< 0g2#: c a b /; e 58 $& 1 -b )d .> u u1 m r_ z ïn=23 ð 14 u2 µ Ï £brs* l î ... 5...

48
=493F@( <0G2#:CAB/;"E58 $&1-B)D.> ,' =493F"+?736586 36% JHIL!K*

Upload: ngoquynh

Post on 18-Mar-2019

212 views

Category:

Documents


0 download

TRANSCRIPT

=�49�3����F��@(

<��0G2#:�C�A�B�/;�"�E�58

�$&� �1�����-B���)D��.>�

,�' =�49�3����F��"+?7���36�586

���36��% JHIL!K*

1

............................................................................................................................ 6

1.1 ............................................................................................... 6

1.2 − − ........................................ 6

1.3 DTI ............................................................ 7

1.4 – − .................................................... 7

1.5 TMS ................................................................. 8

1.6 DTI TMS .......................... 9

1.7 ............................................................................................................... 9

.............................................................................. 10

2.1 ..................................................................................................................... 10

2.2 ............................................................................................................................. 10

2.3 ............................................................................................................................. 11

2.3.1 .......................................................................................................... 11

2.3.2 .......................................................................................................... 11

2.3.3 DTI ...................................................................................................... 11

2.3.4 DTI .............................................................................................. 11

2.3.5 TBSS ............................................... 12

2.3.6 BRS ROI FA ........................................ 12

2.3.7 ...................................................................................................... 13

2.4 ............................................................................................................................. 14

2.4.1 .......................................................................................................... 14

2.4.2 TBSS ............................................... 15

2.4.3 BRS ................................................................................ 16

2.4.4 rFA ............. 17

2.5 ............................................................................................................................. 17

2.5.1 .................. 18

2.5.2 ROI . 18

2.5.3 .............................................. 20

2.5.4 .................................................................................. 20

2

−4 − .......................................................................... 21

3.1 ..................................................................................................................... 21

3.2 ............................................................................................................................. 21

3.3 ............................................................................................................................. 22

3.3.1 .......................................................................................................... 22

3.3.2 .............................................................................................. 22

3.3.3 DTI ...................................................................................................... 22

3.3.4 ROI .............................................................................. 22

3.3.5 .................................. 23

3.3.6 TMS MEP CMCT ................................. 23

3.4 ..................................................................................................................... 24

3.5 ............................................................................................................................. 26

3.5.1 MEP CMCT .......................................... 27

3.5.2 MEP CMCT ............................................... 27

3.5.3 .................................................................. 28

...................................................................................................................................... 29

4.1 ..................................................................................................................... 29

4.2 ............................................................................................................................. 29

4.3 ............................................................................................................................. 29

4.3.1 .......................................................................................................... 29

4.3.2 .............................................................................................. 30

4.3.3 DTI ...................................................................................................... 30

4.3.4 ROI .............................................................................. 31

4.3.5 MEP CMCT ........................................................... 31

4.3.6 ...................................................................................................... 31

4.4 ............................................................................................................................. 32

4.4.1 .......................................................................................................... 32

4.4.2 ROI rFA ............................. 33

4.4.3 MEP ............................................................ 34

4.4.4 rCMCT .................................................................... 35

4.5 ............................................................................................................................. 35

4.5.1 rFA MEP rCMCT ..... 36

3

4.5.2 rFA MEP rCMCT ..... 36

.......................................................................................... 38

.......................................................................................................................... 42

.................................................................................................................................. 43

4

1 n=23 ........................................................................................................14

2 BRS ROI rFA n=23 ............15

3 ....................................................................................................................24

4 ................................................................................................................30

5 n=17 ........................................................................................................32

1 TBSS n=10 n=13 .................................16

2 rFA ROC n=23 ...........................17

3 BRS rFA n=23 ....................................................19

4 DTT............................................................................................26

5 rFA .............................................................33

6 MEP ...................................................................34

7 rCMCT ...............................................................................35

8 DTI TMS ........................................38

n=16 ..........................39

10 DTI TMS ......................................40

11 n=17 ..........................41

5

ARAT action research arm test

BRS Brunnstrom recovery stage

CMCT central motor conduction time

DTI diffusion tensor imaging

DTT diffusion tensor tractography

FA fractional anisotropy

FMA Fugle-Meyer assessment

MEP motor evoked potential

MRC scale medical research council scale

MRI magnetic resonance imaging

rCMCT central motor conduction time ratio

rFA fractional anisotropy ratio

ROI region of interest

ROA region of avoidance

TBSS tract-based spatial statistics

6

23 4

123 [1,2]

[3,4]

[4]

1.1

[5]

[6–10]

[11]

[7,8,12,13] [9,10]

1.2 − −

diffusion tensor imaging DTI DTI

magnetic resonance imaging MRI

[14,15]

fractional anisotropy FA 0 1

1 [16,17] FA

FA

[18] FA

[16]

FA

region of interest ROI

FA ROI ROI

7

FA [16,17]

diffusion tensor tractography DTT [19,20]

ROI DTI ROI

FA ROI

[16] ROI

[17]

Oxford FMRIB Software Library

http://fsl.fmrib.ox.ac.uk/fsl Tract-based spatial statistics TBSS

[21] DTT FA

ROI

ROI

[20]

1.3 DTI

Koyama [22–25] ROI

FA FA ratio rFA Brunnstrom recovery stage

BRS Medical research council MRC scale 1

5-7 ROI ROI

[22] [23] [23–25]

rFA BRS MRC scale Jang [26]

DTT DTT 6 modified brunnstrom

classification motricity index

DTT

DTI

DTI

1.4 – −

DTI

transcranial magnetic stimulation TMS TMS

motor evoked potential MEP central

8

motor conduction time CMCT

[27]

MEP

MEP → →

MEP

MEP [27]

CMCT

M F

MEP CMCT

[27]

1.5 TMS

TMS MEP CMCT

MEP MEP

[28–33] CMCT Heald [32]

CMCT CMCT

Escudero [33]

CMCT

Piron [34] MEP Hemiplegic stroke scale

MEP

Hendricks [35]

MEP Fugle-Meyer

assessment

Hendricks MEP

CMCT

MEP

CMCT

CMCT

9

1.6 DTI TMS

DTI TMS

[36–38] Stinear [37]

72

TMS MEP ROI FA asymmetry

FA- FA/ FA+ FA 3

Complete Notable Limited None

72 MRC scale 0-5

8 Complete

8 MEP MEP Notable

MEP FA asymmetry FA asymmmetry 0.15

Limited 0.15 None Stinaer

40 37

1.7

2 DTI ROI

3 DTI TMS

4 DTI TMS

5

10

2.1

diffusion tensor imaging DTI

[14,15] DTI

[28,39–41]

DTI ROI

FA

0.55 0.95

[22,25,37,42–47]

ROI

[25,42–44] [23,37]

[22,45] [46,47]

ROI ROI

[22,25,37] ROI [42–44] ROI

FA

[22,48,49]

FA [50]

DTI

2.2

ROI

DTI

ROI TBSS

FA

ROI FA

11

2.3

2.3.1

2013 10 2015 12

DTI

MRI

23 61.1±9.9

15 3

641

2.3.2

DTI

DSI studio http://dsi-studio.labsolver.org

DTI b0

Brunnstrom Recovery Stage BRS

[51]

2.3.3 DTI

1.5T-MRI TOSHIBA EXCELART Vantage, MRT-2003

DTI single shot spin echo EPI TR=10000ms TE=100ms

motion-probing gradient orientation=6 b=1000 field of view 260mm×260mm

1×1×1mm 128×128 3mm

2.3.4 DTI

DTI Oxford FMRIB Software Library [52] Eddy current correction

b0 brain

extraction tool b0

FMRIB’s diffusion toolbox FA

12

2.3.5 TBSS

TBSS

TBSS 2 FA

FA FA FA

[21]

[6–11]

BRS BRS

Ⅲ BRS Ⅳ10

66.3±10.1 6 4 13 57.2±7.9 9

4

TBSS FA

FA FA FMRIB58

FA FA FA

0.35 0.2 [21]

FA FA

0.35 FA

FA FA

n=5000 threshold-free cluster

enhancement [53] 0.01

2.3.6 BRS ROI FA

BRS ROI FA

FA FA FMRIB58

ROI ROI TBSS [23,25,42–

44,54,55] ROI Oxford FMRIB

Software Library JHU ICBM-DTI-81

white-matter labels atlas [56] ROI FA

FA FA FA ratio; rFA rFA=

FA / FA [25,44] rFA

ROI FA

13

2.3.7

t BRS DTI

Mann-Whitney U BRS

ROI rFA Spearman

BRS

receiver operating characteristic ROC

area under the curve AUC

R3.2.3 https://www.R-project.org/ 0.05

14

2.4

2.4.1

BRS 1

p<0.05 BRS p<0.01 BRS

p<0.01 BRS p<0.01 p<0.05

BRS BRS

BRS ⅢBRS Ⅲ p=0.98 p=0.37

p=0.73 DTI p=0.21 p=0.11

1 n=23

DTI diffusion tensor imaging

15

2.4.2 TBSS

TBSS

FA p<0.01 1

ROI

1 TBSS n=10 n=13

TBSS Montreal Neurological Institute 152 T1 FA

FA

Y=-13 Z=6

Z=13

Z=20

R L R L

16

2.4.3 BRS

TBSS

ROI rFA BRS

BRS rFA

2 rFA r=0.70 p<0.01 r=0.66 p<0.01

r=0.64 p<0.01 BRS

BRS

2 BRS ROI rFA n=23

rFA fractional anisotropy ratio

�� �� ��

1 0�5(,4* 1 0�5(,4* 1 0�5(,4*

�7 ����" " ���""� ������� ������ ����$�" ���#��

���7 ������ �� �!! �����!$ �� ��� ������� �� ��#

���1'%7 ��"��$ ������ ��! !$ �����" ��!�#! ������

����1'%7 ����$" ������ ��� �# ������ �����$ ��� !!

���1'%7 ��!� �����# ��!�"� ������ ���$$� ���� �

���&14..231/-�1*)/5*16�23(+*

17

2.4.4 rFA

BRS rFA ROC 2

rFA

0.906 0.692 1.000 AUC=0.846

BRS 0.863

0.846 0.700 AUC=0.808 0.906 0.562 1.000 AUC=0.839

3 BRS rFA

rFA

0.80 BRS

2 rFA ROC n=23

BRS rFA 0.906

0.692 1.000 AUC=0.846 0.863 0.846 0.700

AUC=0.808 0.906 0.562 1.000 AUC=0.839

2.5

TBSS ROI FA

ROI

BRS TBSS

FA

BRS ROI rFA

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1−specificity

sensitivity

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1−specificity

sensitivity

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1−specificity

sensitivity

1–

18

BRS rFA

2.5.1

FA [22,48,49] Schaechter [50]

FA

FA [50]

Yin

[57] 3

Paralyzed Hand Function Assessment

TBSS

FA

FA FA

[57]

FA

[23]

FA

FA

DTI

2 [57] [50]

1.5 3

FA [47,55] T2

3 [58]

Schaechter[50]

2.5.2 ROI

TBSS

ROI rFA BRS

19

rFA BRS ROI

FA

ROI [22,25,37,42–47]

ROI

ROI

rFA 0.906

AUC 0.8 rFA

0.80 0.85[42,54]

0.80 [46]

rFA BRS

rFA rFA 0.80

3 rFA=0.80

3 BRS rFA n=23

a BRS b BRS c BRS rFA

BRS rFA

rFA 0.80 BRS

rFA fractional anisotropy ratio

1 2 3 4 5 6

0.70

0.80

0.90

1.00

Hand_BRS and PLIC_rFA

Brunnstrom recovery stage (Hand)

rFA

1 2 3 4 5 6

0.70

0.80

0.90

1.00

UE_BRS and PLIC_rFA

Brunnstrom recovery stage (UE)

rFA

1 2 3 4 5 6

0.70

0.80

0.90

1.00

LE_BRS and PLIC_rFA

Brunnstrom recovery stage (LE)

rFA

r=0.70p<0.01

r=0.66p<0.01

r=0.64p<0.01

a b c

rFA= .80

20

2.5.3

BRS

BRS

[59–61]

DTI

[28,40] rFA

2.5.4

23 BRS

BRS

BRS

ROI rFA

ROI rFA

BRS 3

FA

BRS Fugl-Meyer

assessment[62]

21

−4 −

3.1

ROI

FA FA ratio rFA

rFA

rFA

DTI TMS

MEP CMCT

[27]

MEP

[28,32,33] MEP

[34,35] MEP

[35] MEP

CMCT

CMCT

[32,35]

CMCT [33]

CMCT

72

CMCT

TMS DTI

rFA TMS MEP CMCT

3.2

rFA 1 4 TMS MEP

CMCT

22

3.3

3.3.1

4

3 4

641

3.3.2

BRS action research arm test ARAT

BRS

[51] ARAT[63]

ARAT 6 4 6 3

4 4 0

1 2 3

57

[64,65]

3.3.3 DTI

1.5T-MRI TOSHIBA EXCELART Vantage MRT-2003

DTI single shot spin echo EPI TR=10000ms TE=100ms

motion-probing gradient orientation=6 b=1000 field of view 260mm×260mm

1×1×1mm 128×128 3mm

3.3.4 ROI

ROI Oxford FMRIB Software Library FSL, http://fsl.fmrib.ox.ac.uk/fsl

[52] ROI 1 eddy-current

correction brain extraction tool

b0

FMRIB’s diffusion toolbox FA FA

23

FMRIB58 FA

region of interest ROI [37]

ROI FSL JHU ICBM-DTI-81 white-matter labels

atlas [56] ROI FA FA

FA FA ratio rFA rFA= FA /

FA rFA 1 FA

3.3.5

diffusion tensor tractography DTT

ROI ROI

[19,20] ROI rFA DTT

DTT DSI studio

http://dsi-studio.labsolver.org DTT

multiple ROI approach[20] ROI

region of avoidance ROA

ROI FSL JHU ICBM-DTI-81

white-matter labels atlas Harvard-Oxford cortical structural atlases [56,66] FA

ROA

FA threshold > 0.2 maximum angle = 50°

3.3.6 TMS MEP CMCT

MEP M F

MEP

150%

MEP 5 MEP M F

M M F

16 CMCT MEP M F

CMCT=MEP

-(F +M -1)/2 [27] CMCT

CMCT CMCT ratio rCMCT

24

rCMCT= CMCT/ CMCT rCMCT 1

CMCT MEP MEP+ MEP-

rCMCT MEP rCMCT-

3.4

BRS ARAT MEP rCMCT DTT

3

3

BRS Brunnstrom recovery stage ARAT action arm research test rFA fractional

anisotoropy ratio DTT diffusion tensor tractography MEP motor evoked potential

rCMCT central motor conduction time ratio DTI diffusion tensor imagein TMS

transcranial magnetic stimulation

A

30

ROI rFA 0.93 DTT

4A MEP

rCMCT .00 0.88

BRS

ARAT 57 /57

B

50

ROI rFA 0.90 DTT

4B MEP

rCMCT 1.32

ENO KHM VFKFP &%�Y[Z��

%�LU9 �5 �� +��Z'4\2�] �� �) �) DNDP .� VID �) �) �) �) GPJ�� FKFP" ���13

D @< � +�,\�/�] @ @ @ ?A 8 :9CB 7 7 ;9:: :9CB ?@ >< ;?;

E ?C $ +!�\� �*] ? ? @ >; 8 :9C@ 7 7 <9:> ;9:= =@ >B ;A?

F @> $ +!�\��(] @ @ ? ?A 7 :9C= 7 8 ;9<? 8 >; =A ??

G @@ $ +!�\��(] < < < : 7 :9B= 8 8 8 8 =< =C ;CA

KRQT @<9B >;9= >;9? ;>>9?

OG =9: ;:9? >9B @<9@

FXW6USS�0Z%�

ENO KHM VFKFP &%�Y[Z��

%�LU9 �5 �� +��Z'4\2�] �� �) �) DNDP .� VID GPP �) �) �) �) GPJ�� PKO" ���13

D =< $ +�,\�-#] @ @ @ ?A 8 :9C= 7 7 7 ;9:: :9BB ?> ?< ;@B

E ?B $ +!�\��(] ? ? > ?> 7 :9C: 7 7 8 ;9=< 8 =A AA ;?=

F A? $ +!�\��(] = = = = 7 :9BC 7 8 7 8 ;9=? => ?= ;@=

G ?C $ +!�\��(] = > > ;: 7 :9BB 7 8 8 8 8 => =< ;?>

KRQT ?@9: =C9B ?=9? ;?C9?

OG ;A9B C9@ ;B9> A9<

25

BRS

ARAT

54 /57

C

70

ROI rFA 0.89 DTT

4C MEP

rCMCT 1.35

BRS

ARAT 3 /57

D

50

ROI rFA 0.88 DTT

4D MEP

rCMCT

BRS

ARAT 10 /57 T

26

4 DTT

b0 DTT

DTT diffusion tensor tractography

3.5

4 ROI rFA 1

0.9 rFA

DTT

4

MEP A B

MEP C D

A B CMCT

MEP A

C MEP

A C MEP CMCT C

MEP B C

ROI DTT

4 MEP rCMCT

MEP

rCMCT

b0

DTT

A B C D

27

3.5.1 MEP CMCT

4 MEP

MEP

MEP 6-12

[30–33]

MEP MRC scale Nine-hole

peg test Frenchay arm test MEP

MEP

CMCT

[31–33]

Motricity index MRC scale

BRS

ARAT CMCT B

A Heald [32]

Nine-hole peg test CMCT

CMCT

CMCT

3.5.2 MEP CMCT

MEP

MEP CMCT

[34,35] MEP BRS

MEP

MEP CMCT

MEP CMCT

28

3.5.3

3

[67–69] [33]

DTI TMS

4

29

4.1

1 2 DTI rFA TMS MEP

rCMCT

TMS MEP

rCMCT

4.2

DTI rFA TMS MEP rCMCT

4.3

4.3.1

2015 1 2016 12

DTI

MRI

18

57.9±10.3 12 / 5

DTI TMS

4

641

30

4

DTI diffusion tensor imaging TMS transcranial magnetic stimulation

4.3.2

Fugl-Meyer assessment FMA

ARAT

FMA

[62,70,71]

2 0

2 3 0 1 2

33 66

2 0 2 3 0 1

2 17 34

ARAT[63]

4.3.3 DTI

1.5T-MRI TOSHIBA EXCELART Vantage MRT-2003

DTI single shot spin echo EPI TR=10000ms TE=100ms

motion-probing gradient orientation=6 b=1000 field of view 260mm×260mm

1×1×1mm 128×128 3mm

IEK TCICN

�&JS5 �2 � )��W$1Y/�ZTFB �' �' OE HE

87 << I )�*Y�-�Z8579 3 3 85<8 85@@

8< <@ F )��Y��%�Z8577 3 4 8589 4

9 =9 F )�*Y�-�Z75@? 3 3 8577 75@?

? <@ I )��Y���(Z75@= 3 3 957; 857:

8 == F )�*Y�-�Z75@= 3 3 8588 85<;

@ =; I )��Y����Z75@: 3 4 859< 4

> :9 I )�*Y�+ Z75@: 3 3 8577 75??

; <? I )��Y��%�Z75@7 3 4 85:9 4

= >< I )��Y��%�Z75?@ 4 3 4 85:<

8: =; I )�*Y�-�Z75?@ 3 3 85@8 859<

8= :? I )�*Y�+ Z75?@ 3 3 85>9 75@=

89 =: F )�*Y�+ Z75?@ 3 3 958< 8588

88 <8 I )�*Y�+ Z75?? 4 3 4 858@

< <@ I )��Y��%�Z75?? 4 4 4 4

8> =8 F )��Y��%�Z75?> 4 3 4 859;

8; <: I )�*Y�+ Z75?; 4 3 4 8598

: == I )��Y��%�Z75?: 4 4 4 4

IQPR <>5@

MD 875:

YRA8>Z

���2Y�Z <>5@Y875:Z

�Y!�6��Z 896<

)��W$1Y)��6)�*Z ?6@

)��W/�

UU�%� >

UU��( 8

UU+ <

UU-� ;

#"VXW����Y�Z

UUDNG ;857Y885;Z

UUNIM ;?5;Y8=5@Z

UU ��.0 8<=5:Y;;58Z

31

4.3.4 ROI

ROI Oxford FMRIB Software Library FSL, http://fsl.fmrib.ox.ac.uk/fsl

[52] ROI 1 eddy-current

correction brain extraction tool

b0

FMRIB’s diffusion toolbox FA FA

FMRIB58 FA

region of interest ROI [37]

ROI FSL JHU ICBM-DTI-81 white-matter

labels atlas [56] ROI FA FA

FA FA ratio rFA rFA= FA /

FA rFA 1 FA

4.3.5 MEP CMCT

2 MEP M F

MEP

150%

MEP 5 MEP

M F

M

M F 16 CMCT

M F MEP

CMCT=MEP -(F +M -1)/2

[27] CMCT CMCT

CMCT ratio rCMCT rCMCT= CMCT/ CMCT

rCMCT 1 CMCT

MEP rCMCT

4.3.6

FMA ARAT FMA rFA

Spearman FMA

ARAT FMA rCMCT Spearman

MEP FMA

32

ARAT FMA Wilcoxon

MEP

rFA rCMCT t

R3.2.3 https://www.R-project.org/ 0.05

4.4

4.4.1

ROI rFA MEP

rCMCT FMA ARAT

5 No.5 ARAT

ARAT 1 16

5 n=17

rFA fractional anisotropy ratio MEP motor evoked potential rCMCT central motor

conduction time ratio FMA Fugle-Meyer assessment ARAT action research arm test

��� ���� ���

����� �� �� �� �� �� �� �� ���� �����

� ��� �� ��� �� �� ��

� � ��� � � �� �� ��

� � ���� ��� ���� �� � ��

� � ���� ���� ��� �� �� �

� ���� � ��� �� � ��

� � ���� ��� �� �� ��

� � ���� ��� ���� �� �� ��

� � ���� ��� �� �� ��

� � ���� ��� �� � �

� � ���� �� ��� �� � �

� ���� ��� ���� �� �� �

� � ���� �� � � �� �� �

� ���� � � � �� �

� � ���� �� �� �

� � ���� ��� �� �� ��

� � ���� �� �� �� �

� � ���� � �� �

33

4.4.2 ROI rFA

rFA FMA r=0.77 p<0.01

ARAT r=0.72 p<0.01 rFA FMA

r=0.46 p=0.06 5 5

rFA 0.85 FMA ARAT

rFA

p=0.29

5 rFA

a FMA n=17 b ARAT n=16 c FMA

n=17 rFA FMA

ARAT rFA

FMA rFA

rFA 0.85

rFA fractional anisotropy ratio FMA Fugle-Meyer assessment

0.80 0.85 0.90 0.95 1.00

1020

3040

5060

70

FMA_UE vs rFA

rFA

FMA

mot

or s

core

(UE)

0.80 0.85 0.90 0.95 1.00

010

2030

4050

60

ARAT vs rFA

rFA

ARAT

0.80 0.85 0.90 0.95 1.00

1520

2530

35

FMA_LE vs rFA

rFA

FMA

mot

or s

core

(LE)

r=0.77p<0.01

r=0.73p<0.01

r=0.46p=0.06

rFA

FMA

ARAT

FMA

rFA rFA

a b c

34

4.4.3 MEP

MEP MEP MEP FMA

p<0.01 ARAT p<0.01 MEP 6

FMA p=0.43 MEP

p=0.34

6 MEP

MEP FMA

n=17 b ARAT n=16 MEP n=6 MEP n=11

b FMA n=17

MEP n=5 MEP n=12

1 2

1020

3040

5060

70

FMA_UE vs MEP_UE

MEP_UE

FMA_UE

1 2

010

2030

4050

60

ARAT vs MEP_UE

MEP_UE

ARAT

1 2

1015

2025

3035

FMA_LE vs MEP_LE

MEP_LEFM

A_LE

** **

MEP

FMA

ARAT

FMA

MEP MEP

**p<0.01a b c

35

4.4.4 rCMCT

rCMCT ARAT r=-0.87 p<0.01

rCMCT FMA r=-0.57 p=0.07 FMA

r=-0.54 p=0.07 7

rCMCT 1.5 FMA ARAT

rCMCT p=0.05 rCMCT 1.3

7 rCMCT

rCMCT a FMA n=11 b ARAT n=10 c FMA

n=12 ARAT rCMCT

4.5

DTI TMS

ROI rFA FMA

ARAT FMA rFA

rFA 0.85

TMS MEP FMA

ARAT MEP FMA

rCMCT FMA FMA

0.0 0.5 1.0 1.5 2.0

1020

3040

5060

70

FMA_UE vs rCMCT_UE

rCMCT_UE

FMA

mot

or s

core

(UE)

0.0 0.5 1.0 1.5 2.0

010

2030

4050

60

ARAT vs rCMCT_UE

rCMCT_UE

ARAT

0.0 0.5 1.0 1.5 2.0

1015

2025

3035

FMA_LE vs rCMCT_LE

rCMCT_LE

FMA

mot

or s

core

(LE)

r=-0.57p=0.07

r=-0.54p=0.07

r=-0.87p<0.01

rCMCT

FMA

ARAT

FMA

rCMCT rCMCT

a b c

36

ARAT ARAT

4.5.1 rFA MEP rCMCT

1 BRS rFA

FMA ARAT rFA

[22–25,37,42–47]

rFA 0.85 rFA

ROI [42,46,54] 0.8 0.85

MEP

FMA ARAT

[28–33] MEP

rCMCT ARAT

CMCT

CMCT [31–33]

ARAT

CMCT FMA

ARAT

4.5.2 rFA MEP rCMCT

1 rFA BRS

FMA rFA

BRS stage 6

FMA

MEP FMA

rCMCT FMA

[34,35] TMS MEP

CMCT

central pattern generator CPG

37

CPG

[72]

Hendricks [35] MEP

CMCT

Maeshima [73] DTI

ROI FA

FA

FA 0.59 80%

ROI rFA

rFA 0.85

Maeshima

TMS MEP rCMCT

rCMCT 1.3

38

1 3 8

ARAT

DTI ROI rFA

rFA 0.85 rFA 0.85 TMS

MEP MEP

MEP rCMCT rCMCT >1.5

CMCT rCMCT 1

<1.5 CMCT 9

3

MEP

M MEP MEP

/M

8 DTI TMS

ARAT rFA

rFA<0.85

rFA>0.85 MEP MEP rCMCT

rCMCT>1.5 rCMCT<1.5

����rFA� ���

MEP���

<0.85�

���

rCMCT� �$%'*�

� �

>0.85�

)(�

'*�

"�.>1.5/�

��.<1.5/�

39

9 n=16

ARAT action research arm test

0 1 2 3 4

010

2030

4050

60

ARAT vs Group

Group

ARAT

� � �$%'*� ���

#�����

.�/�

40

10

FMA

rCMCT 1.3 3

11

FMA

2 MEP

M MEP MEP /M

MEP

10 DTI TMS

FMA

rFA rFA<0.85

rFA>0.85 MEP MEP

rCMCT rCMCT>1.3 rCMCT<1.3

����rFA� ��.��� ��!/�

MEP���

<0.85�

)(�

rCMCT�

'*�

"�.>1.3/� �$%'*.��� ��!/�

��.<1.3/�

� .��� ��!/�

>0.85�

��.��� ��!/�

41

11 n=17

○ × FMA

DTI TMS rFA

rCMCT

0 1 2 3 4

1520

2530

35

FMA_LE vs Group

Group

FMA_LE

� � ���

#�����

FMA��#-,+�

.�/�

�$%'*�

42

43

1. . 22

. , 2011;66(10):48–51.

2. , . . ,

2014;36(5):378–84.

3. . .  :

, 1982;19(4):201–23.

4. Kwakkel G, Wagenaar RC, Kollen BJ, Lankhorst GJ. Predicting disability in stroke--a critical review of

the literature. Age Ageing, 1996;25(6):479–89.

5. Bear M, Connors B, Paradiso M, , , , . -

-. ; 2007. 352-353 p.

6. Hepp-Reymond MC, Wiesendanger M. Unilateral pyramidotomy in monkeys: Effect on force and speed

of a conditioned precision grip. Brain Res, 1972;36(1):117–31.

7. Murata Y, Higo N. Development and Characterization of a Macaque Model of Focal Internal Capsular

Infarcts. PLoS One, 2016;11(5):e0154752.

8. Murata Y, Higo N, Hayashi T, Nishimura Y, Sugiyama Y, Oishi T, et al. Temporal Plasticity Involved in

Recovery from Manual Dexterity Deficit after Motor Cortex Lesion in Macaque Monkeys. J Neurosci,

2015;35(1):84–95.

9. Schiemanck SK, Kwakkel G, Post MWM, Kappelle LJ, Prevo AJH. Impact of internal capsule lesions

on outcome of motor hand function at one year post-stroke. J Rehabil Med, 2008;40(2):96–101.

10. Wenzelburger R, Kopper F, Frenzel A, Stolze H, Klebe S, Brossmann A, et al. Hand coordination

following capsular stroke. Brain, 2005;128(1):64–74.

11. Lemon RN. Descending pathways in motor control. Annu Rev Neurosci, 2008;31(Cm):195–218.

12. Frost SB, Barbay S, Mumert ML, Stowe AM, Nudo RJ. An animal model of capsular infarct:

Endothelin-1 injections in the rat. Behav Brain Res, 2006;169(2):206–11.

13. Puentes S, Kaido T, Hanakawa T, Ichinohe N, Otsuki T, Seki K. Internal capsule stroke in the common

marmoset. Neuroscience, 2015;284:400–11.

14. Beaulieu C. The basis of anisotropic water diffusion in the nervous system - A technical review. NMR

Biomed, 2002;15(7–8):435–55.

15. Le Bihan D. Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci,

2003;4(6):469–80.

16. Abhinav K, Yeh FC, Pathak S, Suski V, Lacomis D, Friedlander RM, Fernandez-Miranda JC. Advanced

diffusion MRI fiber tracking in neurosurgical and neurodegenerative disorders and neuroanatomical

studies: A review. Biochim Biophys Acta - Mol Basis Dis, 2014;1842(11):2286–97.

17. Shimoji K, Tokumaru AM. White matter fiber tractography and quantitative analysis of diffusion tensor

44

imaging. Brain nerve = Shinkei kenkyū no shinpo, 2015;67(4):475–85.

18. Sampaio-Baptista C, Khrapitchev AA, Foxley S, Schlagheck T, Scholz J, Jbabdi S, et al. Motor skill

learning induces changes in white matter microstructure and myelination. J Neurosci,

2013;33(50):19499–503.

19. Mori S, Crain BJ, Chacko VP, Van Zijl P. Three-dimensional tracking of axonal projections in the brain

by magnetic resonance imaging. Ann Neurol, 1999;45(2):265–9.

20. Mori S, Van Zijl PCM. Fiber tracking: Principles and strategies - A technical review. NMR Biomed,

2002;15(7–8):468–80.

21. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, et al. Tract-based

spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage, 2006;31(4):1487–505.

22. Koyama T, Marumoto K, Miyake H, Domen K. Relationship between diffusion tensor fractional

anisotropy and long-term motor outcome in patients with hemiparesis after middle cerebral artery

infarction. J Stroke Cerebrovasc Dis, 2014;23(9):2397–404.

23. Koyama T, Tsuji M, Nishimura H, Miyake H, Ohmura T, Domen K. Diffusion tensor imaging for

intracerebral hemorrhage outcome prediction: Comparison using data from the corona radiata/internal

capsule and the cerebral peduncle. J Stroke Cerebrovasc Dis, 2013;22(1):72–9.

24. Koyama T, Tsuji M, Miyake H, Ohmura T, Domen K. Motor outcome for patients with acute

intracerebral hemorrhage predicted using diffusion tensor imaging: An application of ordinal logistic

modeling. J Stroke Cerebrovasc Dis, 2012;21(8):704–11.

25. Koyama T, Marumoto K, Miyake H, Domen K. Relationship between Diffusion Tensor Fractional

Anisotropy and Motor Outcome in Patients with Hemiparesis after Corona Radiata Infarct. J Stroke

Cerebrovasc Dis, 2013;22(8):1355–60.

26. Jang SH, Ahn SH, Sakong J, Byun WM, Choi BY, Chang CH, Bai D, Son SM. Comparison of TMS and

DTT for predicting motor outcome in intracerebral hemorrhage. J Neurol Sci, 2010;290(1–2):107–11.

27. Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol,

2003;2(3):145–56.

28. Coupar F, Pollock A, Rowe P, Weir C, Langhorne P. Predictors of upper limb recovery after stroke: a

systematic review and meta-analysis. Clin Rehabil, 2012;26(4):291–313.

29. Brouwer BJ, Schryburt-Brown K. Hand Function and Motor Cortical Output Poststroke: Are They

Related? Arch Phys Med Rehabil, 2006;87(5):627–34.

30. Pizzi A, Carrai R, Falsini C, Martini M, Verdesca S, Grippo A. Prognostic value of motor evoked

potentials in motor function recovery of upper limb after stroke. J Rehabil Med, 2009;41(8):654–60.

31. Rapisarda G, Bastings E, de Noordhout AM, Pennisi G, Delwaide PJ. Can motor recovery in stroke

patients be predicted by early transcranial magnetic stimulation? Stroke, 1996;27(12):2191–6.

32. Heald A, Bates D, Cartlidge NE, French JM, Miller S. Longitudinal study of central motor conduction

45

time following stroke. 2. Central motor conduction measured within 72 h after stroke as a predictor of

functional outcome at 12 months. Brain, 1993;116(6):1371–85.

33. Escudero J V, Sancho J, Bautista D, Escudero M, López-Trigo J. Prognostic value of motor evoked

potential obtained by transcranial magnetic brain stimulation in motor function recovery in patients with

acute ischemic stroke. Stroke, 1998;29(9):1854–9.

34. Piron L, Piccione F, Tonin P, Dam M. Clinical correlation between motor evoked potentials and gait

recovery in poststroke patients. Arch Phys Med Rehabil, 2005;86(9):1874–8.

35. Hendricks HT, Pasman JW, Van Limbeek J, Zwarts MJ. Motor evoked potentials of the lower extremity

in predicting motor recovery and ambulation after stroke: A cohort study. Arch Phys Med Rehabil,

2003;84(9):1373–9.

36. Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD. Functional potential in

chronic stroke patients depends on corticospinal tract integrity. Brain, 2007;130(1):170–80.

37. Stinear CM, Barber PA, Petoe M, Anwar S, Byblow WD. The PREP algorithm predicts potential for

upper limb recovery after stroke. Brain, 2012;135(8):2527–35.

38. Kwon YH, Son SM, Lee J, Bai DS, Jang SH. Combined study of transcranial magnetic stimulation and

diffusion tensor tractography for prediction of motor outcome in patients with corona radiata infarct. J

Rehabil Med, 2011;43(5):430–4.

39. Stinear CM, Ward NS. How useful is imaging in predicting outcomes in stroke rehabilitation? Int J

Stroke, 2013;8(1):33–7.

40. Jang SH. Prediction of motor outcome for hemiparetic stroke patients using diffusion tensor imaging: A

review. NeuroRehabilitation, 2010;27(4):367–72.

41. Kumar P, Kathuria P, Nair P, Prasad K. Prediction of Upper Limb Motor Recovery after Subacute

Ischemic Stroke Using Diffusion Tensor Imaging: A Systematic Review and Meta-Analysis. J stroke,

2016;18(1):50–9.

42. Kusano Y, Seguchi T, Horiuchi T, Kakizawa Y, Kobayashi T, Tanaka Y, Seguchi K, Hongo K.

Prediction of functional outcome in acute cerebral hemorrhage using diffusion tensor imaging at 3T: a

prospective study. Ajnr, 2009;30(8):1561–5.

43. Liu X, Tian W, Qiu X, Li J, Thomson S, Li L, Wang HZ. Correlation analysis of quantitative diffusion

parameters in ipsilateral cerebral peduncle during wallerian degeneration with motor function outcome

after cerebral ischemic stroke. J Neuroimaging, 2012;22(3):255–60.

44. Thomalla G, Glauche V, Koch MA, Beaulieu C, Weiller C, Röther J. Diffusion tensor imaging detects

early Wallerian degeneration of the pyramidal tract after ischemic stroke. Neuroimage,

2004;22(4):1767–74.

45. Groisser BN, Copen WA, Singhal AB, Hirai KK, Schaechter JD. Corticospinal tract diffusion

abnormalities early after stroke predict motor outcome. Neurorehabil Neural Repair, 2014;28(8):751–60.

46

46. Yoshioka H, Horikoshi T, Aoki S, Hori M, Ishigame K, Uchida M, et al. Diffusion tensor tractography

predicts motor functional outcome in patients with spontaneous intracerebral hemorrhage. Neurosurgery,

2008;62(1):97–103.

47. Yu C, Zhu C, Zhang Y, Chen H, Qin W, Wang M, Li K. A longitudinal diffusion tensor imaging study

on Wallerian degeneration of corticospinal tract after motor pathway stroke. Neuroimage,

2009;47(2):451–8.

48. Li Y, Wu P, Liang F, Huang W. The microstructural status of the corpus callosum is associated with the

degree of motor function and neurological deficit in stroke patients. PLoS One, 2015;10(4):1–17.

49. Liu G, Dang C, Chen X, Xing S, Dani K, Xie C, et al. Structural remodeling of white matter in the

contralesional hemisphere is correlated with early motor recovery in patients with subcortical infarction.

Restor Neurol Neurosci, 2015;33(3):309–19.

50. Schaechter JD, Fricker ZP, Perdue KL, Helmer KG, Vangel MG, Greve DN, Makris N. Microstructural

status of ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke

patients. Hum Brain Mapp, 2009;30(11):3461–74.

51. Brunnstrom S. Motor testing procedures in hemiplegia: based on sequential recovery stages. Phys Ther,

1966;46(4):357–75.

52. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, et al. Advances

in functional and structural MR image analysis and implementation as FSL. Neuroimage,

2004;23(SUPPL. 1).

53. Smith SM, Nichols TE. Threshold-free cluster enhancement: Addressing problems of smoothing,

threshold dependence and localisation in cluster inference. Neuroimage, 2009;44(1):83–98.

54. Maeda T, Ishizaki K, Yura S. Can diffusion tensor imaging predict the functional outcome of

supra-tentorial stroke? No To Shinkei, 2005;57(1):27–32.

55. Kuzu Y, Inoue T, Kanbara Y, Nishimoto H, Fujiwara S, Ogasawara K, Ogawa A. Prediction of motor

function outcome after intracerebral hemorrhage using fractional anisotropy calculated from diffusion

tensor imaging. Cerebrovasc Dis, 2012;33(6):566–73.

56. Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K, et al. Stereotaxic white matter atlas based on

diffusion tensor imaging in an ICBM template. Neuroimage, 2008;40(2):570–82.

57. Yin D, Yan X, Fan M, Hu Y, Men W, Sun L, Song F. Secondary degeneration detected by combining

voxel-based morphometry and tract-based spatial statistics in subcortical strokes with different outcomes

in hand function. Am J Neuroradiol, 2013;34(7):1341–7.

58. Orita T, Tsurutani T, Izumihara a., Kajiwara K, Matsunaga T. Pyramidal tract Wallerian degeneration

and correlated symptoms in stroke. Eur J Radiol, 1994;18(1):26–9.

59. Baird AE, Dambrosia J, Janket SJ, Eichbaum Q, Chaves C, Silver B, et al. A three-item scale for the

early prediction of stroke recovery. Lancet, 2001;357(9274):2095–9.

47

60. Schiemanck SK, Kwakkel G, Post MWM, Kappelle LJ, Prevo AJH. Predicting Long-Term

Independency in Activities of Daily Living After Middle Cerebral Artery Stroke: Does Information

From MRI Have Added Predictive Value Compared With Clinical Information? Stroke,

2006;37(4):1050–4.

61. Saver JL, Johnston KC, Homer D, Wityk R, Koroshetz W, Truskowski LL, Haley EC. Infarct volume as

a surrogate or auxiliary outcome measure in ischemic stroke clinical trials. The RANTTAS Investigators.

Stroke, 1999;30(2):293–8.

62. Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a

method for evaluation of physical performance. Scand J Rehabil Med, 1975;7(1):13–31.

63. Lyle RC. A performance test for assessment of upper limb function in physical rehabilitation treatment

and research. Int J Rehabil Res Int Zeitschrift für Rehabil Rev Int Rech réadaptation, 1981;4(4):483–92.

64. Hsieh CL, Hsueh IP, Chiang FM, Lin PH. Inter-rater reliability and validity of the Action Research arm

test in stroke patients. Age Ageing, 1998;27(2):107–14.

65. Platz T, Pinkowski C, van Wijck F, Kim I-H, di Bella P, Johnson G. Reliability and validity of arm

function assessment with standardized guidelines for the Fugl-Meyer Test, Action Research Arm Test

and Box and Block Test: a multicentre study. Clin Rehabil, 2005;19(4):404–11.

66. Desikan RS, S??gonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling

system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.

Neuroimage, 2006;31(3):968–80.

67. Wade DT, Langton-Hewer R, Wood VA, Skilbeck CE, Ismail HM. The hemiplegic arm after stroke:

measurement and recovery. J Neurol Neurosurg Psychiatry, 1983;46(6):521–4.

68. Olsen TS. Arm and leg paresis as outcome predictors in stroke rehabilitation. Stroke, 1990;21(2):247–

51.

69. Nakayama H, Jørgensen HS, Raaschou HO, Olsen TS. Recovery of upper extremity function in stroke

patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil, 1994;75(4):394–8.

70. Sanford J, Moreland J, Swanson LR, Stratford PW, Gowland C. Reliability of the Fugl-Meyer

assessment for testing motor performance in patients following stroke. Phys Ther, 1993;73(7):447–54.

71. Sullivan KJ, Tilson JK, Cen SY, Rose DK, Hershberg J, Correa A, et al. Fugl-meyer assessment of

sensorimotor function after stroke: Standardized training procedure for clinical practice and clinical trials.

Stroke, 2011;42(2):427–32.

72. , . .

; 2016. 2-11 p.

73. Maeshima S, Osawa A, Nishio D, Hirano Y, Kigawa H, Takeda H. Diffusion tensor MR imaging of the

pyramidal tract can predict the need for orthosis in hemiplegic patients with hemorrhagic stroke. Neurol

Sci, 2013;34(10):1765–70.