-decay theory

21
-decay theory

Upload: tara

Post on 20-Mar-2016

62 views

Category:

Documents


1 download

DESCRIPTION

-decay theory. The decay rate. Fermi’s Golden Rule. transition (decay) rate (c). density of final states (b). transition matrix element (a). Turn off any Coulomb interactions. The decay rate (a). Fermi’s Golden Rule. V  = weak interaction potential. u = nuclear states. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: -decay theory

-decay theory

Page 2: -decay theory

The decay rate

λ =2πh

V fi2

ρ E f( )

Fermi’s Golden Rule

density of final states(b)

transition (decay) rate(c)

transition matrix element(a)

Turn off any Coulomb interactions

Page 3: -decay theory

The decay rate (a)

λ =2πh

V fi2

ρ E f( )

V fi = ψ f*∫ Vβ ψ i dV

ψi = uPψ f = uDϕ β ην

V fi = uD* ϕ β

* ην*∫ Vβ uP dV

Fermi’s Golden Rule

V = weak interaction potential

u = nuclear states

= lepton () states

Integral over nuclear volume

Page 4: -decay theory

The decay rate (a)

uPuD

“Four-fermion” (contact) interaction

uP

W

uD

(W) Intermediate vector boson

Δt ≈ hΔE

Δt ≈ hmW c2

c Δt ≈ hcmW c2 = 197MeVfm

90 GeV

δ ≈ 2• 10−3fm Interaction range

Page 5: -decay theory

The decay rate (a)

Vβ ≈ gδr r i −

r r f( )

V fi = uD* ϕ β

* ην*∫ gδ

r r i −

r r f( )uP dV

V fi = g uD* uPϕ β

* ην*∫ dV

Assume: Short range interaction contact interaction

g = weak interaction coupling constant

Assume: , are weakly interacting “free particles” in nucleus

ϕ ≈ei

r k e⋅

r r

V1/2 ; ην ≈ eir k ν ⋅

r r

V1/2Approximate leptons as plane waves

Page 6: -decay theory

The decay rate (a)Assume: We can expand lepton wave functions and simplify

And similarly for the neutrino wave function.

ϕ ≈ei

r k e⋅

r r

V1/2 ≈ 1V1/2 1+ i

r k e ⋅

r r +

r k e ⋅

r r ( )

2

2+ ⋅⋅⋅

⎢ ⎢ ⎢

⎥ ⎥ ⎥ ≈ 1

V1/2

Test the approximation ---

Tβ ≈1MeV → 1ke

≈ 2 ⋅10−13m = D ;

r ≤ R ≈10−14 m ; kr ≤ 0.1

deBroglie λ >> Rtherefore, lepton , constant over nuclear volume. (We will revisit this assumption later!)

Page 7: -decay theory

The decay rate (a)

V fi = g uD* uPϕ β

* ην*∫ dV ; ϕ β ≈ 1

V1/2 ; ην ≈ 1V1/2

V fi ≈ gV

uD* uP∫ dV ≡ g

VM fi

Therefore -- the matrix element simplifies to --

Mfi is the nuclear matrix element; overlap of uD and uP

λ =2πh

V fi2

ρ E f( ) → λ ≈ 2πh

g2 M fiV

2ρ E f( )

Remember the assumptions we have made!!

Page 8: -decay theory

The decay rate

λ =2πh

V fi2

ρ E f( )

Fermi’s Golden Rule

density of final states(b)

transition (decay) rate(c)

transition matrix element(a)

Page 9: -decay theory

The decay rate (b)

λ =2πh

V fi2

ρ E f( )

ρ E f( ) = dNdE f

Fermi’s Golden Rule

Quantization of particles in a fixed volume (V) discrete momentum/energy states (phase space) --

dN = 4π

2πh( )3 p2dpV Number of states dN in space-volume V, and momentum-volume 4p2dp

Page 10: -decay theory

The decay rate (b)

dN tot = dNe dNν

dNe dNν = 4π2πh( )3

⎝ ⎜ ⎜

⎠ ⎟ ⎟

2

p e2dpe pν

2 dpν V 2

Do not observe ; therefore remove -dependence --

E f = Ee + Eν = Ee + pν c ; TD ≈ 0

pν =E f − Ee

c ; dpν =

dE f

c

dNe dNν = 16π 2

2πh( )6 p e2dpe

E f − Ee

c

⎛ ⎝ ⎜

⎞ ⎠ ⎟2 dE f

cV 2

At fixed Ee

Assume

Page 11: -decay theory

The decay rate (b)

dNe dNν = 16π 2

2πh( )6 p e2dpe

E f − Ee

c

⎛ ⎝ ⎜

⎞ ⎠ ⎟2 dE f

cV 2

ρ = dN totdE f

= 16π 2

2πh( )6 c3p e

2dpe E f − Ee( )2V 2

λ =2πh

V fi2

ρ E f( )

dλ pe( )≡ λ pe( )dpe ; λ = λ pe( ) dpe0

pe−max∫

dλ pe( ) ≈ g2

2h7π 3c3 M fi2

E f − Ee( )2

pe2dpe

Fermi’s Golden Rule

Differential rate

Density of final states

Page 12: -decay theory

The decay rate

dλ pe( ) ≈ g2

2h7π 3c3 M fi2

E f − Ee( )2

pe2dpe

Fundamental (uniform) interaction strength

Differential decay rate

Overlap of initial and final nuclear wave functions; largest when uP uD a number

Determines spectral shape!

Page 13: -decay theory

Ef(Q)

Q ≈ Te + Tν → Q ≈ Ee − mec2 + TνE f = Ee + Eν = Ee + Tν

Q ≈ E f − mec2 ; E f = Q + mec2

Q-value for decay

Definition of Ef

Page 14: -decay theory

dλ(pe)

dλ pe( ) ≈ g2

2h7π 3c3 M fi2

E f − Ee( )2

pe2dpe

Ee = pe2c2 + m e

2c4( )

1/ 2

dλ pe( ) ≈ g2

2h7π 3c3 M fi2

E f − pe2c2 + m e

2c4( )

1/2 ⎛

⎝ ⎜

⎠ ⎟2

pe2dpe

Q ≈ Te + Tν → Q ≈ Ee − mec2 + TνE f = Ee + Eν = Ee + Tν

Q ≈ E f − mec2 ; E f = Q + mec2

c.f. Fig. 9.2

Page 15: -decay theory

dλ(Ee)

dλ pe( ) ≈ g2

2h7π 3c3 M fi2

E f − Ee( )2

pe pe dpe

pe2c2 = E e

2 − m e2c4 ; pe =

E e2 − m e

2c4( )

1/ 2

c2pe dpe = 2Ee dEe

dλ Ee( ) ≈ g2

2h7π 3c4 M fi2

E f − Ee( )2

E e2 − m e

2c4( )

1/ 2Ee dEe

dλ Ee = 0( ) = dλ Ee = E f( ) = 0

Page 16: -decay theory

dλ(Te)

dλ Ee( ) ≈ g2

2h7π 3c4 M fi2

E f − Ee( )2

Ee2 − me

2c4( )

1/2Ee dEe

E f = Q + mec2 ; Ee = Te + mec2 ; dEe = dTe

E f − Ee = Q − Te

Ee2 − me

2c4 = Te + mec2( )

2− me

2c4 = Te2 + 2Temec2

( )

dλ Te( ) ≈ g2

2h7π 3c4 M fi2

Q − Te( )2 Te2 + 2Temec2

( )1/2

Te + mec2( )dTe

dλ Te = 0( ) = dλ Te = Q( ) = 0 c.f. Fig. 9.2

Page 17: -decay theory

Consider assumptions

Look at data for differential rates - c.f., Fig. 9.3

Calculate corrections for Coulomb effects on or Fermi Function F(Z’,pe) or F(Z’,Te)

Coulomb Effects --

F Z ', pe( ) ≈ 2π ε 11− e−2επ( )

ε = Z 'e2

hve

ve velocity of electronfar from nucleus

Page 18: -decay theory

Consider assumptionsLepton wavefunctions --

ϕ ≈ei

r k e⋅

r r

V1/2 ≈ 1V1/2 1+ i

r k e ⋅

r r +

r k e ⋅

r r ( )

2

2+ ⋅⋅⋅

⎢ ⎢ ⎢

⎥ ⎥ ⎥ ≈ 1

V1/2

In some cases, the lowest order term possible in the expansion is not 1, but one of the higher order terms!

More complicated matrix element; impacts rate!

Additional momentum dependence to the differential rate spectrum; changes the spectrum shape!

Page 19: -decay theory

Consider assumptionsLepton wavefunctions --

ϕ ≈ei

r k e⋅

r r

V1/2 ≈ 1V1/2 1+ i

r k e ⋅

r r +

r k e ⋅

r r ( )

2

2+ ⋅⋅⋅

⎢ ⎢ ⎢

⎥ ⎥ ⎥ ≈ 1

V1/2

“Allowed term”

“First forbidden term”

“Second forbidden term”

etc….

Page 20: -decay theory

Consider assumptionsLepton wavefunctions --

ϕ ≈ei

r k e⋅

r r

V1/2 ≈ 1V1/2 1+ i

r k e ⋅

r r +

r k e ⋅

r r ( )

2

2+ ⋅⋅⋅

⎢ ⎢ ⎢

⎥ ⎥ ⎥ ≈ 1

V1/2

Change in spectral shape from higher order terms “Shape Factor” S(pe,p)

Page 21: -decay theory

The decay rate

dλ pe( ) ≈ g2

2h7π 3c3 M fi2

E f − Ee( )2

pe2dpe

λ pe( ) ≡dλ pe( )

dpe≈ g2

2h7π 3c3 M fi2

F Z ', pe( ) S pe, pν( ) E f − Ee( )2

pe2

Fermi function

Shape correction

Density of final states

Nuclear matrix element