zong-liang yang introduction to the noah land surface model prepared for surface water hydrology...

60
Zong-Liang Yang Introduction to the NOAH Land Introduction to the NOAH Land Surface Model Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental Prediction (NCEP) O: Oregon State University (Dept of Atmospheric Sciences) A: Air Force (both AFWA and AFRL - formerly AFGL, PL) H: Hydrologic Research Lab - NWS (now Office of Hydrologic Dev – OHD) Outline 1. What is an LSM? 2. What is the NOAH LSM? 3. NOAH @ UT

Upload: damon-carr

Post on 26-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Zong-Liang Yang

Introduction to the NOAH Land Introduction to the NOAH Land Surface ModelSurface Model

Prepared for Surface Water HydrologyFebruary 24, 2005

 N: National Centers for Environmental Prediction (NCEP)O: Oregon State University (Dept of Atmospheric Sciences)A: Air Force (both AFWA and AFRL - formerly AFGL, PL)H: Hydrologic Research Lab - NWS (now Office of Hydrologic Dev –

OHD)

Outline

1. What is an LSM?2. What is the NOAH LSM?3. NOAH @ UT

Page 2: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

1. What is an LSM? (29 slides)

2. What is the NOAH LSM? (13 slides)

3. NOAH @ UT (14 slides)

OutlineOutline

Page 3: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Computer Code to Model Land Surface Processes

• Exchanges with the atmosphere– Momentum– Energy– Vapor– Trace gases/dust/aerosols

• Exchanges with the oceans– Runoff – Sediments / nitrogen

• Land-memory processes– Topography– Snow cover– Soil moisture– Vegetation

• Human activities– Land use (agriculture, deforestation, urbanization…)– Inland water pollution

Page 4: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Earth’s Radiation BudgetEarth’s Radiation Budget

Shortwave:Shortwave: Earth reflects 30% directly back to space, absorbs Earth reflects 30% directly back to space, absorbs about 20% in the atmosphere, and absorbs about 50% at the about 20% in the atmosphere, and absorbs about 50% at the surface.surface.Longwave:Longwave: Greenhouse effects keep the surface warm. Greenhouse effects keep the surface warm.Turbulent heat fluxes:Turbulent heat fluxes: sensible and latent heat keeps the sensible and latent heat keeps the surface cool. surface cool.

Page 5: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Land-atmosphere coupling strength (JJA)

Hot spots: initial soil moisture impacts rainfall forecasts

Locations for the routine monitoring of soil moisture

Koster et al., 2004

(Science)

Page 6: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Interpretations

E

Ql

Pm

Qa In Qa Out

L

Pa

Sa

Rainfall in a region depends on atmospheric moisture transport from upwind areas and local evapotranspiration.

Moisture transport depends on large-scale circulations

Evapotranspiration depends on vegetation, soil, and weather conditions

Page 7: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Do Land Surface Processes Matter to Climate Prediction?

Page 8: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

What Are Land Surface Processes

• Land surface consists of– urban areas, soil, vegetation, snow, topography, inland water (lake, river) …

• Land surface processes describe– exchanges of momentum, energy, water vapor, and other trace gases between

land surface and the overlying atmosphere

– states of land surface (e.g., soil moisture, soil temperature, canopy temperature, snow water equivalent)

– characteristics of land surface (e.g., roughness, albedo, emissivity, soil texture, vegetation type, cover extent, leaf area index, and seasonality)

Page 9: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

What Are Land Surface Processes

• Land surface processes function as– lower boundary condition in Atmospheric Models

• Atmospheric Boundary Layer Simulation Climate Simulation

• Numerical Weather Prediction 4-D Data Assimilation

– upper boundary condition in Hydrological Models• Water Resources Estimation; Crop Water Use; Runoff Simulation

– interface for coupled Atmospheric/Hydrological/Ecological Models

Page 10: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Land Surface Models (LSMs)• Computer code describing land surface processes (also called

LSSs, LSPs, SVATs)– FORTRAN, C, C++, PASCAL, … ...

– Tens to thousands of lines

• There are a huge number of LSMs (100+ examples in literature)– many are just “research models’’, local-scale oriented, with specific

process emphasis

– up to ~100 canopy, ~100 soil, ~100 snow, even ~100 atmosphere layers!

• LSMs in GCMs and Hydrological Models are less diverse– one dimensional, with 1-2 canopy, 1-10 soil, 1-10 snow layers

– three general classes

• “Bucket” Models (no vegetation canopy)

• “Micrometeorological” Models (detailed soil/snow/canopy processes)

• “Intermediate” Models (some soil/snow/canopy features)

Page 11: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Land Surface Models (LSMs)• Four basic requirements

– frequently-sampled (hourly or sub-hourly) weather “data” to “drive” LSMs

• precipitation (rate; coverage, large-scale/convective in GCMs)

• radiation (shortwave, longwave)

• temperature

• wind components (u, v)

• specific humidity

• surface pressure

– initialization of state variables• soil moisture (liquid, frozen) deep soil temperature

– specification of surface characteristics• albedo roughness vegetation cover

– validation of simulations of state variables and fluxes• soil moisture sensible/latent heat fluxes

Page 12: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Land Surface Models (LSMs)• Minimum Requirement is to describe:

– bulk momentum exchange (roughness length, zero displacement height)– exchange of radiation for:

• solar radiation (0-3 micrometers): albedo• long-wave (3-100 micrometers): surface emissivity

– partition of radiant energy between soil heat, latent heat and sensible heat, along with its relationship to water availability

• Micrometeorological Models typically– have 20-50+ parameters– require to prescribe or predefine them before running the models

• Research Issues– Obtaining and applying relevant “pure biome” data to test or calibrate LSMs – Dealing with spatial/temporal heterogeneity

• defining area-average parameters; scaling up surface parameters from local to regional• defining space-time structure of atmospheric inputs

– Making best use of remote sensing data for initialization, specification and validation– Improving key processes

• Snow/Frozen soil • Runoff generation/routing• “Greening” of LSMs (carbon balance and vegetation dynamics)

Page 13: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Land Surface Models (LSMs)• Project for Intercomparison of Land-surface Parameterization Schemes (PILPS)

– is helping define needs, understanding processes, from sensitivity tests and field data to coupled modeling

– ongoing project (4 phases, starting from 1992, 20-30 LSMs participating)• Phase 1: GCM-generated forcing data for three “biomes”:

– models’ response time to initialization of soil moisture– sensitivity experiments with albedo, canopy/soil water storage,

aerodynamic resistances• Phase 2 : observed data

– 2(a) Cabauw, Netherlands (grass; 1-year)– 2(b) HAPEX-MOBILHY, France (crop; 1-year)– 2(c ) Red-Arkansas River Basin, USA (mixed land covers; 10-year)– 2(d) Valdai, Russia (snow/frozen soil; 18-year)– 2(e) Sweden Torne/Kalix Basins, 58000 sq. km, 218 grids, 1979-98

• Phase 3: joint with Atmospheric Model Intercomparison Project -AMIP• Phase 4: selected LSMs coupled to one host model

– Regional Model Global Model Coupling Strategy

Page 14: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Simple “Bucket” LSMs• “Bucket” Models” first in hydrological models, later in GCMs

– “Bucket” is filled by precipitation, and emptied by evaporation

– Runoff occurs when “Bucket” is full (soil water level exceeds the field capacity)

– Evaporation is based on soil-water limited “Potential Evaporation”

– The limiting factor is a linear function of soil moisture

• In original “bare soil” form, e.g., Manabe (1969) include no vegetation so specify (fixed) parameter values for

– albedo (Solar radiation)

– surface emissivity (Longwave radiation)

– roughness length (Momentum exchange)

– soil thermal properties (Soil heat storage)

– field capacity (15 cm) for all land points (Soil hydrology)

– snow areal coverage (covers 100% gridbox) (Snow energy/water budgets)

• Some variants of “Bucket” Models– allowing leakage by implicit transpiration or gravitational drainage

– including surface resistance in evaporation formula

– extending to 2 connected “Buckets”: Deardorff (1977) includes a thin surface layer and a deep bulk layer

Page 15: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Micrometeorological Model-Based LSMs

• Micrometeorological Model-Based LSMs are– more complex than bucket models

– less complex than “multi-layer” or “second order closure” canopy models

• Best known examples:– “Biosphere-Atmosphere Transfer Scheme (BATS)”

– “Simple Biosphere Model (SiB)”

– SiB more complex (not at run time) some whole-canopy parameters from “pre-processing”, one calculation, prior to actual model run

• Five components of radiation exchange considered in BATS and SiB– Direct beam photosynthetically active radiation (PAR) (<0.72 micrometers)

– Diffuse solar photosynthetically active radiation (PAR) (<0.72 micrometers)

– Direct beam near infrared (NIR) (0.72-4.0 micrometers)

– Diffuse solar near infrared (NIR) (0.72-4.0 micrometers)

– Thermal infrared (>4.0 micrometers)

Page 16: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Micrometeorological Model-Based LSMs

BATS

Biosphere-AtmosphereTransfer Scheme

Page 17: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Micrometeorological Model-Based LSMs

• “Two-Stream Approximation” are used to calculate solar radiation exchange in SiB for both PAR and NIR, diffuse and direct beam components from

• Can obtain single-scattering albedo, diffuse fluxes within canopy (for stomatal resistances) and at soil surface, and total albedo of the vegetated surface

• Vegetation albedo depends on specifications of – leaf area index scattering coefficients of leaves and soil

– leaf angle distribution function angle of the direct-beam incident radiation– proportion of different components of the incident radiation

• Not suitable for application over heterogeneous or ‘clumpy’ canopies (coniferous forests); require three-dimensional radiation models

• BATS prescribes vegetation albedo; 4-layer model for stomata

area leafunit depth / optical beamdirect K

area leafunit depth / optical inverse average

nts"photoeleme"for tscoefficien scattering

beamfor parametersscatter"on "direct / diffuse ,

components beam diffuse downward / upward normalized I ,I

scatter beamdirect scatter back scatter forward divergence

e)1(K I I])1(1[ dL

dI

eK I I])1(1[ dL

dI

0

KL0

KL0

Page 18: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Micrometeorological Model-Based LSMs

• Thermal Radiation from surface is computed from “Stefan-Boltzmann” law:

• Whole-canopy turbulent transfer is important for exchange of momentum, heat and mass (water vapor, trace gases)

– is a complex process

– requires higher-order closure models, Markov-chain numerical simulations, or eddy simulation techniques

– simpler treatments in LSMs because of• computational expense and storage requirements

• aerodynamic resistance roughly an order of magnitude smaller than aerodynamic resistance

– prescribed for BATS (and most other models); aerodynamic resistances from curve-fitting functions, iteration for nonneutral corrections

– calculated in SiB: pre-processed from canopy morphology using a “K-Theory” equivalent of Shaw-Pereira (1982); aerodynamic resistances from canopy morphology using “K-Theory”, iteration for nonneutral corrections

re temperatusurface defined"ely appropriat"an is T where

T L

s

4sout

:d and z0

:d and z0

Page 19: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Micrometeorological Model-Based LSMs

• Canopy interactions described by a “big leaf” model in BATS and SiB and others [SiB allows an “understorey”; SiB2 allows only one layer]

• Dry canopy parameterized through surface resistance based on the model of Jarvis (1976). For a single leaf:

• Canopy surface resistance is obtained by integrating above equation over leaf angle and canopy depth. This integration and those dependencies are “coded” in different forms in BATS and SiB and many other models.

function" stress" moisture soil - g

function" stress" re temperatu- g

function" stress"deficit pressure vapor - g

function" stress" radiation - g

factorcover canopy - g

ion typeon vegetat dependingconstant - g

ms e,conductanc stomatal leaf - g

sm ,resistance stomatal leaf - r

g g g g gg gr

1

M

T

D

R

C

0

1-s

1-s

M TDRC 0ss

Page 20: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Micrometeorological Model-Based LSMs

• Different forms of coding for the integration:– In SiB, an analytical integration is performed by using the Goudriaan formulation

for some regular leaf angle distribution

– In BATS, the integration is done by using a 4-layer numerical scheme for canopy

• Different forms of coding for the stress factors:– primarily determined from curves fits to data (e.g. Jarvis, 1976), but

– in SiB was a linear function of the leaf water potential, which, in turn, was determined by a catenary model of water flow from root zone to leaf

– in BATS, was introduced only when the atmospheric demand exceeds the water supply from the soil through roots

– in SiB taken as a smooth curve varying from zero at some minimum temperature around freezing to unity at an optimum temperature between 25 degree C and 35 degree C, depending on species, and dropping sharply down to zero at 45 degree C to 55 degree C

– in BATS parameterized as a quadratic function of canopy temperature, varying from 0 at freezing point to unity at 25 degree C, and remaining at unity when temperature is greater than 25 degree C

Mg

Mg

Tg

Tg

Page 21: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Micrometeorological Model-Based LSMs

• Calibration of stomatal resistance largely speculative: guessed from single leaf data, but occasional “Calibration Data Sets” available e.g. for forest, Shuttleworth (1989); Gash et al. (1996)

• Wet Canopy Description is a simplified “Rutter” Model: S, proportional to Leaf Area Index ~[(0.1-0.25) x LAI] (mm)

• Both BATS and SiB allow partially wet canopy

EquationMonteith -Penman canopy)-(whole

r

r1

r

Dc)GR(

E

rate ionprecipitat is P where SC when,PD

rate drainagecanopy is D re whe SC when,0D

equation balanceer canopy wat DE )S/C(fP )LAI,F(gdt

dC

E f(C/S) E )]S/C(f1[

Rain dIntercepteE ionTranspiratE TotalE

a

ST

a

pan

0rPM

0rPM

finiterPM

ST

STST

Page 22: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Micrometeorological Model-Based LSMs

• “Plot-scale” calibration of interception models adequate, given tuning of S against LAI

• BATS/SiB have simple “vertical hydrology”: soil water diffuses vertically through 2-3 layers, but is ultimately inaccessible by draining from lowest layer

• Global Distributions of different land classes required, BATS has 15, SiB has 12, with parameters defined for each class: Calibration of these Parameters Remains Speculative

Page 23: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

“Intermediate” LSMs• “Intermediate” LSMs trade process detail for simplicity, justified by still

speculative need for more complete process models, and their poor calibration

• Often have distributed vegetation class, but simpler physics: e.g.– UKMO simple canopy model

– French ISBA simple soil model

– Simple SiB Simplified empirical parameterization fitted to time consuming, SiB-calculated functions

– “Super Bucket” basic bucket, with “reference crop” estimates instead of “potential” rate(+Several others)

• Permissible, practical alternative, pending evidence of need for more complex micrometeorological models

Page 24: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

LSMs Calibration Issues• Primary LSM short-coming is lack of reliable calibration: 3 needs

– Obtaining and applying relevant “pure biome” data

– Understanding how to define area-average parameters

– Making best use of Remote Sensing Data

• Single Biome Calibration

– Needs:

• sets of continuous “driving variables” for whole years (frequently-sampled, near-surface, equivalent to GCM)

• some substantial periods with measured exchanged fluxes (preferably for several seasons, all exchanges, time scales)

– Some biomes done or in-hand

• Rain forest (ARME, ABRACOS)

• Prairie grass (FIFE)

• Boreal forest (BOREAS)

• Sonora Desert, Tucson, Arizona (Example of multi-objective calibration)

Page 25: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

LSMs Calibration Issues: Area-average

• Defining Area-average LSM parameters is active research which involves data collection, analysis and coupled models for mixed land covers, and for selected regions

– mixed vegetation cover and/or soils uneven precipitation sloping terrain• Examples:

– Hydrologic-Atmospheric Pilot Experiment (HAPEX) - S.W. France, 1986, (mixed temperate; agriculture, forest)

– First ISLSCP Field Experiment (FIFE) - Kansas, 1987,9 (tall prairie grass)

– HAPEX-Sahel - Niger, 1992, (semi-arid Sahelian savannah-across rainfall gradient)

– BOREAS - Canada, 1993,4, Boreal Forest

– AMAZONIA (LBA) - S. America, 1997,8 - Amazonian land covers

– GEWEX

Page 26: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

LSMs Calibration Issues: Atmospheric Data

• Calibration or model development depends on atmospheric input data

• Runoff estimation error is determined by the accuracy of the precipitation forcing as measured by the density of rain gauge

Page 27: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Micrometeorological Model-Based LSMs• New developments: The Greening of LSMs (improved canopy physiology)

– enzyme kinetics-electron transport model (Farquhar et al., 1980), relating leaf photosynthetic rate to PAR, leaf temperature, leaf internal carbon dioxide concentration, and leaf carboxylase concentration

– photosynthesis modeled as the minimum of three potential capacities to fix carbon

OH and CO of iesdiffusivitdifferent for account factor to - 1.6

)s m CO (mol COfor econductanclayer boundary - g

leaf theof spacesair lar intercellu in the (mol/mol)ion concentrat CO - C

surface leaf at the (mol/mol)ion concentrat CO - C

atmosphere in the (mol/mol)ion concentrat CO - C

s m CO mol n,respiratio emaintenanc leaf -R

s m CO mol rate,on assimilati leafnet - A

6.1

g)CC(g )CC(RA A

s m CO mol leaf,unit per esisphotosynth of rate limited-nutilizatio phosphate triose- J

s m CO mol leaf,unit per esisphotosynth of rate limited-Rubisco - J

s m CO mol leaf,unit per esisphotosynth of rate limited-light - J

s m CO mol leaf,unit per rate esisphotosynth gross - A

)J ,J ,J( minA

22

1-2-22COb,

2i

2s

2a

1-2-2leaf

1-2-2n

OH,sisCOb,saleafg n

1-2-2s

1-2-2c

1-2-2e

1-2-2g

sceg

2

2

2

Page 28: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Micrometeorological Model-Based LSMs• New developments: The Greening of LSMs (improved canopy physiology)

– Ball-Berry model of stomatal conductance (Ball et al., 1986): robust semi-empirical method, relating leaf stomatal conductance to photosynthetic rate and environmental parameters

– Other forms: Leuning (1995), Foley et al. (1996), Dickinson et al. (1998): using vapor pressure deficit instead of relative humidity

[Pa] p

[Pa] por surface, leaf at the (mol/mol)ion concentrat CO - C

s m CO mol rate,on assimilati leafnet - A

surface leafon humidity relative - h

lyrespective 0.01, and 9 constants - b,m

bhC

A m g

2CO2s

1-2-2n

s

ss

n s

Pain VPD (1998); al.et Dickinson in as VPD) 0.05(1 as written - D/D

(mol/mol) valuereference - D

(mol/mol)air theand leaf ebetween th differencefraction moleor water vap- D

b)

D

D1)((C

A m g

os

o

s

o

s*s

n s

Page 29: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Micrometeorological Model-Based LSMs

• New developments: The Greening of LSMs (improved canopy physiology)

– C3 (all trees and many herbaceous) and C4 (warm grasses) plants are similarly modeled as the minimum of three potential capacities to fix carbon, but

– The three potential capacities are defined differently for C3 and C4 plants

– The parameters are different for both types of plants

– The Ball-Berry model of stomatal conductance replaces all the terms in the Jarvis model except for the soil water stress term

Page 30: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Micrometeorological Model-Based LSMs

• New developments: The Greening of LSMs (improved vegetation phenology) – Traditionally, annual cycle in areal vegetation coverage and leaf area index

prescribed as a quadratic function of deep soil temperature

– Some recent attempts: relating vegetation to climate using empirical rules involving monthly or annual mean temperature and precipitation

– New developments:

• simple rule-based formulation to describe behavior of winter-deciduous and drought-deciduous plants (Foley et al., 1996), using

– daily average temperature, yearly carbon balance

– competition between trees and grasses (through allocation/shading)

• interactive canopy model (Dickinson et al., 1998)

– short time-scale leaf dynamics

– consistent treatment of stomatal conductance and assimilation

– assimilated carbon allocated into leaf, fine root and wood

– soil carbon model

» fast pool: leaf/root turnover (senescence, herbivory or mechanical), leaf loss (cold and drought stress), soil respiration

» slow pool: inert for seasonal variations

Page 31: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Recent LSM Developments

• Improved understanding in physical hydrology– Snow hydrology– Topographic controls on soil moisture/runoff

• Enhanced linkage with biogeochemistry/ecology– Carbon and nitrogen– Vegetation growth/competition

• Closed water cycle through river routing• Advanced techniques for using remotely-sensed

land parameters• Extended field datasets and model calibration

Page 32: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

1. What is an LSM? (29 slides)

2. What is the NOAH LSM? (13 slides)

3. NOAH @ UT (14 slides)

OutlineOutline

Page 33: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental
Page 34: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Land-Atmosphere Interaction

Page 35: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

NCEP/EMC: NCEP Environmental Modeling Center (EMC) (Mitchell, Chen, Ek, Lin, Marshall, Janjic, Manikin,

Lohmann, Grunmann, Pan)

OSU: Oregon State University (Mahrt, Pan, Ek, Kim, Rusher)

HL: NWS Hydrology Lab - formerly Office of Hydrology (Schaake, Koren, Duan)

AFWA: Air Force Weather Agency - formerly AFGWC (Moore, Mitchell, Gayno)

AFRL: Air Force Research Lab - formerly AFGL and PL (Mitchell, Hahn, Chang, Yang)

 

NOAH LSM Development Team

Page 36: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

E.H. Berbery and Rasmusson: U. Maryland (ARM/CART)

C. Marshall and Crawford U. Oklahoma (OU Mesonet)

I. Yucel and Shuttleworth: U. Arizona(ARM/CART,

AZNET)A.K. Betts: Atmospheric Res Inc (ISLSCP/FIFE)

C.D. Peters-Lidard, Wood Princeton U. (TOPLATS extensions)

L. Hinkelman and Ackerman: Penn State U.(ARM/CART)

T.H. Chen, W. Qu, Henderson-Sellers, et al. RMIT (PILPS-2a)

E. Wood, Lettenmaier, Liang, Lohmann: Princeton U. (PILPS-2c)

A. Schlosser, A.G. Slater, A. Robock, et al. U. Maryland (PILPS-2d)

R. Angevine NOAA/AL (Flatland Exp) 

NOAH LSM Evaluation Team

Page 37: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

1. User’s Guide, Public Release Version 2.2, Last Updated 25 June 2001, filename README_2.2.doc at ftp://ftp.ncep.noaa.gov/pub/gcp/ldas/noahlsm/ver_2.2 2. Author / Point of Contact: [email protected] (NCEP/EMC), phone 301-763-8000 3.

 PROGRAM HISTORY LOG  

01 Mar 99: Ver_1.008 Mar 99: Ver_1.127 Jul 99: Ver_2.023 Oct 00: Ver_2.125 Mar 01: Ver_2.2

References

Page 38: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Timeline of NOAH LSM Evolution

Page 39: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

 Air temperature at height Z above groundAir humidity at height Z above ground Surface pressure at height Z above groundWind speed at height Z above groundSurface downward longwave radiationSurface downward solar radiationPrecipitation 

Atmospheric Forcing Variables

Page 40: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

1. SMC: total volumetric soil moisture (liquid & frozen) in each soil layer

2. SH2O: liquid volumetric soil moisture in each soil layer

3. STC: temperature in each soil layer

4. T1: skin temperature

5. CMC: canopy water content

6. SNOWH: snow depth

7. SNEQV: water-equivalent snow depth  

Initial Conditions

Page 41: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

There are five kinds of land-surface parameters, reviewed in order below.  a) single universal values

b) values dependent on the soil class index (default categories are 1–9)

c) values dependent on the vegetation class index (default categories are 1–13)

d) values dependent on the surface slope index (default categories are 1–7)

e) parameters specifying the numbers of vegetation, soil, and slope classes

Model Parameters

Page 42: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

SMCMAX: maximum volumetric soil moisture (porosity)

SMCREF: soil moisture threshold for onset of some transpiration stress

SMCWLT: soil moisture wilting point at which transpiration ceases

SMCDRY: top layer soil moisture threshold at which direct evaporation from soil ceases

DKSAT: saturated soil hydraulic conductivity

PSISAT: saturated soil matric potential

B: the “b” parameter in hydraulic functions

DWSAT: saturated soil water diffusivity

QUARTZ: quartz content, used to compute soil thermal diffusivity

FRZFACT: a parameter used with FRZK to compute the value of parameter FRZX 

Model Soil Parameters

Page 43: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Z0 (m): roughness lengthRCMIN (s/m) : minimal stomatal resistance used in canopy resistance

of routine CANRESRGL: radiation stress parameter used in F1 term in canopy

resistance of routine CANRESHS: coefficient used in vapor pressure deficit term F2 in

canopy resistance of routine CANRESLAI: presently set to universal value of 3.0 across all

vegetation classesNote: seasonality of vegetation greenness carried by fraction of green vegetation (SHDFAC) NROOT: number of soil layers from top down reached by roots SNUP: the water-equivalent snowdepth upper threshold at

which 1)    100 percent snow cover is achieved for given veg class2) maximum snow albedo is achieved for given veg class 

Model Vegetation Parameters

Page 44: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Forecasts of Dew Point Temperature

Old version

New version

Page 45: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Forecasts of Dew Point Temperature

Page 46: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

1. What is an LSM? (29 slides)

2. What is the NOAH LSM? (13 slides)

3. NOAH @ UT (14 slides)

OutlineOutline

Page 47: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

• To put a dynamic vegetation component in the NOAH LSM– understand the feedback mechanisms between

precipitation, soil moisture, and vegetation dynamics– To improve weather and climate forecasts on time

scales from hourly to seasonal– To interpret and transfer weather and climate forecasts

for water resources management applications

• To put a biogenic VOC emission component in the NOAH LSM– understand the impacts of climate change and land

use/land cover change on BVOC emissions and the formation of near ground ozone

NOAH @ UT

Page 48: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

The Modeling Domains: Multiple interactive nesting grids:

90 km grid; 31 Levels

Temperature, wind, humidity, pressure prescribed from large-scale analyses

30 km grid; 31 Levels

Temperature, wind, humidity, pressure predicted

Weather Research and Forecast (WRF) Model, version 2.02(http://www.wrf-model.org/)

The model is developed by NCAR, NCEP and Universities.

3-10 km grid; 31 Levels

Temperature, wind, humidity, pressure predicted

Page 49: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Vegetation Distribution in the Model

Other Land Data:VegetationLAIAlbedoRoughness lengthStomatal parametersSoilTopography

Validation:Weather stationsHydrologic stationsRemote sensingField data

Page 50: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Stomatal Conductance in NOAH• Transpiration

parameterized through surface conductance based on the model of Jarvis (1976). For a single leaf:

function" stress" moisture soil - g

function" stress" re temperatu- g

function" stress"deficit pressure vapor - g

function" stress" radiation - g

factorcover canopy - g

ion typeon vegetat dependingconstant - g

ms e,conductanc stomatal leaf - g

sm ,resistance stomatal leaf - r

g g g g gg gr

1

M

T

D

R

C

0

1-s

1-s

M TDRC 0ss

Page 51: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

The ability of roots to uptake soil water depends on the availability of soil water.

In NOAH, this is a linear function, which may work if soil is near saturated.

We make it a step-function, guided by observations.

We call the experiment NOAH SWF (soil water factor).

NOAH with Modifications (1)

Page 52: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

OBS WRF/SLAB WRF/NOAH WRF/NOAH SWF

JUN

AUG

JUL

Role of Land Surface Processes in Modulating NAMS Rainfall

WRF/SLAB fails to produce rainfall for June thru August.

WRF/NOAH fails to capture rainfall in August.

WRF/NOAH-SWF captures rainfall in August.

Page 53: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

NOAH prescribes fractional green vegetation.

In the real world, vegetation growth depends on precipitation, temperature, nutrients, and others.

This can be modeled by

1) Relating stomatal conductance to photosynthesis & environmental conditions, and

2) Allocating assimilated carbon to leaves, stem, wood, and roots.

NOAH with Modifications (2)

Page 54: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Leaf Anatomy

Stomate(pl. stomata)

Page 55: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

• Plants eat CO2 for a living

• They open their stomata to let CO2 in

• Water gets out as an (unfortunate?) consequence

• For every CO2 molecule fixed about 400 H2O molecules are lost

Carbon and Water

Page 56: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Stomatal conductance is linearly related to photosynthesis:

(The “Ball-Berry-Collatz” parameterization)

Photosynthesis is controlled by three limitations(The Farquahar-Berry model):

Enzyme kinetics(“rubisco”)

Light Starch

n ss

s

A hg m p b

c stomatal

conductance

photosynthesis

CO2 at leaf sfc

RH at leaf sfc

min( , , )n C L S dA A A A R

Photosynthesis and Conductance

Page 57: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Photosynthesis and Carbon Allocation

Page 58: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

WRF/NOAH DV

JUN

AUG

JUL

WRF/NOAH SWFOBS

Comparison of Observed & Simulated Rainfall

Page 59: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

Conclusions

1) Strong sensitivity to land surface processes1) SLAB (without vegetation) fails to simulate the monsoon

rainfall in all months2) NOAH (with prescribed vegetation) is better, but under-

estimates the August rainfall3) NOAH (with improved root water uptake and response) is

even better4) NOAH (with improved carbon and water coupling and

leaf’s dynamic response to rainfall) gives the best overall simulation of the warm season rainfall1) In the southern monsoon regions2) In the southern Great Plains.

2) Dynamic vegetation has the largest impacts on the simulation

of rainfall in the SGP, which is the area that shows the largest

memory to soil moisture conditions.

Page 60: Zong-Liang Yang Introduction to the NOAH Land Surface Model Prepared for Surface Water Hydrology February 24, 2005 N: National Centers for Environmental

PHYSICAL CLIMATOLOGY

GEO 387H

TTh 9:30-11:00 Fall 2005

www.geo.utexas.edu/courses/387h/indexPHY.htmTaught by

Dr. Liang YangDepartment of Geological

Sciences

This course will cover the basics of a broad range of physical processes having an impact on precipitation and evapotranspiration at the earth's surface. Local processes include thermodynamics, cloud microphysics, net radiation at the surface, fluxes of heat and moisture into the soil and the atmospheric boundary layer, and

the effects of a vegetation canopy. Large-scale interactions between atmosphere, ocean, soil moisture, snow, ice, biosphere, and lithosphere are reviewed in the context of potential local/large-scale transports. Methods for

measuring and estimating precipitation and evapotranspiration are described, including the sophisticated models known as GCMs (General Circulation Models) and SVATS (Soil-Vegetation-Atmosphere Transfer

Schemes). Some basic programming/modeling techniques will be covered.

For both Geoscience and non-Geoscience graduate students.