z transform properties

Upload: madhuhanu

Post on 06-Apr-2018

246 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/2/2019 Z Transform Properties

    1/7

    Problem 5.16 Repeat problem 5.9 for the signal.

    1 n. 1tx[n] =("3) sm (-:4n) u[n]

    ROC: Izi >1/3.

    The ROC and pole-zero locations are plotted in fig P 5.16.

    The Z-transform has several properties that can be used in the study of discrete-time

    signals and systems. They are,

    v1: Linearity.

    ~. Time shifting.

    ~. Scaling in the Z-domain.

    Jk/ Time reversal.

    5. Time Expansion.

    6.....,Conjugation.

    v 1 ':" Convolution.

    : . ir : " " " - Differentiation in the Z-domain.

    9. Initial value theorem.

    10. Final value theorem.

  • 8/2/2019 Z Transform Properties

    2/7

    and xin) ~ Xz(z) with ROC = Rz

    zthen a1x1(n) + bxin) ~ aX1(z) + bXz(z) with ROC atleast R1nRz

    Proof: We know that,

    Z[x(n)) = X(z) = Lx[n). z-n

    Zx(n) ~X(z) with ROC=R

    zx(n-no) ~ z-I'oX(z) with ROC = R except for the possible

    addition or deletion of the origin or inftnity.

    Proof: Z[x(n)] = X(z) = LX(ll) z-n

    =Lx(I). z-(l+no)1 = - 0 0

  • 8/2/2019 Z Transform Properties

    3/7

    =Lx(l). Z-l. z-n o1 = - 0 0

    = z -n oL

    x(l) Z-l

    1 = - 0 0

    then

    where

    zx(n) ~ X(z) with ROC = R

    anx(ll) AX(~) with ROC = laiR

    a is a complex number.

    Proof: Z[X(ll)] = X(z) = LX(ll) z-n

    Z[ anx(n)] = Lan X(ll) z-n

    = X(a-1 z)z

    Z[anx(ll)] =X(a)

    ejOonx(n) ~ X(e -jOoz)

    zx(n) ~X(z)

    z 1x(-n) ~X(z)

    with ROC =R

    with ROC = ~ .

    Proof:' Z[X(ll)] = X(z) = Lx(n) z-n

    Z[X(-ll)] =Lx(-n)z-n

  • 8/2/2019 Z Transform Properties

    4/7

    Z(x(-n) = Lx(l). Zl

    1 = - 0 0

    = Lx(/). (Z - l )-11 = - 0 0

    =X(Z-l)

    1Z(x(-n)] = X(-)

    z

    zx(n) ~X(z)

    x(k)(n) ~ X(Zk)

    nX(k/n) = x( k)

    = 0

    X(z) =L

    x(n) z-n

    Similarly, X(Zk) =Lx(n) Z-kll.n=-oo

    o I o f " . I I f 'k' d I (tll) - f ' , .t.e. z-m equa s zero 1 m IS not a mu tIp e 0 an equa to xk1 HI IS amultiple ofk. Thus the inverse transform is xk(n).

    zx(n) ~X(z)

    zx*(n) ~ X*(z*)

    Thus ifX(z) has a pole (or zero) at z=zo, it must have a pole (or zero) at the

    complex conjugate point z= Zo*.

  • 8/2/2019 Z Transform Properties

    5/7

    zxt(n) ~ Xt(z)

    zX2(n)~~(Z)

    ZXt(n) * xin) ~ Xt(z) ~(z)

    with ROC = R1

    with ROC = R2

    with ROC atleast Rll~.

    xt(n) * x2(n) =~xt(k) xin-k).k=_oo

    =i: [i:Xt (k) xin-k) 1 z -nn =-o o k =_ oo

    00 [00 1

    =~Xt(k) ~x2(n-k) z-nj

    k= _oo n= -oo

    =f..X\(k) ~i:X2(l)Z-I. Z - k \k= _oo 1= _00

    =~ Xl (k) Z-k ~ x2( 1 ) z - 1

    k= _oo 1= _00

    zx(n)~X(z)

    ,then nx(n) A-z dX(z)dz

    Proof: Z[x(n)] =X(z) =L,x(n) z-n

  • 8/2/2019 Z Transform Properties

    6/7

    dX(z) = Lx(n) (-n) Z-n-ldz

    = -Z-IL[n x(n)]z-n

    = -Z-I. Z[n x(n)]

    dX(z):. z[n x(n)] = -z dz

    5.4.9 .nitia. Va'ue Theorem

    If x(n) = 0 for n < 0 (i.e. x(n) is causal)

    Lt limthen, n-70 x(n) = x [O ) = Z-7OO X(z)

    Proof: Z[x(n)) = X(z) = Lx(n) z-n

    n=O

    = 2,x(n) z -nn=O

    =x(O) + x(1 )Z-I + x(2) Z-2+ .

    Make limit Z-7OO on both the sides,

    Lt X(z) =x(O) + 0 + 0 + .Z-700

    :. Lt x(n) = x(O) = Lt X(z)Il-70 Z-7OO

    5.4.10 Fina. Va'ue Theorem

    Ifx(n)AX(z) and ifX(z) exists and no poles outside the unit circle and it has nodouble or higher order poles on the unit circle centered at the origin of the

    Z-plane, then

    Lt x(n) = x(oo) = Lt (z-1) X(z)n-7OO Z-71

    Proof: Z[x(n)) =X(z)

    Z[x(n+1)) = zX(z) - zx(O)

    Substractingeqn. (5.11) from eqn. (5.12),

    (5.11)

    (5.12)

  • 8/2/2019 Z Transform Properties

    7/7

    .L,x(n+l) Z-ll- .L,x(n) Z-ll= (z-l) X(z) - zx(O)

    n=O n=O

    Taking limit z~ 1on both the sides, we get

    Lt Lt ~ }z~ 1 [(z-l) X(z) - z x(O)] = z~ 1 """'-' {x(n +1) - x(n) Z-ll

    n= O

    Lt Lt

    n~oo x(n) = x(oo) = 1 (z-l) X(z)z~

    Table 5.1 Som e com m on Z t ra ns fo rm pa i r s

    Signal Traniform

    1. 8(n) 1

    2. u(n) 1l-z-1

    3. -u(-n-l) 1l_z.1

    4. 8(n-k) Z-k

    ROC

    All z

    I z l >1

    5. ex ,"u(n) 1l-e x ,z-1

    6 . _ex,"u( -n-l) 1l-ex,z-I

    7. nex,llu(n) ex,Z-1

    (l-ex,zlf

    8. -nex,"u( -n-l) ex,Z-1

    (l-ex,z-lf

    9. cos non. u(n) l-(cosno)zol1-(2 cosno) Z - I + Z-2

    10. sin non. u(n) (sin no)z-1

    1-(2 cos no) Z-I + Z-2

    11. ex,"cos no n. u(n) 1- (ex,cos no)z-1

    1- (2 e x , cos no) Z-1+ e x ,2 Z-2

    12. < X " sin non. u(n) ( < x sin no)z.11-(2 ex,cos no) Z-1+ < X 2z-i

    All z except

    o (ifk>O) or00 (ifk I e x ,I