z transform (1)

Upload: hanapi-ali

Post on 05-Apr-2018

236 views

Category:

Documents


1 download

TRANSCRIPT

  • 7/31/2019 z Transform (1)

    1/30

    5/21

    The z-Transform

    Content

    z Introduction

    z z-Transform

    z Zeros and Poles

    z Region of Convergence

    z mportant z- rans orm a rs

    z Inverse z-Transform

    z z-Transform Theorems and Properties

    z System Function

  • 7/31/2019 z Transform (1)

    2/30

    5/21

    The z-Transform

    Introduction

    Why z-Transform?

    z A generalization of Fourier transform

    z Why generalize it?

    FT does not converge on all sequence

    Notation good for analysis

    the discrete-time signals and systems

  • 7/31/2019 z Transform (1)

    3/30

    5/21

    The z-Transform

    z-Transform

    Definition

    z Thez-transform of sequencex(n) is defined by

    =

    =n

    nznxzX )()(

    Fourier

    Trans orme z = e .

    ( ) ( )j j n

    n

    X e x n e

    =

    =

  • 7/31/2019 z Transform (1)

    4/30

    5/21

    z-Plane

    Re

    Im

    z = ej

    =

    =n

    nznxzX )()(

    j j n

    n=

    Fourier Transform is to evaluate z-transform

    on a unit circle.

    z-Plane

    X(z)

    Re

    Im

    z = ej

    Re

    Im

  • 7/31/2019 z Transform (1)

    5/30

    5/21

    Periodic Property of FT

    X(z)

    X(ej)

    Re

    Im

    Can you say why Fourier Transform isa periodic function with period 2?

    The z-Transform

  • 7/31/2019 z Transform (1)

    6/30

    5/21

    Definitionz Give a sequence, the set of values ofz for which the

    z-transform converges, i.e., |X(z)|

  • 7/31/2019 z Transform (1)

    7/30

    5/21

    Stable Systems

    Im

    z A stable system requires that its Fourier transform is

    uniformly convergent.

    z Fact: Fourier transform is to

    evaluatez-transform on a unit

    Re

    1.

    z A stable system requires the

    ROC ofz-transform to includethe unit circle.

    Example: A right sided Sequence

    )()( nuanx n=

    x(n)

    1 2 3 4 5 6 7 8 9 10-1-2-3-4-5-6-7-8

    n. . .

  • 7/31/2019 z Transform (1)

    8/30

    5/21

    Example: A right sided Sequence

    )()( nuanx n=

    n

    n

    n znuazX

    == )()(

    For convergence ofX(z), we

    require that

    =

    Im Im

    Which one is stable?

    aaRe

    1aa

    Re

    1

  • 7/31/2019 z Transform (1)

    9/30

    5/21

    Example: A left sided Sequence

    )1()( = nuanx n

    1 2 3 4 5 6 7 8 9 10-1-2-3-4-5-6-7-8

    n

    x(n)

    ...

    Example: A left sided Sequence

    )1()( = nuanx n

    n

    n

    nznuazX

    = = )1()(

    For convergence ofX(z), we

    require that

  • 7/31/2019 z Transform (1)

    10/30

    5/21

    Example: A left sided Sequence

    ROC forx(n)=anu( n1)

    ||||,)( azaz

    zzX

    =

    Im

    ROC is bounded b the

    Rea

    pole and is the exterior

    of a circle.

  • 7/31/2019 z Transform (1)

    12/30

    5/21

    Example: A left sided Sequence

    )1()( = nuanx n ||||,)( azaz

    zzX 0)

    or (ifmz

    )1( nu 11 z1||

    )1( nuan 111

    az|||| az

  • 7/31/2019 z Transform (1)

    18/30

    5/21

    Z-Transform Pairs

    Sequence z-Transform ROC

    )(][cos0 nun 21

    0

    1

    0

    ]cos2[1

    ][cos1

    +

    zz

    z1|| >z

    )(][sin 0 nun 210

    1

    0

    ]cos2[1

    ][sin

    +

    zz

    z1|| >z

    1]cos[1 zr

    )(]cos[0 nunr

    n 2210 ]cos2[1

    + zrzrrz >

    )(]sin[ 0 nunr

    n

    2210

    1

    0

    ]cos2[1

    ]sin[

    +

    zrzr

    zrrz >||

    otherwise0

    10 Nnan

    11

    1

    az

    zaNN

    0|| >z

    The z-Transform

    -

  • 7/31/2019 z Transform (1)

    19/30

    5/21

    The z-Transform

    z-Transform Theorems

    Linearity

    xRzzXnx = ),()]([Z

    yRzzYny = ),()]([Z

    yx RRzzbYzaXnbynax +=+ ),()()]()([Z

    Overlay of

    the above two

    ROCs

  • 7/31/2019 z Transform (1)

    20/30

    5/21

    ShiftxRzzXnx = ),()]([Z

    x

    n

    RzzXznnx =+ )()]([0

    0Z

    Multiplication by an Exponential Sequence

    +

  • 7/31/2019 z Transform (1)

    21/30

    5/21

    Differentiation of X(z)

    xRzzXnx = ),()]([Z

    xRzdz

    zdXznnx = )()]([Z

    Conjugation

    xRzzXnx = ),()]([Z

    xRzzXnx = *)(*)](*[Z

  • 7/31/2019 z Transform (1)

    22/30

    5/21

    ReversalxRzzXnx = ),()]([Z

    xRzzXnx /1)()]([1 = Z

    Real and Imaginary Parts

    xRzzXnx = ),()]([Z

    xRzzXzXnxe += *)](*)([)]([ 21R

    xjRzzXzXnx = *)](*)([)]([

    21Im

  • 7/31/2019 z Transform (1)

    23/30

    5/21

    Initial Value Theorem

    0for,0)(

  • 7/31/2019 z Transform (1)

    24/30

    5/21

    Convolution of Sequences

    =

    =k

    knykxnynx )()()(*)(

    =

    =

    =n

    n

    k

    zknykxnynx )()()](*)([Z

    =

    =

    =k

    n

    n

    zknykx )()(

    =

    =

    =k

    n

    n

    kznyzkx )()(

    )()( zYzX=

    The z-Transform

    S stem Function

  • 7/31/2019 z Transform (1)

    25/30

    5/21

    Shift-Invariant System

    h(n)

    x(n) y(n)=x(n)*h(n)

    X(z) Y(z)=X(z)H(z)H(z)

    Shift-Invariant System

    X(z) Y(z)

    )(

    )()(

    zX

    zYzH =

  • 7/31/2019 z Transform (1)

    26/30

    5/21

    Nth

    -Order Difference Equation

    ==

    =M

    r

    r

    N

    k

    k rnxbknya00

    )()(

    =M

    r

    r

    Nk

    k zbzXzazY )()(== rk 00

    ==

    =

    N

    k

    k

    k

    M

    r

    r

    r zazbzH00

    )(

    Representation in Factored Form

    =

    =

    M

    r

    rzcA

    1

    1)1(

    Contributespoles at 0 andzeros at cr

    =

    N

    k

    rzd1

    1)1(

    Contributeszeros at 0 andpoles at dr

  • 7/31/2019 z Transform (1)

    27/30

    5/21

    Stable and Causal Systems

    =

    =

    M

    r

    rzcA1

    1)1(

    Im

    Causal Systems : ROC extends outward from the outermost pole.

    =

    N

    k

    rzd

    1

    1)1(Re

    Stable and Causal Systems

    =

    =

    M

    r

    rzcA

    1

    1)1(

    Im

    Stable Systems : ROC includes the unit circle.

    1

    =

    N

    k

    rzd1

    1)1(e

  • 7/31/2019 z Transform (1)

    28/30

    5/21

    ExampleConsider the causal system characterized by

    )()1()( nxnayny +=

    1=

    Im

    1

    11 azRea

    )()( nuanh n=

    Determination of Frequency Responsefrom pole-zero pattern

    z A LTI system is completely characterized by itspole-zero pattern.

    1zz

    Example:

    0j

    Im

    p1

    ))(( 21 pzpzz

    =

    ))(()(

    21

    1

    00

    0

    0

    pepe

    zeeH

    jj

    jj

    =

    Re

    z1

    p2

  • 7/31/2019 z Transform (1)

    29/30

    5/21

    Determination of Frequency Response

    from pole-zero pattern

    z A LTI system is completely characterized by itspole-zero pattern.

    1zz

    Example:

    0j

    Im

    p1

    |H(ej)|=? H(ej)=?

    ))(( 21 pzpzz

    =

    ))(()(

    21

    1

    00

    0

    0

    pepe

    zeeH

    jj

    jj

    =

    Re

    z1

    p2

    Determination of Frequency Responsefrom pole-zero pattern

    z A LTI system is completely characterized by itspole-zero pattern.

    Example:

    0j

    Im

    p1

    |H(ej)|=? H(ej)=?

    | | 2

    Re

    z1

    p2

    e =| | | | 1 3

    H(ej) = 1(2+ 3 )

  • 7/31/2019 z Transform (1)

    30/30

    5/21

    Example11

    1)(

    =

    azzH

    Im

    0 2 4 6 8

    -10

    0

    10

    20

    dB

    Re

    a0 2 4 6 8

    -2

    -1

    0

    1

    2