youngjoo chung - tutorial on symbolic computing with mathematica [2011] [p47]

Upload: galeotto-marzio

Post on 02-Jun-2018

228 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    1/47

    Tutorial

    on

    Symbolic Computing

    withMathematica

    Youngjoo Chung

    School of Info. and Comm., GIST

    [email protected]

    2011. 7. 7

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    2/47

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    3/47

    The concept of Mathematicais to create once and for all a single system that could handle

    all the various aspects of technical computing in a coherent and unified way.

    Manipulation of the very wide range of objects involved in technical computing using only

    a fairly small number of basic primitives (over 3,000 built in the kernel of version 7). The functionality can be easily extended through user-defined functions and external

    programs.

    Platform-independent interactive documents known as notebooks (.nb files)

    System-provided macros and user-defined macros in packages (.m files)

    Interactive and non-interactive sessions

    Communication with external programs using MathLink

    Mathematicacomputing environment

    TCP/IP

    mle.exeMathLink

    Standard Packages

    Mathematica

    Kernel

    Windows/Unix

    Platform

    Windows/Unix

    Platform

    Add-On Packages

    User Packages

    Other Packages

    User Frontend

    Numerical

    Analysis

    Control

    Instrumenta

    External applications are written in C/C++.

    Mathematicais used for both data input and output.

    External applications andMathematicacommunicate via MathLink.

    The functionality can be extended through user-defined functions and external programs.

    More information available at http://www.wolfram.com

    Mathematica Tutorial.nb 3

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    4/47

    Algebraic Calculation

    Algebraic Calculations (MathematicaTutorial)

    Symbolic Calculations (MathematicaTutorial)

    Expand

    Factor

    Apart

    Together

    Simplify

    Basic Algebra

    Polynomial Algebra (MathematicaGuide)

    Polynomial Systems (MathematicaGuide)

    Elementary Functions

    Elementary Functions (MathematicaGuide)

    Trigonometric Functions

    Trigonometric Functions (MathematicaGuide)

    Trigonometric Expressions (MathematicaTutorial)

    Complex Variables

    Complex Numbers (MathematicaGuide)

    Functions of Complex Variables (MathematicaGuide)

    Flow Control

    Conditionals (MathematicaGuide)

    Loops and Control Structures (MathematicaTutorial)

    Flow Control (MathematicaGuide)

    Formula Manipulation

    4 Mathematica Tutorial.nb

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    5/47

    Formula Manipulation

    Formula Manipulation (MathematicaGuide)

    Manipulating Equations (MathematicaGuide)

    User Package Functions

    Mathematica provides a solid foundation for symbolic computing and a number of support-

    ing functions.

    Built-in kernel functions

    User-defined functions to complement the built-in kernel functions

    A mechanism is needed to facilitate the algebraic manipulation of mathematical expressionswith the following properties:

    Seamless integration with the computing environment of Mathematica

    Selective targeting of the object to apply functions

    Improved handling of subscripts (a1), tildes (), hats (), etc.

    On-line setting and clearing of attributes

    Addition of comments

    Improved handling of derivatives, integrals and summations

    Minimal use of variables

    Algebraic manipulation of formulas using symbolic computing

    Mathematica is not a word processor or an equation editor.

    Application of functions

    Substitution using mathematical identities

    Allows focusing on the principles instead of time-consuming and error-prone calculations.

    Good readability

    Minimization of human errors during calculations

    Expressions that closely resemble the traditional mathematical style, e.g., subscripts and

    vector notations

    A large collection of user-defined functions

    Basic Algebra

    Differentiation

    Integration

    Summation

    Trigonometric Functions

    Complex Variables

    Vectors and Matrices Polynomials and Series

    Functional Analysis

    Equations

    Operator Analysis

    Plotting

    Mathematica Tutorial.nb 5

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    6/47

    A large collection of user-defined functions

    Basic Algebra

    Differentiation

    Integration

    Summation

    Trigonometric Functions

    Complex Variables

    Vectors and Matrices

    Polynomials and Series

    Functional Analysis

    Equations

    Operator Analysis

    Plotting

    Etc.

    MPMAF

    An abbreviation ofMPMapApplyFunc

    The platform for algebraic manipulation of all or parts of an expression

    User-defined functions

    The function names start with the prefix MP.

    Algebraic manipulation of expressions

    Mathematical identities Can be used separately independent of the macro MPMAF, in which case the features

    provided by the options of MPMAFcannot be used.

    Basic Algebra

    Expansion

    ExpandAHx+ aL2E

    a2 +2 a x+ x2

    The power exponent must be an integer. Otherwise, useMPExpandBinomial.

    MPExpandBinomial@Hx+aLn, kDMPEvalSum@%D

    k=0

    n ak x-k+n n !

    k !H- k +nL!Ha+ xLn

    6 Mathematica Tutorial.nb

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    7/47

    MPExpandBinomial@Ha+ b +cLn, k, lDMPEvalSum@%DPowerExpand@%D

    k=0n

    l=0-k+n ak bl c-k-l+n n !

    k !l !H- k -l + nL!

    cnb +c

    c

    na+ b +c

    b+ c

    n

    Ha+ b +cLn

    Factoring

    FactorAx2 +Ha+ bLx +a bEHa+ xL Hb +xL

    MPFactor

    MPFactor@a+ b, aD

    a 1+b

    a

    Reduction of fractions

    x2

    x+ a

    Hx +aL2 -a2 - 2 aHx+ aL +2 a2

    x+ a

    x2

    a+ x

    - a2 -2 a x +Ha+ xL2a+ x

    ApartB x2

    x+ a, xF

    - a +x +a2

    a+ x

    MPApart

    MPApartB sx2 ex

    n2 e0 - ex+

    sy2 ey

    n2 e0 - ey+

    sz2 ez

    n2 e0 - ez,9ex, ey, ez=F

    %. - sx2 - sy2 -sz2 - 1

    - sx2 - sy

    2 -sz2 -

    n2 sx2 e0

    - n2 e0+ ex

    -

    n2 sy2 e0

    - n2 e0+ ey

    -n2 sz

    2 e0

    - n2 e0+ ez

    - 1 -n2 sx

    2 e0

    - n2 e0+ ex

    -

    n2 sy2 e0

    - n2 e0+ ey

    -n2 sz

    2 e0

    - n2 e0+ ez

    Separation of variables for solving differential equations

    Mathematica Tutorial.nb 7

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    8/47

    y

    x 2 x y

    MPMAFB%, MPSepVars,8All, x, Side Right,

    MPEvalInt, All,

    MPSolve,8All, y

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    9/47

    MPTrigToDoubleACos@xD2, CosE1

    2H1+ Cos@2 xDL

    Complex Variables

    Asterisk (*) is interpreted as the complex conjugate

    MPComplexExpandAHu+vL*, u, TargetFunctions ConjugateE

    v+u*

    The built-in function ComplexExpand gives a rather different (even though equivalent)

    result.

    ComplexExpand@Conjugate@u+vD, u, TargetFunctions ConjugateD

    v+

    1

    2Hu+Conjugate@uDL

    CoshB 12

    Hu -Conjugate@uDLF- v+ 12 Hu+Conjugate@uDL SinhB 12

    Hu- Conjugate@uDLF

    The exponential form of a complex number

    MPComplexToExp@x+ yD

    ArcTanA y

    xE

    x2 +y2

    Polynomials and Series

    Eliminate the second highest order term

    MPMergePolyAx3 +a x2 +c, xE

    -a3

    27+c -

    a2 x

    3+

    a

    3+x

    3

    Transform a polynomial by making a replacement of the variable

    MPTransPolyAx3 +a x2 +c, x, a +xE

    c+ a2 Ha+ xL- 2 aHa +xL2 +Ha +xL3

    A case of two variables

    MPTransPolyAx2 Hy +aL,8x, y

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    10/47

    MPTaylorB 1 +x , x, 3F

    1+x

    2-

    x2

    8+

    x3

    16

    MPTaylorB 1 +Hx+ DxL2 , Dx, 1F

    1 +x2 +xDx

    1+ x2

    MPAFE@y@xD, MPTaylor,8All, x- x0, 2, Variables x

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    11/47

    Differentiation

    The built-in derivative operator D, or , evaluates the expression immediately.

    D@f@xD, xDf@xD

    The total derivative operator Dtassumes all symbols are dependent variables.

    Dt@a f@xD, xDDt@a, xDf@xD+ a f@xD

    The partial differential operator

    xdelays the evaluation until the commandMPEvalDor

    MPExpandDis encountered.

    y 3

    x2 yHa f +b gL

    MPMAF@%, MPExpandD,8At@2D,8f, g

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    12/47

    Transformation of variables

    MPTransDB 2 f

    w2, VT :w, l, w 2pc

    l>F

    l3

    2 c2 p2

    f

    l+

    l4

    4 c2 p2

    2 f

    l2

    Evaluation of vector operators

    MPAFEA2 y, MPEvalVecOps,8All, y y@r, jD, Cylindrical@r, j, zDF

    2 y 1

    r

    y

    r+

    2 y

    r2+

    1

    r2

    2 y

    j2

    2 y 1

    r2

    2 y

    j2+

    1

    r

    rr

    y

    r

    MPAFEA2 y, MPEvalVecOps,8All, y y@x, y, zD, Cartesian@x, y, zD

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    13/47

    F HF f x

    F f x

    Combining multiple integrals

    KHF f@xD xO KHF g@xD xOMPCombInt@%, RV 8x, x

    :f@xD F@kD k x k, g@xD G@kD k x k>

    HF F@kDG@kDk x k

    MPMAFB%, RA,:All,:F@kD 12p

    f@xD -k x x, G@kD 12p

    g@xD-k x x>>,

    MPCombInt,8All, RV

    8x, x

    , x

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    14/47

    MPAFEBHF -

    1

    x2 +a2 x, MPTransInt,

    8All, VT 8x, q, x a Tan@qD

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    15/47

    MPChSumIntervalBHF n=-

    an,8n,81, 2

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    16/47

    Expansion of A

    MPExpandVecA A, AE

    I A

    M

    - 2 A

    Deleting a column from a matrix

    Table@i j,8i, 3

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    17/47

    MPVecToCart@80, 0, 1F

    y@xD+ y@xD

    g@sD+g

    @s

    D2 sA case of two variables

    x,x f@x, yD- y,y f@x, yDMPTransEqB%, f@x, yD g@x, hD,

    VT :8x, y, Apply SimplifyF

    - fH0,2L@x, yD+ fH2,0L@x, yD

    gH1,1

    L@x, hD Abbreviation of derivatives

    MPAbbrevFApH0,1L@x, tD -2 a pH1,0L@x, tDqH1,0L@x, tD, Deriv TrueEpt- 2 a px q x

    The subscripts denote the derivatives. The function arguments can be restored using MPRe-

    storeFunctions.

    MPRestoreF@pt - 2 a pxqx,8p, q

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    18/47

    MPInsideFunc@f@a xD+ a A, CurlH, aD Ha AL+ f@a xD

    Merging arguments of a linear function

    MPMergeFunc@a f@x, zD+ b f@y, zD, fDf@a x+ b y, zD

    Operator Analysis

    Expansion of operator expressions

    MPExpandBraket@HXa + Xb LAH a\ + b\L, AD

    Xa A a\+ Xa A b\+ Xb A a\+ Xb A b\

    MPCommutatorB Ql0 2

    + l0

    2

    P,Q

    l0 2

    - l0

    2

    PFMPExpandOp@%,8Q, P

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    19/47

    The terminal velocity, v0, can be found from the equation of motion as t ; when there is

    no acceleration, v

    = 0, so

    m v

    m g- b v 2

    MPMAFA%

    , RA,9All,9v

    0, v

    v0==,MPSolve,8All, v0, - 1,MPSepVars,8All, t, Times, Side Right

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    20/47

    vi

    v 1

    g- b v2

    m

    v 1 t

    v g m

    bTanhB b g

    mt +ArcTanhB b

    g mviFF

    v g m

    b

    vi+ g m

    bTanhB b g

    mtF

    g m

    b+vi TanhB b g

    mtF

    v

    v0Ivi+ v0 TanhA tTEM

    v0+ vi TanhA tTE

    where

    :v0 g mb

    , T v0

    g>

    Verify that our solution satisfies the originial equation of motion:

    MPAFEBv, MPExpandD,:All, v v0Ivi + v0TanhAt

    TEM

    v0 + viTanhA tTE

    , OverDot t>, Apply SimplifyF

    MPMAFB%, MPTrigConvert,8At@2D, Tanh, Apply Simplify,

    RR,:At@2D,:v0 g mb

    , T v0

    g>>, Apply ExpandF

    v

    v0Iv02 - vi2M

    TIv0 CoshA tTE +viSinhA t

    TEM2

    v

    - v2 +v0

    2

    T v0

    v

    g-b v2

    m

    that is, Newton's equation of motion.

    Substituting the numerical data, v0and Tare

    20 Mathematica Tutorial.nb

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    21/47

    :v0 g mb

    , T v0

    g>

    MPMAFB%, MPEli,8All, v0, 1, Keep True>, Apply PowerExpand,

    Convert,:At@1, 2D, MileHour

    >F

    :v0 g mb

    , T v0

    g>

    :v0 0.989949 MeterSecond

    , T 0.101015 Second>

    :v0 2.21445 Mile

    Hour, T 0.101015 Second>

    Plot vHtL.

    Mathematica Tutorial.nb 21

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    22/47

    v g m

    b

    vi + g m

    bTanhB b g

    mtF

    g m

    b+viTanhB b g

    mtF

    MPMAFB%, RA,:At@2D,:g 9.8 MeterSecond2

    , b 700Kilo Gram

    Meter,

    m 70 Kilo Gram, vi 60Mile

    Hour, t t Second>>, Apply PowerExpand,

    MPDivFrac,:At@2D, MileHour

    >,

    Convert,:: Hour MeterMile Second

    , 1>,:At@2D, MileHour

    >>,

    MPDivEq,:All, MileHour

    >,Plot,:At@2D,8t, 0, 0.1, Take LastF

    v g m

    b

    vi+ g m

    bTanhB b g

    mtF

    g m

    b+vi TanhB b g

    mtF

    Hour v

    Mile

    2.21445H60 +2.21445 [email protected] tDL

    2.21445+ 60 [email protected] tD

    0.00 0.02 0.04 0.06 0.08 0.10tHSecondL

    10

    20

    30

    40

    50

    60

    vMile

    Hour

    22 Mathematica Tutorial.nb

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    23/47

    Series Solution of Differential Equations

    We apply the method of series soution to the linear (classical) oscillator equation.

    (9.84)

    2 y

    x2+ w2 y 0

    with known solutions y = sinHwxL, cosHwxL.

    We try the series solution of the form

    (9.85)

    y

    @x

    D xk

    Ia0 + a1 x +a2x

    2 +a3x3 +

    M HF

    l=0

    alxk+l

    y@xD xk I +a0+ x a1+ x2 a2+ x3 a3M l=0

    al xk+l

    with a0 0 and the exponent kand all the coefficients alstill undetermined.

    By substituting (9.85) into Eq. (9.84), we have

    (9.86)

    2 y

    x2+ w2 y 0

    MPMAFB%, RA,:At@1D, y l=0

    alxk+l>, Apply MPEvalDF

    yw2 +2 y

    x2 0

    w2 l=0

    xk+l al+l=0

    x-2+k+l H- 1 +k + lL Hk + lLal 0

    which gives

    Mathematica Tutorial.nb 23

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    24/47

    w2 l=0

    xk+l al+l=0

    x-2+k+l H- 1 +k+ lL Hk+ lLal 0MPMAFA%, MPShiftSum,9AtA1, x-2+k+lE,8l, 2

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    25/47

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    26/47

    y Sin@xwDa0

    w

    From (9.91) and (9.94), the general solution can be put

    y c1 Cos@xwD +c2Sin@xwD

    26 Mathematica Tutorial.nb

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    27/47

    MathematicaLanguage

    Language Overview (MathematicaGuide)

    Structure of MathematicaExpressions

    Expressions (MathematicaTutorial)

    Constants

    Numbers (MathematicaOverview)

    Types of Numbers (MathematicaTutorial)

    Integer (Built-in MathematicaSymbol)

    Rational (Built-in MathematicaSymbol)

    Real (Built-in MathematicaSymbol)

    Complex (Built-in MathematicaSymbol)

    Mathematical Constants (MathematicaGuide)

    Variables

    Defining Variables (MathematicaTutorial)

    Eliminating Variables (MathematicaTutorial)

    Patterns

    Patterns (MathematicaGuide)

    Introduction to Patterns

    Verbatim Patterns

    Example

    In four-wave mixing, two waves of frequencies w1and w2interact and generate additional

    frequencies through nonlinear mixing. Suppose the two waves are given by

    Mathematica Tutorial.nb 27

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    28/47

    Ei 1

    2IEi - wi t + Ei* witM

    for i = 1, 2, and the nonlinear process is due to the third-order Kerr effect:

    PNL e0 c3 E3

    Find out what frequencies are present in the output wave near w1 w2.

    The field is given by

    E HF i=1

    2

    Ei

    MPMAFB%, RA,:At@2D, Ei 12

    IEi - wit + Ei* wi tM>,MPEvalSum, At@2DF

    E i=1

    2

    Ei

    E 1

    2i=1

    2

    I-t wi Ei+ t wi HEiL*M

    E 1

    2I-t w1 E1+ -t w2 E2+ t w1 HE1L* + t w2 HE2L*M

    and the nonlinear mixing produces

    PNL e0 c3 E3

    MPMAFB%, RA,:At@2D, E 12

    I-t w1 E1 + -t w2 E2 + t w1 HE1L* + t w2 HE2L*M>,Expand, At@2, ED, FactorExp tF

    PNL E3 e0 c 3

    PNL 1

    8e0 c 3I-t w1 E1+ -t w2 E2+ t w1 HE1L* + t w2 HE2L*M3

    PNL

    1

    8 e0 c 3J-3 t w1

    E

    1

    3

    +3

    t

    H-2w1-w2

    L E

    1

    2

    E

    2+ 3

    t

    H-w1-2w2

    L E

    1 E

    2

    2

    +

    -3 t w2

    E

    2

    3

    +3

    -t w1

    E

    1

    2

    HE

    1L*

    +

    6-t w2 E

    1 E

    2HE1L* +3 tHw1-2w2L E22 HE1L* +3 t w1 E1IHE1L*M2 +3 tH2w1 -w2L E2IHE1L*M2 +3 t w1 IHE1L*M3 + 3tH-2w1+w2L E12 HE2L* +6 -t w1 E1 E2HE2L* +3 -t w2 E22 HE2L* +6 t w2 E

    1HE1L* HE2L* +6 t w1 E2HE1L* HE2L* +3 tH2w1+w2LIHE1L*M2 HE2L* +

    3 tH-w1 +2w2L E1IHE2L*M2 +3 t w2 E2IHE2L*M2 + 3tHw1+2w2LHE1L* IHE2L*M2 + 3 t w2 IHE2L*M3N

    The frequencies are

    28 Mathematica Tutorial.nb

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    29/47

    PNL 1

    8e0 c3J-3 t w1 E13 +3 tH-2w1-w2L E12 E2 + 3 tH-w1-2 w2L E1 E22 + -3 t w2 E23 +3 -t w1 E12 HE1L* +

    6-t w2 E

    1 E

    2HE1L* +3 tHw1-2w2L E22 HE1L* +3 t w1 E1IHE1L*M2 + 3tH2w1 -w2L E2IHE1L*M2 +3 t w1 IHE1L*M3 + 3tH-2w1 +w2L E12 HE2L* +6 -t w1 E1 E2HE2L* +3 -t w2 E22 HE2L* +6t w2 E1HE1L* HE2L* +6 t w1 E2HE1L* HE2L* +3 tH2w1+w2LIHE1L*M2 HE2L* +3tH-w1 +2 w2L E1IHE2L*M2 +3 t w2 E2IHE2L*M2 + 3tHw1+2w2LHE1L* IHE2L*M2 + 3 t w2 IHE2L*M3N

    MPMAFA%, frequencies Cases@, a_,80,

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    30/47

    f@100D93326215443944 152 681 699 238 856 266 700 490 715 968 264 381 621 468 592 963 895 217 599 993 229

    915 608 941 463 976 156 518 286 253 697 920 827 223 758 251 185 210 916 864 000 000 000 000 000 000

    000000

    100 !

    93326215443944 152 681 699 238 856 266 700 490 715 968 264 381 621 468 592 963 895 217 599 993 229

    915 608 941 463 976 156 518 286 253 697 920 827 223 758 251 185 210 916 864 000 000 000 000 000 000

    000000

    Clear@fD

    Functional Programming (MathematicaGuide)

    Pure Functions (MathematicaTutorial)

    Functional Operations (MathematicaOverview)

    Example: data manipulation

    Generate the data

    data = RandomReal@8- 10, 10

  • 8/10/2019 Youngjoo Chung - Tutorial on Symbolic Computing With Mathematica [2011] [p47]

    31/47

    Select@data, NegativeD8- 2.71293, - 7.84716, - 2.51371, - 7.20865, - 0.35902, - 5.73894, - 1.13296, - 9.28741,

    - 3.3001, - 6.56867, - 4.45742, - 3.50691, - 5.22019, - 7.31909, - 1.75738, - 1.42342,

    - 1.08151, - 8.43983, - 1.63389, - 5.64446, - 6.33726, - 5.05503, - 6.70792, - 1.25488,

    - 6.64355, - 4.31986, - 7.33067, - 5.96476, - 9.22198, - 4.24909, - 6.01423, - 0.97207,- 0.425487, - 1.08979, - 4.19288, - 4.14596, - 3.44104, - 5.51746, - 3.39021, - 8.64063,

    - 2.70173, - 7.25148, - 9.66792, - 8.06609, - 7.88423, - 6.21864, - 4.81503, - 0.399189