tuned to a resonance

XRSC

XFEL

dense heated sample

forward scattered signalback scattered signal ~ 100 µm

FEL

10 µm

100 µm

solid sample short pulse probe laser

High Energy Laser: 8 kJ, 120 ns≤

Non-collective scattering Collective scattering

AblatorAu shields

FEL-beam

Page 25: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

High-Energy-Density Matter Occurs Widely

•Hot Dense Matter (HDM) occurs in:• Astrophysical systems

• Plasmas

• Fusion experiments

•Warm Dense Matter (WDM) occurs in:• Cores of large planets

• Systems that start solid and end as a plasma

• Fusion experiments

HED

WDM

Hydrogen phase diagram

Page 26: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

c la s s ic a l p la s m a

d e n s e

p la s m a

Γ = 1

Γ = 1 0

∆ενσιτψ ( γ /χµ 3)

103

104

101

102

102 10410010−4 10−2 1

Γ = 1 0 0

η ιγ ηδ ε ν σ ιτψµ α ττε ρ

Al ρ-T phase diagram

Tem

per

atu

re (

eV)

WDM created by isochoric heatingwill isentropically expand sampling phase space

• XFEL can heat matter rapidly and uniformly to create:

• Using underdense foams allows more complete sampling

• Isochores (constant ρ)• Isentropes (constant entropy)

Al

10 µm

XFEL

Page 27: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

LCLS x-ray laser will enable HED spectroscopy• Schematic experiment

CH

Visible laser

0.1 µm

25 µ

m A

l

• t = 0 laser irradiates Al dot • t = 100 ps FEL irradiates plasma

CH

Al

XFEL tuned to 1869 eV

Observe emission with x-ray streak camera

• Simulations

He-like H-like

1s2

1s2l1s3l

1

23

107

2400200016001200Energy (eV)

after pump before pump

XFEL pump

Emission

He-like n = 2 3 4 5

2 3 4 H-like

105

103

101

Page 28: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

3-D x-ray tomographic reconstruction of dynamic fracture

Microstate conditions of shocked, high pressure materialscontrols material strength, spall, and phase transitions

Current: Post Processing x-ray scattering

• Diffraction ➙ lattice compression and phase change• SAXS ➙ sub-micron defect scattering• Diffuse ➙ dislocation content and lattice disorder

Shocked and incipiently

fractured single crystal Al slug

APSBeam

Future:Measure during pressure pulse

• LCLS will provide unprecedented fidelity to measure dynamics of the microstate with sub-picosecond resolution

Simulated x-ray scattering

LCLS

• LCLS HEDS end station will have sufficient signal to perform measurements during the high pressure phase see Belak, Lee, et al

Par

ticl

e d

ata

Free e-

Te

-300 -200 -100 0 100

LFCSLFCRPA Shift

Bound e-

Energy shift (eV)

-60 -40 -20 0

LFC

SLFC

RPA

Co

llect

ive

Page 29: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

These complement the standard instruments, e.g., VISAR and other optical

diagnostics

Challenge is to match experimental and theoretical capabilities for HEDS studies

Current Status Simulation

• MD simulation of FCC Cu taking 400,000 CPU hours(From LLNL)

Future with LCLS Dynamic Experiments

• Imaging capability• Point projection imaging

• Phase contrast • High resolution (sub-µm)

• Direct determination of density contrast

• Diffraction & scattering• Detection of high pressure phase

transitions

• Lattice structure, including dislocation & defects

• Liquid structure

• Electronic structure• Ionization

• Te, f(v)

Page 30: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

Future capabilities at LCLS will reduce uncertainties in EOS experiments

LCLS will offer unique capabilities for in situ real time probing

• Imaging capability• Point projection imaging

• Phase contrast • High resolution (sub-µm)

• Direct determination of density

• Diffraction and scattering• Detection of high pressure phase

transitions• Detection of melt under shock is

very difficult and results have lead to ambiguity and controversy

• Liquid structure• Electronic structure

• Ionization

• Te, velocity distribution

These complement the standard instruments, e.g., VISAR and other

optical diagnostics

Future

All current measurements maintained.Add direct, in situ, measurement of

temperature and densities.

0.8 kJ laser, 2ω, 1ns

Variable densityNon-collective

scatteringCollective scattering

CH ablatorAu shields

FEL-beam

Page 31: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

X-ray FEL will be used to probe HED matter

• Scattering from free electrons provides a measure of the Te, ne, f(v), and plasma damping

• Due to absorption, refraction and reflection neither visible nor laboratory x-ray lasers can probe high density

• FEL scattering signals will be well above noise for all HED matter

Al Scattering and absorption

10-2

10-1

100

101

102

103

104

Absorption or Scattering Length (1/cm)

2015105

Photon Energy (keV)

Photo-absorption

Scattering

Rayleigh - coherent Thomson - incoherent bound electrons Thomson - incoherent free electrons

FEL

Page 32: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

Scattering of the XFEL will provide data on free, tightly-, and weakly-bound electrons

• Weakly-bound and tightly-bound electrons depend on their binding energy relative to the Compton energy shift

• For a 25 eV, 4x1023 cm-3 plasma the XFEL produces104 photons from the free electron scattering

• Can obtain temperatures, densities, mean ionization, velocity distribution from the scattering signal

Schematic of X-ray scattering signal ( not to scale)

RayleighCoherentScattering~ f(Z2

tightly-bound)

ComptonScattering~ f(Zfree,ne,Te)

ComptonScattering~ f(Zweakly-bound)

~(2kbTe/mc2)1/2−∆ν/ν

−ην/µχ 2

0

Page 33: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

LCLSExperimental

Hall

Page 34: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

• Meet needs of an international HEDS community - e.g., high pressure and plasma physics - many facets of HDM/WDM research possible

• Current efforts to solicit support - range of users from universities to national labs

Proposal for HEDS end station endorsed by LCLS Science Advisory Committee

Page 35: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

Placement of a high-energy laser adjacent to x-ray FEL and target area

300’

LCLS

High Energy Laser

Top View of SLAC site

Characteristics of High Energy Laser

Page 36: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

S. Glenzer, G. Gregori, R. Bionta, H. Baldis, P. Heimann, H. Padmore, U. Bergmann, H. Merdji, P. Zeitoun, J. Seely, E. Förster

Develop Thomson scattering, SAXS, interferometry, and radiographic imaging

Diagnostic Development

R. W. Lee, M. Foord, H.K. Chung, D. Riley, F. Y. Khattak, E. Förster, F. Dorchies, J.-C. Gauthier, S. Tzortzakis, S.Bastiani-Ceccoti, C. Chenais-Popovics, P. Audebert, S. Rose, J. Wark, N. Woolsey, R. Schuch, K. Eidmann, F. Rosmej, S. Ferri

Use XFEL as a pump/probe for excited bound state populations

Plasma Spectroscopy

S. Glenzer, K. Budil, H.K. Chung, J, Dunn, S. Hau-Riege, R. London, K. Sokolowski-Tinten, J. Krzywinski, H. Fiedorowicz, A. Bartnik, V. Letal, K. Rohlena, K. Eidmann, D. Chambers, N. Woolsey, A. Andrejczuk, F. Dorchies, J. Gauthier, M. Fajardo, J. Dias, N. Lopes, G. Figueira, M. Bergh, T. Tschentscher

Use XFEL directly to create extreme states of matter at high temperature and density

XFEL / Solid Interaction

R. London, S. Hau-Riege, P. Young, H. K. Chung, W. Rozmus, R. Fedosejev, H. Baldis, V. N. Shlyaptsev, T. Ditmire, H. Fiedorowicz, M. Fajardo, A. Bartnik, F. Dorchies, J.-C. Gauthier, P. Audebert, V. Bychenkov, D. van der Spoel, C. Caleman, T. Möller, T. Tschentscher, H. Merdji

Create exotic, long-lived highly perturbed electron distribution functions in dense plasmas

XFEL / Gas Interaction

A. Nelson, J. Kuba, A. Andrejczuk, J. B. Pelka, J. Krzywinski, R. Sobierajski, K. Sokolowski-Tinten, L. Juha, M. Bittner, J. Krasna, T. E. Glover

Probe ablation/damage process to study structural changes and disintegration

Surface Studies

G. Collins, H. Lorenzana, J. Belak, P. Celliers, C.-S. Yoo, K. Budil, M. Koenig, A. Bennuzi, S. Clark, P. Heimann, R. Jeanloz, P. Alivisatos, R. Falcone, W. Nellis, A. Ng, T. Ao

Create shocks with a high-energy lasers and probe with the XFEL

Shock Phenomena

P. Heimann, S. Johnson, R. Lee, S. Tzortzakis, S.Bastiani-Ceccoti, C. Chenais, P. Audebert, F. Rosmej, R. Falcone, R. Schuch, A. Lindenberg, D. Chambers, J. Wark, S. Rose

Heat a solid with an optical laser or XFEL and XFEL to probe

Absorption Spectroscopy

K. Widmann, K. Budil, G. Collins, S. Glenzer, G. Gregori, M. Koenig, A. Bennuzi, A. Nelson, O. Landen, W. Nellis, A. Ng, P. Young, J. Benage, M. Taccetti, S. Rose, D. Schneider

Heat / probe a solid with an XFEL to provide material properties

Equation of State

H.-K. Chung, S. Glenzer, G. Gregori, S. Moon, O. Landen. K. Widmann, P. Young, M. Murillo, J. Benage, A. Lindenberg, A. Correa, R. Falcone, W. Nellis, W. Rozmus, A. Ng, T, Ao, J. Wark, J. Sheppard, R. Redmer, D. Schneider, F. Rosmej

Using the XFEL to uniformly warm solid density samples

Warm Dense Matter Creation

PARTICIPANTSDescriptionExperiment

LCLS HEDS end station proposal proposal(courtesy of Dick Lee)

Page 37: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

John N. Galayda, SLACJohn N. Galayda, SLAC

Linac Coherent Light Source Stanford Synchrotron Radiation LaboratoryStanford Linear Accelerator Center

The Subpicosecond Pulsed Source (SPPS)The Subpicosecond Pulsed Source (SPPS)

is an R&D facility for the LCLS FELis an R&D facility for the LCLS FEL

SLAC LinacSLAC Linac

1 GeV1 GeV 20-50 GeV20-50 GeVSPPSSPPSRTLRTL

9 ps9 ps 0.4 ps0.4 ps <100 fs<100 fs

50 ps50 ps

3km

Electron bunches generated now at SPPS are 80 fs in duration, Electron bunches generated now at SPPS are 80 fs in duration,

comparable to the bunches that will drive future x-ray FELs such as LCLScomparable to the bunches that will drive future x-ray FELs such as LCLS

A 2m undulator delivers 80 fs duration hard x-ray pulsesA 2m undulator delivers 80 fs duration hard x-ray pulses

Page 38: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

Electro-Optical Sampling for timing at the SPPSElectro-Optical Sampling for timing at the SPPS

200 200 µµm ZnTe crystalm ZnTe crystal

ee−−

Ti:s Ti:s laserlaser

Adrian Cavalieri et al., Adrian Cavalieri et al., U. Mich.U. Mich.

Single-ShotSingle-Shot

<300 fs<300 fs

170 fs rms170 fs rms

Timing JitterTiming Jitter

ee−− temporal information is encoded temporal information is encoded on transverse profile of laser beamon transverse profile of laser beam

Page 39: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

Crossed-Beam Topography for timing at the SPPS

• Crossed-beam technique transforms temporal information into spatial information.• Measures complete time history in a single shot.• Position of edge indicates x-ray/laser timing

excitation region

time

Page 40: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

InSb melting: (111) vs. (220) Reflection

•X-ray probe depth is the same for the two reflections (~50 nm)Measurements conducted under identical laser excitationconditions.

Page 41: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

QuickTimeª and aYUV420 codec decompressor

are needed to see this picture.

Jitter between SPPS X-Ray Source and Ultrafast Laser

As Measured by Streak Camera

Laser fiducial: dual pulses separated by 6 ps

SPPS x-ray pulsetime

Page 42: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

CsI Photocathode -10 kV

Meander sweepplates

Magnetic lens 2-D Detector

Signal fromexperiment

Tim

e

Space

RecordedStreak image

Plates parallel to timing slit

Swee

p

0.25 mm

Ultrafast x-ray streak camera detectors Ultrafast x-ray streak camera detectors can also enable time-resolved x-ray sciencecan also enable time-resolved x-ray science

typical detection quantum efficiency is low

and timing jitter limits temporal resolution to a few ps

20 30 40 50 60 70 80 90 100 110

0

1000

2000

3000

4000 Peak Profile Gaussian Fit of Peaks

Intensity (a.u.)

Time (ps)

33 ps

Main Beam

Page 43: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

QE in Normal Incidence vs. Grazing Incidence

Photocathode Anode

Transmission Photocathode

X-rayse- to detector

QE ~ 0.1 - 10 %

X-rays

Thickness optimization

e- to detector

X-rays

Match X-ray penetration and secondary electron escape depths

Reflection Photocathode

Anode

Photocathode

e- to detector

QE ~ 100 %

X-rays

e- to detector

Page 44: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

Reflection photocathodes demonstrated to have high quantum efficiency at grazing incidence

E = 500 eV E = 1 keV

Unity Pulsed Quantum Efficiency demonstrated at 1 keV. Near-unity at 500 eV.

Angular dependence of PQE different to TEY:

Batch escape probability compared to single electron escape probability

No significant field dependence observed.

Page 45: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

Ultrafast Streak Camera Detectors

Can we achieve: 100 fs temporal resolution in the x-ray spectrum? 100 % quantum efficiency / single photon detection?

Page 46: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

Storage rings provide ~ 100-ps duration pulses (perhaps few ps pulses)- of spontaneous x-ray radiation- with high average brightness at high repetition rate- and can be “sliced” to provide ultrashort pulses at moderate repetition rate

Linacs provide ultrashort pulses - of soft and hard x-ray FEL radiation - with high peak brightness(photons/pulse/BW = 1012 w/FEL vs. 107 w/spontaneous vs. 103 w/slicing at 100 fs)- at low repetition rate

Recirculating Linacs provide ultrashort pulses - of soft x-ray FEL or HGHG radiation, and hard x-ray spontaneous radiation - at moderate repetition rate

Storage Ring vs. Linac vs. Recirculating LinacX-Ray Sources

Page 47: X-Ray Scattering Studies of Materials Using Ultra …...soft x-ray spectrograph hard x-ray hutch Separate beamlines for 100 fs time resolution studies using hard and soft x-rays sample

John N. Galayda, SLACJohn N. Galayda, SLAC

Linac Coherent Light Source Stanford Synchrotron Radiation LaboratoryStanford Linear Accelerator Center

UC Berkeley DESY

Roger W. Falcone Jochen Schneider Aar on Lindenber g Thom as Tschent scher Donnacha Lowney Horst Schult e-Schr epping Andr ew M acPhee

APS Ar gonne Nat Õ l Lab BioCARS

Denni s M i l l s Kei t h Mof f at Rei nhar d Pahl

MSD Ar gonne Nat i onal Lab ESRF

Paul Fuos s Fr ances co Set t e Bri an Stephens on Ol i vi er Hi gnet t e J uana Rudat i U. of Mi chi gan SLAC

David Reis Paul Emma Philip H. Bucksbaum Patrick Krejcik Adrian Cavalieri Holger Schlarb Soo Lee John Arthur David Fritz Sean Brennan Matthew F. DeCamp Roman Tatchyn

Jerome Hastings Kelly Gaffney NSLS Copenhagen University D. Peter Siddons Jens Als-Nielsen Chi-Chang Kao

Uppsala University

Janos Hajdu Lund University David van der Spoel Jšrgen Larsson Richard W. Lee Ola Synnergren Henry Chapman Tue Hansen Carl Calleman Magnus Bergh Chalmers University of Technology

Gosta Huldt Richard Neutze

SPPS Collaboration

R. AbelaT.K. Allison

A. BelkacemC. BresslerA. CavalleriM. CherguiA. Correa

R.W. FalconeT.E. Glover

C.M. Greaves P.A. Heimann

M. HertleinS.L. Johnson

M. KaiserJ. LarssonR.W. Lee

A.M. LindenbergD. Lowney

A.G. MacPheeT. Mathews

F. van MourikM. Saes

R.W. SchoenleinH.A. Padmore

J.S. WarkD. WeinsteinA.A. Zholents

M.S. Zolotorev

ALS BL 6 Collaboration

LCLS Collaboration

Five science teams