x z y r but vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin cos y = r sin sin ...

36
x z y q f r but q & f vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sinq cosf y = r sinq sinf z = r cosq r = (x 2 + y 2 + z 2 ) ½ q = Acos(z/r) f = Asin{y/(rsinq)} dV = dt = r 2 sinq dr df dq or ….. dV(shell) = dx • dy • dz = 4 p r 2 sinq dr df dq Polar Coordinates

Post on 19-Dec-2015

218 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

x

z

y

q

f

r

but q & f vary0 - 180o & 0 - 360o

r2 = x2 + y2 + z2

x = r sin q cosfy = r sin q sinfz = r cosqr = (x2 + y2+ z2)½

q = Acos(z/r)f = Asin{y/(rsinq)}

dV = dt = r2 sinq dr df d q or …..dV(shell) = dx • dy • dz = 4pr2 sinq dr df dq

Polar Coordinates

Page 2: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

CM - 2D – Particle on a ring“If a particle is confined to the xy plane, then it has angular momentum along the z axis.

angular momentum: Lz = mvr

Lz = x • py – y • px

E = K + V = K = ½mv2 • (m/m) = p2/2m = Lz2/2mr2 = Lz

2/2I

moment of inertia: I = mr2

Page 3: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

QM - 2D – Particle on a ring“If a particle is confined to the xy plane, then it has angular momentum along the z axis.

Ĺz = x • py – y • px = -iħ d( )/df

ĤY = Ĺz2/2I Y = -ħ2/2I • d2Y/df2 = EY

E = m2ħ2/2I

y = Neimf

y = (2p)-1/2 eimf

N2 • ∫02p e-im f eim f d f = 1

quantum #, m (or ml ) = 0, ±1, ±2, ±3, ….

Page 4: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

2D – Particle on a ring

y = (2p)-1/2 eimf

CM E = ½mv2 = p2/2m = J2/2I (I = mr2)

QME = L2/2I (I = mr2)L = hr/l = mlħl = hr/LE = (mlħ)2/2I

moon data m = 7.3 x 1022 kg v = 1,020 m s-1

r = 384000 km1 revolution = 27.3 days

What is I?What is E (CM)?

What is J?

What quantum state ml?

Page 5: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

Goal - Separate problem into 2 distinct one-particle problems.

Two Particle Problems

Particle 1: Mass = m1 + m2

Position = center of mass XYZ e.g. X = (m1x1 + m2x2)/(m1 + m2)

example: translational motion of diatomic molecule (O2)

Particle 2: Mass = m = m1m2/(m1+ m2) Position = position of smaller particle relative to the center of mass

use x, y, z or (best) polar coordinates; r, , qf

example: rotation of 2 bodies attached at fixed distance (O2)

Page 6: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

x -1 +1

e.g. H2 moleculem1 = m1 + m2 ~ 2 amu

Two Particle Problems

x = (m1x1 + m2x2)/(m1 + m2)

x1 = 0

m2 = m1m2/(m1 + m2) = ½amu

xcm = 0r2 = ½ bond distance = 0.60 Å

e.g. H atomm1 = m1 + m2 ~ 1 amu x = (m1x1 + m2x2)/(m1 + m2)

x -1 +1x1 ~ -1

m2 = m1m2/(m1 + m2) ~ me

xcm ~ -1 = -0.99891 r2 ~ r = 0.529 Å

m2 = 9.04 x 10-28 kgm2 = 1.67 x 1010-24 kg

Page 7: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

r2 = x2 + y2 + z2

x = r sin q cosfy = r sin q sinfz = r cosqr = (x2 + y2+ z2)q = Acos(z/r)f = Asin{y/(rsinq)}

dt = r2 dr • sinq d q • df

Ĥ = -ħ2/2I {d2( )/dq2 + cotq d( )/dq + 1/sin2q d2( )/df2} & cot = q cos /q sinq

Ĥ = Ĺ2/2I + V̂

3D – rotations (fixed r) rigid rotor

0 - 360oq

fr

0 – 180o

Ĺ2 = -ħ2 (d2( )/df2 + cot q d( )/dq + 1/sin2dq d2( )/df2) L = {ℓ(ℓ+ 1)}½ħ

Ĺz = -iħ d( )/d f Lz = mℓħ

Page 8: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

Fml = (2p)-1/2 exp(imlf)Ql,ml

associated Legendre polynomials

Q0,0 = 2-1/2

Q1,0 = (3/2)1/2 cos qQ1,1 = (3/4)1/2 sin qQ2,0 = (5/8)1/2 (3cos2 - 1)qQ2,1 = (15/4)1/2 sin q cos qQ2,2 = (15/16)1/2 sin2 q

Yrot = Fml Ql,ml After solving Ĥy = Eroty ....

where l = 0, 1, 2, …

degeneracy = 2l + 1

ml = -l, - l +1, - l +2, .... + l

Ĥ = -ħ2/2I {d2( )/dq2 + cotq d( )/dq + 1/sin2q d2( )/df2}

L = {ℓ(ℓ+ 1)}½ħĹ2 = -ħ2 (d2( )/df2 + cot q d( )/dq + 1/sin2dq d2( )/df2) L = {ℓ(ℓ+ 1)}½ħ

Lz = mℓħĹz = -iħ d( )/d f = mℓħ

Erot = Eq + Ef = {l(l + 1)-ml2}(ħ2/2I) + ml

2(ħ2/2I) = l(l + 1)ħ2/2I I = mr2

Page 9: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

Fml = (2p)-1/2 exp(imlf)Ql,ml

associated Legendre polynomials

Q0,0 = 2-1/2

Q1,0 = (3/2)1/2 cos qQ1,1 = (3/4)1/2 sin qQ2,0 = (5/8)1/2 (3cos2 - 1)qQ2,1 = (15/4)1/2 sin q cos qQ2,2 = (15/16)1/2 sin2 q

Yrot = Fml Ql,ml After solving Ĥy = Eroty ....

where l = 0, 1, 2, …

degeneracy = 2l + 1

ml = -l, - l +1, - l +2, .... + l

Ĥ = -ħ2/2I {d2( )/dq2 + cotq d( )/dq + 1/sin2q d2( )/df2}

Erot = Eq + Ef = {l(l + 1)-ml2}(ħ2/2I) + ml

2(ħ2/2I) = l(l + 1)ħ2/2I I = mr2 Eq for E0,0 = 0 since Q0,0 = 2-1/2 and Erot = 0 + 0 = 0

Eq for E1,0 = Ĥ = q -ħ2/2I [d2( )/dq2 + cot q • d( )/dq]q = Eq q

= -ħ2/2I • (3/2)1/2 [d2(cos q)/dq2 + cot q • d(cos q)/dq] = Eq (q cot = q cos /q sin )q = -ħ2/2I • (3/2)1/2 [-1 - cos /q sin q • sinq] = (-ħ2/2I • -2) q

= ħ2/ I • qEq = ħ2/I and Erot = ħ2/I + 0 = ħ2/I =

(+1)ħ2/2I

Page 10: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

angular momentum l = 0 mℓ = 0

L = 0 Lz = 0

Ĺ2 = -ħ2 (d2( )/df2 + cot q d( )/dq + 1/sin2dq d2( )/df2) L = {ℓ(ℓ+ 1)}½ħ

Ĺz = -iħ d( )/d f = mℓħ

Yrot = Q • F (spherical harmonics) … is an eigenfunction of the Ĺz and Ĺ2 operators but not Ĺ, Ĺx nor Ĺy.

The overall angular momentum scalar value is determined by (Ĺ2)½ .

Note that this is not a diagram indicating where the electron may be found.Rather it is a vector diagram representing the limitations on the values of the angular momentum of the electron. The electron with l = 0 (an s orbital)Has no z-component to its angular momentum – it is not confined to a circle.

Page 11: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

angular momentum l = 0, 1

L = 21/2 ħ Lz = +1ħ

L = 0 Lz = 0

L = 21/2 ħ Lz = -1ħ

Ĺ2 = -ħ2 (d2( )/df2 + cot q d( )/dq + 1/sin2dq d2( )/df2) L = {ℓ(ℓ+ 1)}½ħ

Ĺz = -iħ d( )/d f = mℓħ

Yrot = Q • F (spherical harmonics) … is an eigenfunction of the Ĺz and Ĺ2 operators but not Ĺ, Ĺx nor Ĺy.

The overall angular momentum scalar value is determined by (Ĺ2)½ .

Page 12: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

angular momentum l = 2

L = 61/2 ħ Lz = +2ħ

L = 61/2 ħ Lz = +1ħ

L = 61/2 ħ Lz = 0

L = 61/2 ħ Lz = -1ħ

L = 61/2 ħ Lz = -2ħ

Page 13: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

The Hydrogen atom a 3D, 2 particle problem

.

Y = yN ye yN is translational motion of H atom

ye is electron motion relative to nucleus

e(r, , q f) = () () R(r)

“Radial function”

Spherical harmonics

Page 14: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

Force between two charges in vacuum F = q1 • q2/(4peo • r

2) (N = kg m s-2)

V = F • r = q1 • q2/(4peor) (J = kg m2 s-2)

Ĥ = y R Q F

-ħ2/2m [1/r2 d(r2dy/dr)/dr + 1/(r2sinq) d(sinqdy/dq)/dq + 1/(r²sin²q) d²y/df²] - Ze2/(4peor)

= Ey

Hamiltonian: Ĥ = y Ky + Vy = Ey

e(r, , q f) = R(r) () ()

V = -Ze2/(4peor)Applies to H atom and any H-like ion with only 1 e-.

K (R(r) () () ) Vy

Page 15: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

Spherical harmonics () () These solutions are identical to the rigid rotor model

Ĥ = y -ħ2/2m [1/r2 d(r2dy/dr)/dr + 1/(r2sinq) d(sinqdy/dq)/dq + 1/(r²sin²q) d²y/df²] - Ze2/(4peor)

reduces to ……

ESH = ħ2l(l + 1)/2mr2

ĤR = -ħ2/2m [1/r2•d(r2dR/dr)/dr + {ħ2l(l+1)/2mr2 - Ze2/(4peor)}R

Ĥ(r, , q f) = Ĥ(ℓ,mℓ() mℓ()) + Ĥ R(r)

Page 16: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

Ĥ R = -ħ2/2m [1/r2•d(r2dR/dr)/dr + {ħ2l(l+1)/2mr2 - Ze2/(4peor)}R

As the solutions to the Q function already existed in the form of the associated Legendre Polynomials …..An exact solution to the Hamiltonian for R exists using pre-existing mathematics ….. the associated Laguerre Polynomials

n,ℓ,mℓ (r, , q f) = ℓ,mℓ() mℓ() Rn,ℓ(r)

These solutions contain the quantum numbers (n and ℓ) such that ….• n = 1, 2, 3, ….. (principle quantum #)• ℓ = 0, 1, … n – 1 (angular momentum q# as in Q)• mℓ = -ℓ, -ℓ+1, … +ℓ (magnetic quantum number as in F and )Q

Page 17: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

R(r) = radial function

R = cst * (n-1)th order polynomial in r * e-Zr/2a

a = 4peoħ2/me2 (units = m) which happens to equal the Bohr orbit radii (0.529Å for H)

n,ℓ,mℓ (r, , q f) = ℓ,mℓ() mℓ() Rn,ℓ(r)

ĤR = -ħ2/2m [1/r2•d(r2dR/dr)/dr+ {ħ2l(l+1)/2mr2 - Ze2/(4peor)}R = ER

E = - Z2e4m/(8eo2h2n2) eq 11.66

Page 18: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

What is ynlm?

y100 = 1s = (p-½) • (Z/a)3/2 • exp(-Zr/a)

y200 = 2s = (32 )p -½ • (Z/a)3/2 • {2-(Zr/a)} • exp(-Zr/a)

y210 = 2pz = (32p)-½ • (Z/a)5/2 • r • exp(-Zr/2a) • (cosq)

y211 = (64p)-½ • (Z/a)5/2 • r • exp(if) • exp(-Zr/2a) • sinq

y21-1 = (64p-½) • (Z/a)5/2 • r • exp(-if) • exp(-Zr/2a) • sinq

2px = 2-1/2(y211 + y21-1) 2py = -i2-1/2(y211 - y21-1)

If any 2 wave functions satisfy H and give the same E, then any linear combination of those 2 wave functions (renormalized) will also give the same E.

2px = (32 )p -½ (Z/a)5/2 • r • exp(-Zr/2a) • sincos

2py = (32 )p -½ (Z/a)5/2 • r • exp(-Zr/2a) • sinsin

2pz = (32 )p -½ (Z/a)5/2 • r • exp(-Zr/2a) • cos

a = 4peoħ2/me2 (units = m)

Page 19: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

-0.500

0.000

0.500

1.000

1.500

2.000

0 2 4 6 8 10 12 14 16 18 20

R-10 R-20 R-30 R-10 R-20 R-30

1s

2s

3s

H-atom – Radial Functions

Page 20: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0 2 4 6 8 10 12 14 16 18 20

R-21 R-31 R-32 R-21 R-31 R-32

2p

3p

3d

H-atom – Radial Functions

Page 21: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

dV = dx dy dz = d = 4pr2 dr sin d d

dV = dx dy dz

dV

dV(cube) = dvxdvydvz = ? dr

dV = 4p(r+dr)3/3 – 4pr3/3 = 4r2dr

4pr3/3 + 4pr2dr + 4prdr2 + 4pdr3/3

Page 22: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

-0.100

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0 2 4 6 8 10 12 14 16 18 20

R-10 R-20 R-30

r2R2

1s

2s

3s

Probability = r2R2 R2

Even though the radial function for s orbitals is maximal at r = 0 the r2 term in dt, drops the probability to 0 at the nucleus.

r2R2

r/a

Page 23: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

-0.100

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0 2 4 6 8 10 12 14 16 18 20

R-10 R-20 R-30

r2R2

1s

2s

3s

Y1s = (p-½) • (1/a)3/2 • exp(-r/a)

r/a

rmp = r when d (r2Y1s)dr = 0 = a

Page 24: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0 2 4 6 8 10 12 14 16 18 20

R-21 R-31 R-32

r2R2

2p 3p

3d

Page 25: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

1 2 3 4 5 6 7

-16.00

-14.00

-12.00

-10.00

-8.00

-6.00

-4.00

-2.00

0.00

Ĥ = y -ħ2/2m [1/r2 d(r2dy/dr)/dr + 1/(r2sinq) d(sinqdy/dq)/dq + 1/(r²sin²q) d²y/df²] - Ze2/(4peor)

= E y and = E = -Z2e4m/(8eo2h2n2) eq

11.66

eV

Page 26: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

Probability = ∫e* e dt = 4 p ∫r

(r+dr) r2R dr • ∫q(q+dq) sin d • ∫f(f+df) d

e(r, , q f) = () () R(r)

1 = 4 p ∫0∞ r2R dr • ∫0p sin d • ∫02p d

= 1 1 1

prob = 4 p ∫r(r+dr) r2R dr (over all space)

Page 27: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

Probability = ∫e* e dt

Prob = 4 p ∫00.1Å r2R2 dr = 4 p ∫0

0.189a r2R2 dr

51

R = 2 (1/a)3/2 exp(-r/a) R2 = 4/a3 exp(-2r/a)

Prob = 16 /p a3 ∫00.189a r2exp(-2r/a) dr

∫ r2exp(-2r/a) dr = (-ar2 • e-2r/a)/2 – (-a • ò r e-2r/a dr)

= (-ar2 • e-2r/a)/2 – (-a • a2/4 • e-2r/a • (-2r/a – 1) ]00.189a

ò xm ecx dx = (xm • ecx)/c – m/c • ò x(m-1) ecx dx

ò x2 ecx dx = (x2 • ecx)/c – 2/c • ò x ecx dx

ò x ecx dx = ecx)/c2 • (cx – 1) c = -2/a

Prob = 4 p • 4/a3 [(-ar2 • e-2r/a)/2 – (-a • a2/4 • e-2r/a • (-2r/a – 1) ]00.189a

a (Å) Z r -Zr/a A2 e-2zr/a r2/b -2r/b2 2/b3 e-zr/a Prob0.529 1 1.00E-01 -3.78E+00 27.0 0.68518 -2.65E-03 -1.40E-02 -3.70E-02 1 6.80E-030.529 10 1.00E-01 -3.78E+01 27020.5 0.02281 -2.65E-04 -1.40E-04 -3.70E-05 1 7.28E-01

Page 28: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

What is an orbital?

the size of the orbital depends on confidence level desired. e.g. ....

0r r2R dr * 0

p sinq Q dq * 02p F df = 0.9… says that the probability is 90% of finding e-

within the distance r of the nucleus. r is different at different q & f angles for non s orbitals.

The shape of an orbital is the volume enclosed by a surface of constant probability density = |2| d

a one electron spatial wave function

Page 29: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

y100/1s (p-1/2)(Z/a)3/2 exp(-Zr/a)

y200/2s (32 )p -1/2(Z/a)3/2 (2-Zr/a) exp(-Zr/2a)

y21-1 (64 )p -1/2 (Z/a)5/2 sin q exp(-if) r exp(-Zr/2a)

y211 (64 )p -1/2 (Z/a)5/2 sinq exp(if) r exp(-Zr/2a)

2px (32 )p -1/2(Z/a)5/2 r exp(-Zr/2a) sinqcosf

2py (32 )p -1/2(Z/a)5/2 r exp(-Zr/2a) sinqsinf

y210/2pz (32 )p -1/2(Z/a)5/2 r exp(-Zr/2a) cosq

(2px)2 (32 )p -1(Z/a)5 r2 exp(-Zr/a) sin2qcos2f

(2py)2 (32 )p -1(Z/a)5 r2 exp(-Zr/a) sin2qsin2f

(2pz)2 (32 )p -1(Z/a)5 r2 exp(-Zr/a) cos2q

Prob = |2| d

0r r2R dr * 0

p sinq Q dq * 02p F df = 0.9

Page 30: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

2s

2px

2py

2pz

r/a

Prob: = 90 & = 0

r222px

2s

2py & 2pz

Page 31: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

2s

2px

2py

2pz

r/a

Prob: = 90 & = 90

r222py

2s

2px& 2pz

Page 32: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.00.00

0.02

0.04

0.06

0.08

0.10

0.12

1s 2s 2px 2py 2pz

r/a

Prob: = 45 & = 35

r22

2py

2px

2pz

2s

1s

Page 33: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

angular momentum l = 0 mℓ = 0

L = 0 Lz = 0

Ĺ2 = -ħ2 (d2( )/df2 + cot q d( )/dq + 1/sin2dq d2( )/df2) L = {ℓ(ℓ+ 1)}½ħ

Ĺz = -iħ d( )/d f = mℓħ

Yrot = Q • F (spherical harmonics) … is an eigenfunction of the Ĺz and Ĺ2 operators but not Ĺ, Ĺx nor Ĺy.

The overall angular momentum scalar value is determined by (Ĺ2)½ .

Page 34: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

angular momentum l = 1 mℓ = 0

L = √2ħ Lz = 0

Ĺ2 = -ħ2 (d2( )/df2 + cot q d( )/dq + 1/sin2dq d2( )/df2) L = {ℓ(ℓ+ 1)}½ħ

Ĺz = -iħ d( )/d f = mℓħ

Note that this is not a diagram indicating where the electron may be found.Rather it is a vector diagram representing the limitations on the values of the angular momentum of the electron. The electron with l = 0 (an s orbital)Has no z-component to its angular momentum – it is not confined to a circle.

Page 35: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

angular momentum l = 0, 1

L = 21/2 ħ Lz = +1ħ

L = 0 Lz = 0

L = 21/2 ħ Lz = -1ħ

Ĺ2 = -ħ2 (d2( )/df2 + cot q d( )/dq + 1/sin2dq d2( )/df2) L = {ℓ(ℓ+ 1)}½ħ

Ĺz = -iħ d( )/d f = mℓħ

Yrot = Q • F (spherical harmonics) … is an eigenfunction of the Ĺz and Ĺ2 operators but not Ĺ, Ĺx nor Ĺy.

The overall angular momentum scalar value is determined by (Ĺ2)½ .

Page 36: X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

angular momentum l = 2

L = 61/2 ħ Lz = +2ħ

L = 61/2 ħ Lz = +1ħ

L = 61/2 ħ Lz = 0

L = 61/2 ħ Lz = -1ħ

L = 61/2 ħ Lz = -2ħ