yudi chen, carnegie mellon university catherine groschner, carnegie mellon university brent heard,...

34
Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of Pennsylvania Matthew Vernacchia, Massachusetts Institute of Technology

Upload: shreya-wares

Post on 14-Dec-2015

232 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Yudi Chen, Carnegie Mellon University

Catherine Groschner, Carnegie Mellon University

Brent Heard, Carnegie Mellon University

Avisha Shah, University of Pennsylvania

Matthew Vernacchia, Massachusetts Institute of Technology

Page 2: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Linear Nutrient Flow

Food Storage

Waste Storage

CrewO2

CO2

Page 3: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Cyclic Nutrient Flow

Page 4: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Current Solutions Sequential Batch Anaerobic

Composting (SEBAC) Anaerobic system→ CH4, not food

Research Space Bioconverter (RSB) Mainly for food waste

NASA JSC’s BIO-Plex Food storage and growth research

ESA’s Micro-Ecological Life Support System Alternative (MELISSA)

Page 5: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Critical Tasks

Food Crop Selection Composting Process Selection Proof-of-Concept Rate Balancing Microgravity Gas Exchange Automation Verification

Page 6: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Food Crop - Production

Algae advantages over macroscopic plants Whole biomass edible

No waste from stems, etc less harvesting machinery

Grow in Liquid Media Simpler growth chamber: bioreactor tank

vs. complex hydroponic farm Easier process automation

Page 7: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Food Crop - Nutrition Of algae evaluated, Spirulina Platensis shows best

nutritional properties Spirulina has soy-like nutritional properties Spirulina is a staple crop for several tribes around

Lake Chad, and was for the Aztecs (Ciferri 1983) Carb : protein balance alterable via changes in

growing conditions (Tadros 1988) UN FAO meta-study:

Rich in protein, vitamins (Becker 1994) and iron (Henrikson 1989)

Immune system resilience to radiation (Academy of Chinese Military Medical Sciences)

Page 8: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Food Crop - Preparation

Fresh foods + packaged garnishes/ flavorings Allow astronauts to process the Spirulina into a variety of food

products

Tofu Soy-like milk Flour for tortillas, noodles and bread

Page 9: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Composting Process

Spirulina can grow in aerated swine waste (Canizares and Dominquez 1993)

Process: Liquefaction Aerobic stabilization

Thermophilic stage (60C) reduces pathogens Sterilization by UV irradiation

Lower complexity than MELISSA’s anaerobic and nitrogen fixation process.

Carbon:nitrogen ratio = most important parameter

Page 10: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Proof of Concept Procedure

Feces, urine, food waste and paper, in ratio matching NASA effluents report

Mechanical liquefaction Aeration in 1L bioreactors (35 days) UV irradiation + 10 min at 100C Dilution Used as Spirulina growth media in 1L bioreactors

Compare composting performance at C:N ratios and concentrations

Gather metabolic rate data

Page 11: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Proof of Concept

3-Aug 4-Aug 5-Aug 6-Aug 7-Aug 8-Aug 9-Aug 10-Aug 11-Aug 12-Aug0

100

200

300

400

500

600

700

Spirulina Growth (25:1 C:N compost)

Reactor 1Reactor 2Reactor 3

Time (days)

Lig

ht

Absorp

tion b

y b

iom

ass (

NTU

)

10:1 dilution

50:1 dilution

25:1 dilution

Page 12: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Rate Balancing

O2 produced by algae = O2 consumed by compost

+ O2 consumed by crewCO2 consumed by algae = CO2 produced by compost

+ CO2 produced by crewCompost mass

= (waste produced/time)*(retention time)Algae mass

=(food needed/time) / (growth rate)

Page 13: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Rate Balancing

Page 14: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Rate Balancing

Page 15: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Rate Balancing

Assuming Algae produces 15 g O2 /day/kg algae media Compost consumes 15 g O2 / kg compost

slurry /day 3 week waste composting 6 person crew 75% of diet is grown

~290 kg compost slurry >530 kg algae media to provide food ~620 kg algae media to balance O2

Page 16: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Microgravity Gas Exchange Need to move gases into and out of

liquid media Normally done by sparing – this will not

work in microgravity

Page 17: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Membrane Gas Exchange (MGE)

Page 18: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Centrifugal Gas Exchange (CGE)

Page 19: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

CGE/MGE Bioreactor10L capacity

Rotating growth chamber, up to 500rpm for CGE

Electrical connections for sensors, heating and lighting on rotor

Page 20: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Under DevelopmentUnder Development

Page 21: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Future Work

Page 22: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Microgravity CGE/MGE

Pursue experiments on parabolic flight aircraft NASA’s Reduced Gravity Education

Flight Program

Page 23: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Biological tests in CGE/MGE BioreactorInvestigate: Algae and compost metabolisms with

new gas exchange system Impact of biomass on gas exchange

effectiveness

Page 24: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Closed system

Components: Compost bioreactor

(x1) Algae bioreactors

(x2) Crew simulant (i.e.

mice) Confirm rate

balances Investigate

automation methods

Page 25: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Automation

Page 26: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Waste Input

Page 27: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Composting

Page 28: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Algae growth

Page 29: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Material Transfer

Page 30: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Alternative Product Applications

• Remote Locations

• Oil Rigs / Submarines

• Third World

Page 31: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Extensive Ground Proving

Page 32: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

Acknowledgements

This research was funded by a Conrad Foundation Spirit of Innovation Award

Page 33: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

References Alazraki, Micheal, John Fisher, Jitendra Joshi, and Charles Verostko.“Solids Waste Processing and Resource

Recovery for Long-Duration Missions – A Workshop.”NASA and Society of Automotive Engineers, 2001. Belkin, Shimshon, Sammy Boussiba. “Resistance of Spirulinaplatensis to Ammonia at High pH Values.”Plant

and Cell Physiology 32.7 (1991): 953-958. Oxford Journals.Web. 23 Mar. 2011. < http://pcp.oxfordjournals.org/content/32/7/953.abstract>.

Chiou, Shiow-Her, Chao-Min Wang, Ching-Lin Shyu, Shu-Peng Ho. “Species Diversity and Substrate Utilization Patterns of Thermophilic Bacterial Communities in Hot Aerobic Poultry and Cattle Manure Composts.” Microbial Ecology 54.1 (2007): 1-9. JSTOR.Web. 23 Mar. 2011. <http://www.jstor.org/stable/25256166>.

Durbin, Drew. “Batch Composting of Human Excrement With Urban Waste Products.” Center for Environmental Studies. Brown University, May 2008. Web. 23 Mar. 2011. <http://envstudies.brown.edu/theses/archive20072008/DrewDurbinThesis.pdf>.

Ergas, Sarina J., Amit Kumar, Ashish K. Sahu, Xin Yuan. “Impact of Ammonia Concentration on Spirulinaplatensis Growth in an Airlift Photobioreactor.”Bioresource Technology 102.3 (2011): 3234-3239. ScienceDirect.Web. 23 Mar. 2011. <http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V24-51FNP92-7&_user=10&_coverDate=02%2F28%2F2011&_rdoc=1&_fmt=high&_orig=gateway&_origin=gateway&_sort=d&_docanchor=&view=c&_searchStrId=1689714368&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVersion =0&_userid=10&md5=431feb3afd22d15cb9a58fb44cf03161&searchtype=a>.

Feng, Dao-Iun, Zu-cheng Wu. “Culture of Spirulinaplatensisin Human Urine For Biomass Production and O2 Evolution.” Journal of Zhejiang University Science 7.1 (2006): 34-37. PubMed Central.Web. 23 Mar. 2011.

<http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1361757/>. Haug, Roger T. “Engineering Principles of Sludge Composting.” Journal (Water Pollution Control Federation)

51.8 (1979): 2189-2206. JSTOR.Web. 23 Mar. 2011. <http://www.jstor.org/stable/25040691>. Hirrel, Suzanne Smith, Tom Riley. “Understanding the Composting Process.” Uaex.University of Arkansas,

n.d. Web. 23 Mar. 2011. <http://www.uaex.edu/other_areas/publications/pdf/fsa-6036.pdf>. “The Science and Engineering of Composting.”Cornell Composting.Cornell University, 1996.Web. 21 Dec.

2010. < http://compost.css.cornell.edu/science.html>.

Page 34: Yudi Chen, Carnegie Mellon University Catherine Groschner, Carnegie Mellon University Brent Heard, Carnegie Mellon University Avisha Shah, University of

?Questions?