« study of evs and hevs using energetic macroscopic … · 2013-10-25 · emr seminar harbin inst....

28
EMR seminar Harbin Inst. Tech. Oct. 2013 Prof. A. Bouscayrol (University Lille1, L2EP, MEGEVH, France) based on the works of “eV” group of Control team of L2EP Lille http://emrwebsite.org/ « « Study of Study of EVs EVs and and HEVs HEVs using using Energetic Macroscopic Representation Energetic Macroscopic Representation » » 2 Harbin, October 2013 « « EVs EVs and and HEVs HEVs using EMR using EMR » » - Outline - 1. Research at L2EP / Univ. Lille1 2. Requirements for study of EVs and HEVs 3. EMR and Inversion-based control 4. Example of an EV 5. More advanced Example Simulation of an EV EMR seminar Harbin Inst. Tech. Oct. 2013 « « 1. Research at L2EP Lille 1. Research at L2EP Lille » » “electric energy & Vehicle” (eV) activities within the framework of L2EP Lille 4 Harbin, October 2013 « « EVs EVs and and HEVs HEVs using EMR using EMR » » - University Lille1, Science & Technology - Lille and suburbs more than 1.5 million inhabitants 4 universities (150,000 students) University of Lille 1 (30,000 students) at the crossroad of Paris, London and Brussels Paris Lille London Brussels Cologne Amsterdam 1h 1h20 0h35 TGV (railway) airport 0h50 France

Upload: others

Post on 07-Apr-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: « Study of EVs and HEVs using Energetic Macroscopic … · 2013-10-25 · EMR seminar Harbin Inst. Tech. Oct. 2013 « 3. EMR and inversion-based control of of energetic systems »

EMR seminarHarbin Inst. Tech.Oct. 2013

Prof. A. Bouscayrol(University Lille1, L2EP, MEGEVH, France)

based on the works of “eV” group of Control teamof L2EP Lille

http://emrwebsite.org/

«« Study of Study of EVsEVs and and HEVsHEVs usingusingEnergetic Macroscopic Representation Energetic Macroscopic Representation »»

2Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- Outline -

1. Research at L2EP / Univ. Lille1

2. Requirements for study of EVs and HEVs

3. EMR and Inversion-based control

4. Example of an EV

5. More advanced Example

Simulation of an EV

EMR seminarHarbin Inst. Tech.Oct. 2013

«« 1. Research at L2EP Lille 1. Research at L2EP Lille »»

“electric energy & Vehicle” (eV) activitieswithin the framework of L2EP Lille

4Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- University Lille1, Science & Technology -

Lille and suburbs more than 1.5 million inhabitants

4 universities

(150,000 students)

University of Lille 1

(30,000 students)

at the crossroad of Paris, London and Brussels

Paris

Lille

London

BrusselsCologne

Amsterdam

1h

1h200h35

TGV (railway)airport

0h50

France

Page 2: « Study of EVs and HEVs using Energetic Macroscopic … · 2013-10-25 · EMR seminar Harbin Inst. Tech. Oct. 2013 « 3. EMR and inversion-based control of of energetic systems »

5Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- L2EP Lille -

28 professors and associate professors, 41 PhD students, 12 technical and administrative staff

Laboratory of Electrical Engineering and Power (L2EP)http://l2ep.univ-lille1.fr/

6Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

Prof. F. Piriou« Optimisation »Prof. P. Brochet

« Optimisation »Prof. P. Brochet« Numerical Modelling »

Prof. S. Clénet« Numerical Modelling »

Prof. S. Clénet

- Research at L2EP -

« Electrical grid »Prof. B. Robyns

« Electrical grid »Prof. B. Robyns

« Control »Prof. B. Lemaire-Semail

« Control »Prof. B. Lemaire-Semail

« Power Electronics »Prof. P. Le Moigne

« Power Electronics »Prof. P. Le Moigne

7Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

Fq/b

Vid id C

Vid-ref id-ref CrefFq-

ref

vq-ref

vqN

FTCriq Vid C

simulation devéhicule Electrique

Modelling and control tools(COG, EMR, BMC, resonant controllers..)

Modelling and control tools(COG, EMR, BMC, resonant controllers..)

« Control »Prof. B. Lemaire-Semal

« Control »Prof. B. Lemaire-Semal

- “Control” team of L2EP -

3 Professors4 Associate Professors12 PhD students

A. Bouscayrol« Electricityand Vehicle »

A. Bouscayrol« Electricityand Vehicle »

X. Kestelyn«Machine tools »

X. Kestelyn«Machine tools »

B. Lemaire-Semail« Electro-active

actuators »

B. Lemaire-Semail« Electro-active

actuators »

E. Semail« Multiphasemachine »

E. Semail« Multiphasemachine »

Formalisms bring solutions for new applications

New applications lead to the improvement of formalisms

8Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

1980 1990 2000 2010

PetriNets(use)

PowerElectronics

(COG)Causal

OrderingGraph

ElectricDrives

LEEI Toulouse (France)

[Hautier 1996]

(MMS)MultimachineMulticonverter

Systemdescription

ElectromechanicalSystems

LEEI / GREENLESiR / GE44

GdR SDSE-ME2MS(France)

[SMM 2000]

(EMR)Energetic

MacroscopicRepresentation

Univ. Trois Rivières (Ca)EPF Lausanne (CH)

FEMTO-STMEGEVH network

[Bouscayrol 2003]

- Modeling and control tools -

Page 3: « Study of EVs and HEVs using Energetic Macroscopic … · 2013-10-25 · EMR seminar Harbin Inst. Tech. Oct. 2013 « 3. EMR and inversion-based control of of energetic systems »

9Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

• University of Lille, Polytech Lille, EC Lille– Master 1: COG - EMR initiation – Master 2: COG - EMR further development

• Other French Universities and Engineering Schools– COG: Toulouse, Cachan, Belfort, CNAM Paris– EMR: Cachan (since 2004) Belfort (since 2006), ParisTech (2010)

• Universities abroad France– Univ. de Québec Trois-Rivières (since 2002)– EPF Lausanne (since 2005) – Univ. Tsinghua (2008) / Univ. Barcelona (2010)– Univ. Helsinki (2011) / Univ. Graz (2012)

• EMR Summer Schools– EMR’06, Lille (France) / EMR’08, Harbin (China)– EMR’09, Trois Rivières (Canada)– EMR’11, Lausanne (Switzerland) / EMR’12, Madrid (Spain) – EMR’13 Lille (France) / EMR’14 Coimbra (Portugal)

- Graphical description and Education - 10Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

(Warwick, UK)

(Switzerland)

(Trois-Rivières,Toronto,Canada)

(Harbin, China)

(the Netherlands)

(Beijing, China)(Madrid, Spain)

Industries : EADS, ETEL, Nexter System, PSA Peugeot Citroën, ST-micro, SNCF, Siemens Transportation Systems, Valéo …

(Cordoba, Argentina)(Nanjing, China)

(Saitama, Japan)

- Collaborations using graphical descriptions -

11Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- Scientific Influence -

• Special sessions in Conferences“Graphical descriptions for modelling and control”

IEEE-IECON’06 (Paris), ElectriMACS’08 (Québec), IEEE-VPPC’09 (Detroit), IEEE-VPPC’10 (Lille), IEEE-VPPC’11 (Chicago)

“HEVs modelling and control” (within the framework of MEGEVH)IEEE-VPPC’06 (Windsor, UK), IEEE-VPPC’08 (Harbin, China), IEEE-VPPC’10 (Lille)

“Hardware-In-the-Loop simulation” (within the framework of MEGEVH)IEEE-VPPC’07 (Dallas), IEEE-VPPC’08 (Harbin, China), IEEE-ISIE’08 (Cambridge, UK)

“Multiphase drives”IEEE-VPPC’10 (Lille)

• Tutorials & Keynotes in international conferences“Tactile actuators”, EuroHaptics’06 (Paris), ECCE-EPE’11 (Birmingham)“Hardware-In-the-Loop simulation”, EVS’24 (Stavanger, Norway, 2009)“HEVs energy management”, IEEE-VPPC’09 (Detroit), IEEE-IECON’09 (Porto)“HEV and EMR”, IEEE-VPPC’13 (Beijing)

• Guest Editors of archival journals“Hardware-In-the-Loop simulation”, IEEE trans. on Industrial Electronics (2010)“Advanced transportation systems”, IEEE trans. on Vehicular Technology (2011)

• Conference organizationsIEEE-VPPC 2010 (Lille) EPE-ECCE 2013 (Lille)

Special sessionElectrIMAC’08

Tutorial IEEE-VPPC’09

EMR seminarHarbin Inst. Tech.Oct. 2013

«« 2. Requirement for the study2. Requirement for the studyof of EVsEVs and and HEVsHEVs »»

Based on the works ofMEGEVH, French network on HEVs

Page 4: « Study of EVs and HEVs using Energetic Macroscopic … · 2013-10-25 · EMR seminar Harbin Inst. Tech. Oct. 2013 « 3. EMR and inversion-based control of of energetic systems »

13

Harbin 2013

MEGEVH - MEGEVH network -

Coordination:Prof.A. Bouscayrol

6 projects7 PhDs in progress6 PhDs defended

8 industrial partners10 academic Labs

(Energy management ofHybrid Electric Vehicles)

http://l2ep.univ-lille1.fr/megevh.htm

Lille

Paris

Lyon

Toulouse

Valenciennes

Belfort

LaplaceLaplace LTE

LTN

LAMIHLAMIH

Bordeaux

14

Harbin 2013

MEGEVH

MEGEVH-macro

MEGEVH-strategy

MEGEVH-optim

theoretical developments

MEGEVH-storeMEGEVH-FC

Development of modellingand energy management

methods

independentlyof the kind of vehicle

- MEGEVH philosophy -

experimental plateforms

Reference vehicle

Paper Prize Award of IEEE-VPPC’08

Paper Prize Award of IEEE-VPPC’12

15Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

thermalengineFuel MT

Thermal vehicle:- fossil fuel- pollution- low efficiency

PE electrcalmachineBattery

Electric Vehicle:- long charging time- low range- battery cost

http://www.thinkev.com/

Think city

H2 PEFC electricmachine

Fuel Cell vehicle :- H2 production- Fuel Cell cost- Fuel cell lifetime

http://www.honda.com/

Honda Clarity FX

- Mono-source vehicles - 16Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

fuel

Hybrid vehicle:• several source of energy• advantage of each technology• important cost• complex control

Battery PE

thermalengine

MTelectricalmachine

Key issues for HEVs:1. topologies of the power train2. design of sources and components3. control and energy management

Toyota Prius 3

http://www.toyota.com/

http://www.mpsa.com

Peugeot 3008 HY4

- Multi-source vehicles -

Page 5: « Study of EVs and HEVs using Energetic Macroscopic … · 2013-10-25 · EMR seminar Harbin Inst. Tech. Oct. 2013 « 3. EMR and inversion-based control of of energetic systems »

17Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

ICE

EM

BAT

EG

Series Parallel HEV

Fuel

ICE

EM

BAT

Fuel

??

ICE

EM

BAT

Fuel

EG

Series HEV electrical node

ICE

EM

BAT

Fuel

Parallel HEV

mechanical node

power flows

- HEV topologies - 18Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

• thermal traction

• internal charge of battery

• Stop & Go

• regenerative braking

• electrical boost

• electrical traction

• external charge (Plug-in HEV)

EMICE

ICE EM

ICE EM

ICE EM

ICE

EM

TV

EV

HEV

mild HEV

full HEV

A lot of operation modes to deals with the controldesign must include energy management

- Design and power ratio -

19Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- Control and energy management -

BAT

ICE

VSI1 EM1

FuelParallel HEV Trans.

fast subsystemcontrols

EM1control

ICEcontrol

Transcontrol

Energy management(supervision/strategy)

driver request

slow systemsupervision

20Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- How to study HEVs? -

• low energy consumption• low pollutant emissions• large drive range

An energetic modeling is required to take into account the different power flows

and the subsystems interactions

But more complex than for Thermal Vehicle or Electric Vehicle• multi-physical devices• more power flows• various interconnected subsystems

(for model-based control)

• adapted topology• balanced design• structure control

to achievetogether

Page 6: « Study of EVs and HEVs using Energetic Macroscopic … · 2013-10-25 · EMR seminar Harbin Inst. Tech. Oct. 2013 « 3. EMR and inversion-based control of of energetic systems »

EMR seminarHarbin Inst. Tech.Oct. 2013

«« 3. EMR and inversion3. EMR and inversion--based control ofbased control ofof energetic systems of energetic systems »»

Based on the works of“control team” of L2EP

22Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

Simulation for ever!Launching Matlab/Simulink is more and more a “Pavlov reflex”

realsystem

systemsimulation

behaviorstudy

?#@!&?

But:• Why simulation?• Which constraints and objectives?• Which level of accuracy?• How to be sure of the results?

- Typical procedure -

23Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

realsystem

systemmodel

assumptions

systemrepresentation

no

assumption

systemsimulation

assumptions

Intermediary steps are required for complex systems

Limitation to mainphenomena in function

of the objective

Organization of themodel to highlight

some properties

- From real system to simulation - 24Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

realsystem

systemmodel

assumptions

systemrepresentation

no

assumption

systemsimulation

assumptions

smoothing inductor

LLl RiidtdLv

(low frequencydynamical model)

ILVL

R+Ls1

(Simulink ©+Runge Kutta)

(bloc diagram +Laplace)

scopeStep

1

L.s+R

- Basic example -

Page 7: « Study of EVs and HEVs using Energetic Macroscopic … · 2013-10-25 · EMR seminar Harbin Inst. Tech. Oct. 2013 « 3. EMR and inversion-based control of of energetic systems »

25Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

realsystem

systemmodel

systemrepresentation

systemsimulation

• dynamic/ quasi-static/ static

• structural/functional• causal/non-causal

• backward/ forward

Different possibilities at each step in function of the objective

- Different catgories - 26Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

iHe1

Ms

vrame

Fres

Ftot

kbog

kbog

kbog

kbog

Fbog1

Fbog2

k11+1s

xCM1

B1

uHe

xCM1

xk2

1+2skmcc

iei

iee1

x

k21+2s

kmcc

iee2

uHe1

x

x

cHe1

x

x

x

x

uHe2

eee2

eee1

iHe

iHe2

k31+3s

ihach

k31+3s

ifiltrre ufiltrreVDC

[K]

cHi [K]

cHe2 [K]

EUREKA!

Fingers in the pockets!

But block diagrams:• can be confusing for complex systems• are limited to continuous and linear systems• do not highlight energy properties• do not highlight interaction between subsystems

Remember, See the wood before the trees!

- Limitation of classical block digrams -

27Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

Systemic approachStudy of subsystems and their interactionsHolistic property: associations of subsystem induce new global properties.

Cartesian approachThe study of subsystems is

sufficient to know the system behaviour.

For better performances of a systemInteractions and physical laws must be considered!

System = interconnected subsystems organized for a common goal

Cybernetic systemicblack box approach.

behaviour model

Cognitive systemicphysical laws

knowledge model

- Systemic & Cartesian approaches - 28Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

Interaction principleEach action induces a reaction

action

reaction

S2S1

Power exchanged by S1 and S2 = action x réaction

power

- Interaction principle -

Example

battery load

Vbat

Vbat

iload

loadbatteryVbat

iload

P=Vbat iload

Page 8: « Study of EVs and HEVs using Energetic Macroscopic … · 2013-10-25 · EMR seminar Harbin Inst. Tech. Oct. 2013 « 3. EMR and inversion-based control of of energetic systems »

29Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

If the interaction principle is not respected for 1 subsystem action

S2S1

Power = 0

- Interaction mistake -

iHe1

Ms

vrame

Fres

Ftot

kbog

kbog

kbog

kbog

Fbog1

Fbog2

k11+1s

xCM1

B1

uHe

xCM1

xk2

1+2skmcc

iei

iee1

x

k21+2s

kmcc

iee2

uHe1

x

x

cHe1

x

x

x

x

uHe2

eee2

eee1

iHe

iHe2

k31+3s

ihach

k31+3s

ifiltrre ufiltrreVDC

[K]

cHi [K]

cHe2 [K]

Error in the energy analysisfor the whole system

(reaction = 0)

30Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

area xdt

knowledge of past evolution

OK inreal-time

Principle of causalityphysical causality is integral input output

cause effect

t1

t

x

knowledge of future evolution

slopedtdx

?

impossible inreal-time

- Causality principle -

31Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- Causality principle -

Example

vC

C iccc v

dtdCi

2

2

1cCc vE

delayno energy disruption

vCic

risk of damage

vC icddt

For energetic systemsphysical causality is VITAL

32Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

If the causality principle is not respected for 1 subsystem Voltage

ScapsChopper

- causality mistake -

iHe1

Ms

vrame

Fres

Ftot

kbog

kbog

kbog

kbog

Fbog1

Fbog2

k11+1s

xCM1

B1

uHe

xCM1

xk2

1+2skmcc

iei

iee1

x

k21+2s

kmcc

iee2

uHe1

x

x

cHe1

x

x

x

x

uHe2

eee2

eee1

iHe

iHe2

k31+3s

ihach

k31+3s

ifiltrre ufiltrreVDC

[K]

cHi [K]

cHe2 [K]

Risk of damage!No real-time management

BOUM!

Page 9: « Study of EVs and HEVs using Energetic Macroscopic … · 2013-10-25 · EMR seminar Harbin Inst. Tech. Oct. 2013 « 3. EMR and inversion-based control of of energetic systems »

EMR seminarHarbin Inst. Tech.Oct. 2013

«« 3a. Energetic Macroscopic Representation 3a. Energetic Macroscopic Representation »»

Based on the works of“control team” of L2EP

34Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- The different elements -

An energetic system:

Energy sources

Energy storage elements

Energy conversion elements

Energy distribution elements

Key elements are:

• energy storage element

(delay, state variable, closed-loop control)

• energy distribution element

(power flow coupling, control with criteria)

35Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

Source oval pictogrambackground: light greencontour: dark green1 input vector (dim n)1 output vector (dim n)

- Energetic sources -

terminal elements which represent the environment of the studied system

generator and/or receptor of energy

power system

reaction

actionupstream

sourcedownstream

sourcex1

y1

x2

y2

p1= x1. y1 p2= x2. y2

direction ofpositive power(convention)

n

iii yx

1

36Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

i1

u13

u23

i2

gridVDC

iBat.

VDC

i

- Energetic sources: examples (1) -

structuraldescription

EMR(functionaldescription)

p=VDC i

Battery Electrical grid

p=u i

u

i

23

13uu

u

2

1ii

i

2 independent currents!

2 independent voltages!

Page 10: « Study of EVs and HEVs using Energetic Macroscopic … · 2013-10-25 · EMR seminar Harbin Inst. Tech. Oct. 2013 « 3. EMR and inversion-based control of of energetic systems »

37Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

pload

qwind

wind

qwind [m3/s]

Pload [Pa]

bulbI

u

I

uWind

(air flow source)generator energy

VDC

iBat

VDC

i

- Energetic sources: examples (2) -

Battery(voltage source)generator and

receptor of energy

Ligthing bulbreceptor of energy

IC engine(torque source)

generator of energy

Tice

ICE

Tice

Tice-ref

38Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

Accumulator rectangle with an oblique barbackground: orangecontour: redupstream I/O vectors (dim n)downstream I/O vectors (dim n)

- Accumulation elements -

internal accumulation ofenergy (with or without

losses)

reaction

actionx1

y

y

x2

p1= x1. y p2= x2. y

causality principle

output(s) = input(s)

dtxxfy ),( 21

y = output, delayed frominput changes

fixed I/O (causal description)

39Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

i1L, rL

u’13

u’23

i2u13

u23

)'(2112

31 uuiri

dtdL L

v1 v2

i

L, rL

21L vviridtdL

v1

v2

i

i

- Accumulation elements: examples (1) -

inductor 3-phase line

structuraldescription

EMR (causalrepresentation)

mathematicalModel

i

i

u

u’

40Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

inductorv1

v2

i

i

v1 v2

i

L

v

i2i1

Ccapacitor

i1

i2

v

v

inertia

J

T2T1

T1

T2

stiffness

k1 2

TT

1

2

T

T

2 21 iLE

2 21

JE

2 121 T

kE

2 21 vCE

- Accumulation elements: examples (2) -

Page 11: « Study of EVs and HEVs using Energetic Macroscopic … · 2013-10-25 · EMR seminar Harbin Inst. Tech. Oct. 2013 « 3. EMR and inversion-based control of of energetic systems »

41Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

conversionelement various pictograms

background: orangecontour: redupstream I/O vectors (dim n)downstream I/O vectors (dim p)Possible tuning input vector (dim q)

- Conversion elements -

conversion of energy without energy accumulation

(with or withoutlosses)

action /reaction x1

y1

y2

x2

p1= x1. y1 p2= x2. y2

),(),(

21

12zxfyzxfy

z

tuning vector

no delay!

upstream and downstreamI/O can be permuted

(floating I/O)

42Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- Conversion element pictograms -

VDC

iconvuconv

iload

VDC uconv

iload

m

iconv

loadconv

DCconvimiVmu

m: modulation function of the convertercycleduty Dm

Circle = multiphysical conversion

Square = monophysical conversion

43Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- Conversion elements: examples -

dcmdcmdcm euiridtdL

VDC uconv

iloadiconv

VDC

iconvuconv

s

iload

s

i

u DCM

gear

TgearT1

2

2

T3kgear

3gear2 TTdtdJ

keikT

dcm

dcmdcm

idcm

u idcm

edcm

Tdcm

k

gear

T12

Tgear

2

T3

2geargear

1geargear

kTkT

m

loadconv

DCconvimiVmu

Bat

44Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

Bat

- Coupling elements -

VDC

icoup

i1

i2

vcoup1 = VDC

vcoup2 = VDCVDC

icoup

i1

i2vcoup1

vcoup2

21coup

DC

iiicommonV

parallel connexion

distributionof energy

no tuningvector

couplingelements

overlapped pictogramsbackground: orangecontour: red

multiphysicalcoupling

Monophysicalcoupling

Page 12: « Study of EVs and HEVs using Energetic Macroscopic … · 2013-10-25 · EMR seminar Harbin Inst. Tech. Oct. 2013 « 3. EMR and inversion-based control of of energetic systems »

45Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- Coupling elements: examples -

2T

TT gearrdifldif

iarm

uarmDCM

iexc

uexc

excdcm

armexcdcm

ikeiikT iarm

uarm

iexc

uexc

iarm

earm

Tdcm

eexc

iexc

Field winding DC machine

Mechanical differential

diff

Tgear

lwh

rwh

Tldiff

Trdiff

Tldiff

rwh

Trdiff

lwh

Tgear

diff2ΩΩΩ rwllwh

diff

EMR seminarHarbin Inst. Tech.Oct. 2013

«« 3b. Inversion3b. Inversion--based control based control »»

Based on the works of “control team” of L2EPIn collaboration with Prof. P. Sicard

(Univ. Quebec Trois Rivières, Canada)

47Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

Systemcause effect

- Principle of Inversion-based methodology -

desired effectControl

right cause

measurements?

control = inversion of the causal path

1. Which algorithm? (how many controllers)2. Which variables to measure?3. How to tune controllers?4. How to implement the control?

Inversion-based methodology

automatic controlindustrial electronics

input output

[Hautier 96]

48Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- EMR and Inversion-based methodology -

desired effectright cause

measure?

SS1

causeeffect

inputoutputSS2 SSn

C1 C2 Cn

measure?measure?

EMR = system decomposition in basic energetic subsystems (SSs)

Remember,divide and conquer!

Inversion-based control: systematic inversion of each subsystems usingopen-loop or closed-loop control

Page 13: « Study of EVs and HEVs using Energetic Macroscopic … · 2013-10-25 · EMR seminar Harbin Inst. Tech. Oct. 2013 « 3. EMR and inversion-based control of of energetic systems »

49Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

?

Example:

- Inversion 1: single-input time-independant relationship -

output depends on a single inputwithout delay

Ku(t) y(t)

)( )( tuKty

yref(t)u (t)1/K

directinversion

)(1)( tyK

tu ref

1. no measurement2. no controller(open-loop control) Assumption: K well-know and constant

Example: Resistance

1/R

R

vt) i(t)

)( 1)( tvR

ti

directinversion

)( )( tiRtv refiref(t)v(t)

50Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

?

Example:

- Inversion 2: multiple-input time-independant relationship -

Output depends on several inputswithout delay

u1(t) y(t))()( )( 21 tututy

yref(t)u1 (t)

u2(t)+

+

1. measurement of the disturbance input2. no controller(open-loop control)

directinversion

)()()( 21 tutytu measref

+-

u1 is chosen to act on the output y

u2 becomes a disturbance input

Assumption: u2 well-know and can be measured

51Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

?

Example:

- Inversion 3: single-input causal relationship -

output depends on a single input and time (delay)

u(t) y(t)

dt )()( tuty

yref(t)u (t)

causality principle

directinversion

)()( tydtdtu ref

not possible in real-time

dt

1. measurement of output2. a controller is required(closed-loop control)

indirectinversion

)()()()( tytytCtu measref

closed loop controller

C(t)+-

52Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- Example: PM-DC machine -

i

u

Lm rm

u i e

ireudtdiL mm

multi-input causal relationship

irudtdiL mm

decomposition

euu

U(s)

E(s)-

+ K1+s

U(s) I(s)

+

U (s)

+direct

inversion

Iref(s)Uref(s)C(s)

+-closed-loop

Page 14: « Study of EVs and HEVs using Energetic Macroscopic … · 2013-10-25 · EMR seminar Harbin Inst. Tech. Oct. 2013 « 3. EMR and inversion-based control of of energetic systems »

53Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

Manipulate u21 u1 is a disturbance

u1 y2

u2

Objective: to control y2

y2-refu1-meas

uHb= mHb VDC

iHb= mHb idcm

Ex : H-bridge chopper

mHb = uHb_ref / VDC_meas

uHb_ref⁄ ×

mHbVDC_meas

y1 u21

y2 = f(u1, u21 )

- Inversion of a conversion element - 54Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

y2

u2

Objective: to control y2

y2-refu1-reg

u1

y1

Ex : pulley or roller

y2 = f(u1 )

1_ref = trans_ref / rtpull

Vtrans= rpull1

Ttrans = rtpull Fload

Vtrans_ref1_ref

1rtpull

- Inversion of a conversion element (2) -

55Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

Manipulate u1 u2 is a disturbance

Objective: to control y2

u2

y2

y1

u1

y2-ref

u2-meas

y2-meas

u1-reg

y2=f(u1, u2 )

f is in integral form

Direct inversion isin derivative form

Approximate inversionby closed loop control

Ex : rotating shaft

loadTemTfdtdJ

+

ref

C(t)Tem_ref

meas

+-

Tload_meas

+

measloadTmeasreftCrefemT

_

))((_

- Inversion of an accumulation element - 56Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

u1m

u11

- Inversion of downstream coupling elements -

y2

u2

y2-ref

kD1…kD(m-p)

no measurement no controller

(m - p) distributionvariables

refDmm

refD

yku

yku

2'

1

2'

111

...

y11

u11

y1m

u1m

Example: chassis of a train

Fbog1

vtrain

Ftot

Fbog4

Fbog2

Fbog3

vtrain

vtrain

vtrain

vtrain

Ftot-ref

Fbog1

Fbog4

Fbog2

Fbog3

kD1 kD3kD2

Page 15: « Study of EVs and HEVs using Energetic Macroscopic … · 2013-10-25 · EMR seminar Harbin Inst. Tech. Oct. 2013 « 3. EMR and inversion-based control of of energetic systems »

57Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

2. Tuning path

SE SM

1. EMR of the system

Maximal Control Scheme :- maximum of sensors- maximum of operations

- Maximum control scheme -

3. Inversion step-by-step Strong assumption: all variables can be measured!

58Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

fusion4. Simplification of the control scheme

2. Tuning path

1. EMR of the system

3. Inversion step-by-step

5. Estimation of non-measured variables

6. Tuning of controllers

PID controllerCalculation of kP kI kD

3b. Strategy

- Practical control scheme -

SE SM

Simple tuning is possible by time coordination/separation of the control loops

59Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

DCM1

DCM2

PE1

PE2

Bat. Fres

EM1

EM2

- Energetic Macroscopic Representation (EMR) -

Bat. Env.

Specific pictograms for the analysis of power flows:• source of energy (green oval)• accumulation of energy (orange crossed rectangle)• conversion of energy (orange square or circle)• distribution of energy (overlapped pictograms)

Better understanding, efficient energy management

60Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

v

vref

- Inversion-based control -

Bat. Env.

strategy

Remember, Divide and conquer!

Page 16: « Study of EVs and HEVs using Energetic Macroscopic … · 2013-10-25 · EMR seminar Harbin Inst. Tech. Oct. 2013 « 3. EMR and inversion-based control of of energetic systems »

EMR seminarHarbin Inst. Tech.Oct. 2013

«« 4. Inversion4. Inversion--based control of an EV based control of an EV »»

C. Dépature, with the prepration of W. Lhommebased on the works of “control team” of L2EP

62Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

battery

itot

ESubat

ubat

connexion//

ichf

icha

chfchatot

bat

iiiv iablecommon var

ubat

- System Modeling using EMR -

Fres

ichaucha

iaem

Tem

dif

ubat

if uchf

Tred

wl

wrTdif

Tdif

vev

ichfitot

63Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

battery

itot

ESubat

ubat

- System Modeling using EMR -

connexion//

choppers

Fres

ichaucha

iaem

Tem

dif

ubat

if uchf

Tred

wl

wrTdif

Tdif

vev

ichf

ubat

mchf

uchf

ia

ifichf

icha mcha

ucha

itot

fchfchf

batchfchf

achacha

batchacha

imiumu

imiumu

64Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

ea

ubat

ia

battery connexion//

choppers DC machine

Fres

ichaucha

iaem

Tem

dif

ubat

if uchf

Tred

wl

wrTdif

Tdif

vev

ichf

ubat

mchf

uchfitot

ESubat

if

ef

ia

ifichf

icha mcha

ucha

itot

dtdi

Lireu

dtdiLireu

f

ffffchf

aaaaacha

without saturation of the DC machine

input output

cause effect

- System Modeling using EMR -

Page 17: « Study of EVs and HEVs using Energetic Macroscopic … · 2013-10-25 · EMR seminar Harbin Inst. Tech. Oct. 2013 « 3. EMR and inversion-based control of of energetic systems »

65Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

ea

ubat

ia

battery connexion//

choppers DC machine Trans- wheels

Fres

ichaucha

iaem

Tem

dif

ubat

if uchf

Tred

wl

wrTdif

Tdif

vev

ichf

ubat

mchf

uchfitot

ESubat

if

ef

ia

ifichf

icha mchaTem

em

ucha

itot

0

f

emfa

afem

eike

iikT

- System Modeling using EMR - 66Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

ea

ubat

ia

battery connexion//

choppers DC machine Trans- wheels

Fres

ichaucha

iaem

Tem

dif

ubat

if uchf

Tred

wl

wrTdif

Tdif

vev

ichf

ubat

mchf

uchfitot

ESubat

if

ef

ia

ifichf

icha mcha

vev

Tem

em

ucha

itot

evwh

redem

emwh

redtran

vRk

TRkF

neither the contact law nor curving road

Ftran

Ftran

- System Modeling using EMR -

67Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

ea

ubat

ia

battery connexion//

choppers DC machine Trans- wheels chassis

Fres

ichaucha

iaem

Tem

dif

ubat

if uchf

Tred

wl

wrTdif

Tdif

vev

ichf

ubat

mchf

uchfitot

ESubat

if

ef

ia

ifichf

icha mcha

vev

Tem

em

vev

Fres

ucha

itot

restranev FFvdtdM

Ftran

Ftran

- System Modeling using EMR - 68Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

ea

ubat

ia

battery connexion//

choppers DC machine Trans- wheels chassis environ.

Fres

ichaucha

iaem

Tem

dif

ubat

if uchf

Tred

wl

wrTdif

Tdif

vev

ichf

ubat

mchf

uchfitot

ESubat

if

ef

ia

ifichf

icha mcha

vev

Tem

em

vev

FresMS

ucha

itot

Ftrac

vev

)sin(MgF

vCSF

slope

evxfrontairdrag

221

slopeFFF dragres

Sfront

Ftran

- System Modeling using EMR -

Page 18: « Study of EVs and HEVs using Energetic Macroscopic … · 2013-10-25 · EMR seminar Harbin Inst. Tech. Oct. 2013 « 3. EMR and inversion-based control of of energetic systems »

69Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

ea

ubat

ia

battery connexion//

choppers DC machine Trans- wheels chassis environ.

Fres

ichaucha

iaem

Tem

dif

ubat

if uchf

Tred

wl

wrTdif

Tdif

vev

ichf

ubat

mchf

uchfitot

ESubat

if

ef

ia

ifichf

icha mcha

vev

Tem Ftran

em

vev

FresMS

ucha

itot

Ftran

- System Modeling using EMR - 70Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- Inversion-based Control -

Step 1: Energetic Macroscopic Representation (EMR) of system

ea

ubat

ia

battery connexion//

choppers DC machine Trans- wheels chassis environ.

ubat

uchfitot

ESubat

if

ef

ia

ifichf

icha mcha

vev

Tem Ftran

em

vev

FresMS

ucha

mchf

71Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- Inversion-based Control -

Step 2a: Objectives, constraints and tuning variables of system

ea

ubat

ia

battery connexion//

choppers DC machine Trans- wheels chassis environ.

ubat

uchfitot

ESubat

if

ef

ia

ifichf

icha mcha

vev

Tem Ftran

em

vev

FresMS

ucha

mchf

-1 objective: control of vev

- 1 constraint: field current of DC machine

-2 tuning variables: mcha and mchf

72Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- Inversion-based Control -

Step 2b: According to the objective, choose tuning path

ea

ubat

ia

battery connexion//

choppers DC machine Trans- wheels chassis environ.

ubat

uchfitot

ESubat

if

ef

ia

ifichf

icha mcha

vev

Tem Ftran

em

vev

FresMS

ucha

mchf

Page 19: « Study of EVs and HEVs using Energetic Macroscopic … · 2013-10-25 · EMR seminar Harbin Inst. Tech. Oct. 2013 « 3. EMR and inversion-based control of of energetic systems »

73Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- Inversion-based Control -

Step 3a: By inversion of tuning path, obtain control path

ea

ubat

ia

battery connexion//

choppers DC machine Trans- wheels chassis environ.

ubat

uchfitot

ESubat

if

ef

ia

ifichf

icha mcha

vev

Tem Ftran

em

vev

FresMS

ucha

vev_ref

ia_refucha_ref

Tem_ref Ftran_ref

uchf_ref

mcha_ref

mchf_ref

mchf

if_ref

74Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- Inversion-based Control -

Step 3b: Maximum Control Structure

Conversion Element

Accumulation Element

Coupling Element

75Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- Inversion-based Control -

Step 3b: Maximum Control Structure

Conversion Element

Accumulation Element

Coupling Element

76Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- Inversion-based Control -

Step 3b: Maximum Control Structure

ea

ubat

ia

battery connexion//

choppers DC machine Trans- wheels chassis environ.

ubat

uchfitot

ESubat

if

ef

ia

ifichf

icha mcha

vev

Tem Ftran

em

vev

FresMS

ucha

vev_ref

ia_refucha_ref

Tem_ref Ftran_ref

uchf_ref

mcha_ref

mchf_ref

mchf

if_ref

restranev FFvdtdM

vev_refC(s)Ftran_ref

vev_mea

+-

Fres_mea

++

vevFtran

- Fres

+sM/1

vev

Page 20: « Study of EVs and HEVs using Energetic Macroscopic … · 2013-10-25 · EMR seminar Harbin Inst. Tech. Oct. 2013 « 3. EMR and inversion-based control of of energetic systems »

77Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- Inversion-based Control -

ea

ubat

ia

battery connexion//

choppers DC machine Trans- wheels chassis environ.

ubat

uchfitot

ESubat

if

ef

ia

ifichf

icha mcha

vev

Tem Ftran

em

vev

FresMS

ucha

vev_ref

ia_refucha_ref

Tem_ref Ftran_ref

uchf_ref

mcha_ref

mchf_ref

mchf

if_ref

evwh

redem

emwh

redtran

vRk

TRkF

Tem_ref Ftran_ref

Tem Ftran

Ωem

wh

red

Rk

red

wh

kR

vev

wh

red

Rk

Step 3b: Maximum Control Structure78

Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- Inversion-based Control -

ea

ubat

ia

battery connexion//

choppers DC machine Trans- wheels chassis environ.

ubat

uchfitot

ESubat

if

ef

ia

ifichf

icha mcha

vev

Tem Ftran

em

vev

FresMS

ucha

vev_ref

ia_refucha_ref

Tem_ref Ftran_ref

uchf_ref

mcha_ref

mchf_ref

mchf

if_ref

Supplementary input

0

f

emfa

afem

eike

iikT

Temif

ef

Tem_ref

k

Ωem

ia

ea

0

k

k1

if_ref

ia_ref

if_ref

Step 3b: Maximum Control Structure

79Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- Inversion-based Control -

ea

ubat

ia

battery connexion//

choppers DC machine Trans- wheels chassis environ.

ubat

uchfitot

ESubat

if

ef

ia

ifichf

icha mcha

vev

Tem Ftran

em

vev

FresMS

ucha

vev_ref

ia_refucha_ref

Tem_ref Ftran_ref

uchf_ref

mcha_ref

mchf_ref

if_ref

mchf

ia_meaea_mea

if_ref

Step 3b: Maximum Control Structure

dtdi

Lireu

dtdiLireu

f

ffffchf

aaaaacha

vev

Fres

SM

ia_refC(s)ucha_ref

ia_mea

+-

ea_mea

++

iaucha

-

ea

+)/1(

/1RsL

R

ia

80Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- Inversion-based Control -

ea

ubat

ia

battery connexion//

choppers DC machine Trans- wheels chassis environ.

ubat

uchfitot

ESubat

if

ef

ia

ifichf

icha mcha

vev

Tem Ftran

em

vev

FresMS

ucha

vev_ref

ia_refucha_ref

Tem_ref Ftran_ref

uchf_ref

mcha_ref

mchf_ref

if_ref

mchf

ia_meaea_mea

if_ref

Step 3b: Maximum Control Structure

fchfchf

batchfchf

achacha

batchacha

imiumu

imiumu

vev

Ftran vev

Fres

MS

ucha_ref

mcha

PWM

ubat

Page 21: « Study of EVs and HEVs using Energetic Macroscopic … · 2013-10-25 · EMR seminar Harbin Inst. Tech. Oct. 2013 « 3. EMR and inversion-based control of of energetic systems »

81Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- Inversion-based Control -

ea

ubat

ia

battery connexion//

choppers DC machine Trans- wheels chassis environ.

ubat

uchfitot

ESubat

if

ef

ia

ifichf

icha mcha

vev

Tem Ftran

em

vev

FresMS

ucha

vev_ref

ia_refucha_ref

Tem_ref Ftran_ref

uchf_ref

mcha_ref

mchf_ref

if_ref

mchf

ia_meaea_mea

if_ref

Step 3b: Maximum Control Structure82

Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- Inversion-based Control -

ea

ubat

ia

battery connexion//

choppers DC machine Trans- wheels chassis environ.

ubat

uchfitot

ESubat

if

ef

ia

ifichf

icha mcha

vev

Tem Ftran

em

vev

FresMS

ucha

Field weakening…

vev_ref

ia_refucha_ref

Tem_ref Ftran_ref

uchf_ref

mcha_ref

mchf_ref

if_ref

mchf

ia_meaea_mea

if_ref

Step 3c: Maximum Control Structure - Strategy

83Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- Inversion-based Control -

Step 4: Practical control structure - simplification

ea

ubat

ia

battery connexion//

choppers DC machine Trans- wheels chassis environ.

ubat

uchfitot

ESubat

if

ef

ia

ifichf

icha mcha

vev

Tem Ftran

em

vev

FresMS

ucha

vev_ref

ia_refucha_ref

Tem_ref Ftran_ref

uchf_ref

mcha_ref

mchf_ref

if_ref

mchf

ia_meaea_mea

if_ref

Field weakening…

0fe

84Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

ia_mea

- Inversion-based Control -

ea

ubat

ia

battery connexion//

choppers DC machine Trans- wheels chassis environ.

ubat

uchfitot

ESubat

if

ef

ia

ifichf

icha mcha

vev

Tem Ftran

em

vev

FresMS

ucha

vev_ref

ia_refucha_ref

Tem_ref Ftran_ref

uchf_ref

mcha_ref

mchf_ref

if_ref

vev

Tem Ftran

em

mchf

ia_mea

if_ref

Field weakening…

Step 5: Practical control structure - estimation

ea_est

Page 22: « Study of EVs and HEVs using Energetic Macroscopic … · 2013-10-25 · EMR seminar Harbin Inst. Tech. Oct. 2013 « 3. EMR and inversion-based control of of energetic systems »

85Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- Inversion-based Control -

Step 6: Control tuning – Step 7: implementation

electricmachineBattery

powerelectronics

Control Unit

ia_mea

vev_ref

ia_refucha_ref

Tem_ref Ftran_ref

uchf_ref

mcha_ref

mchf_ref

if_ref

vev

Tem Ftran

em

ia_mea

if_ref

Field weakening…

ea_estif_mea

EMR seminarHarbin Inst. Tech.Oct. 2013

Clément DEPATURE, Alain BOUSCAYROL, Loic BoulonL2EP, University Lille1 / IRH Univ. Quebec Trois Rivières

Paper presented at IEEE-VPPC’13, Beijing

«« 4b. Extension to a Fuel Cell Range extender EV 4b. Extension to a Fuel Cell Range extender EV »»

87Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

ubat iim2

1 2 3 Tim

gear iim1

its

« Tazzari Zero » Electric Vehicle

Tazzari Zero caracteristics• 15 kW induction machine• 80V 160Ah LiFePO4 battery• 542 kg (empty mass)• Maximum speed : 85km/h

Assumption : no mechanicalbraking24 cells in serie 15kW inverter

- Studied vehicle - 88Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

Fuel cell caracteristics• 1.2 kW• 22-50V, 50Amax• 2700 H2 sl stored in 3 low-

pressure canisters

Assumption : equivalent voltage source

ubat iim2

Tim

gear iim1

its

L

ufc

iL

ibat ich

uch

Boost chopper

Smoothing inductor

H2 storage

O2 compressor+

« Nexa Ballard » fuel cell of 1.2 kW

- Studied vehicle and range extension -

Page 23: « Study of EVs and HEVs using Energetic Macroscopic … · 2013-10-25 · EMR seminar Harbin Inst. Tech. Oct. 2013 « 3. EMR and inversion-based control of of energetic systems »

89Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

EMR and control of the RE-EV

ubat iim2

Tim

gear iim1

its

L

ufc

iL

ibat ich

uch

its Fres Env.

FtractTim

Ftract-ref

Bat

ubat

IM drive chassis

Vev-ref

gear vev

vev

Tim-ref

FC ufc

iL

iL ich

uch ubat

uch-refiL-ref

ubat

ibat

strategy

FC sub-system

mch

02

2022

H

HH V

dtqHVSoC

• iL-ref = 28A when a driving cycle start• iL-ref = 0 when SOCbat=SOCmax

On-board energysource estimation :

VH20=2700 sl

- EMR and Control scheme of the RE-EV - 90Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- 4. Simulation RESULTS-

Simulation with a single UDC

(d)

91Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

- Conclusion -

Driving cycle EV RE-EV (1,2kW FC+2700 sl of H2)Single UDC 105,6km 128,2km (+21,4%)Real cycle 68,3km 73,2km (+7,1%)

Simple strategy : •iL-ref = 28A when a driving cycle start•iL-ref = 0 when SOCbat=SOCmax

+

In this case :•UDC appears as not relevant for the design of the system•Electric vehicle range is depending on the driving cycle

EMR seminarHarbin Inst. Tech.Oct. 2013

«« 5. Application to advanced5. Application to advancedEVsEVs and and HEVsHEVs »»

Based on the works of“control team” of L2EP and on MEGEVH

Page 24: « Study of EVs and HEVs using Energetic Macroscopic … · 2013-10-25 · EMR seminar Harbin Inst. Tech. Oct. 2013 « 3. EMR and inversion-based control of of energetic systems »

93Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

• flexible power and control devices

• HIL simulation

« eV » platform: objective

study of anew vehicle

• EMR methodology• simulation (EMRlibrary)

Objective of the “electricity & vehicle” (eV) platform of the control team: real-time validation of energy management of new vehicle concepts for more efficient and less pollutant transportation systems

pre-validation onthe “eV” platform

validation ona real prototype

• real vehicle• IBC and EMSintegration

HIL simulation of the 3008 HY4 traction system (« ev » platform)

3008 HY4

Simulation of the 3008 HY4 using EMR

Ex: PhD of T. Letrouvé (double parallel HEV of PSA)

validation of the control onthe 3008 HY4 prototype

94Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

Flexibility: “eV” is the open platform of MEGEVH for the real-time validationof various concepts of new vehicles

MaxwellScaps

dSPACE 1005

studied Vehicle(power components + HIL simulations)

BatscapScaps

NexaFC50 kW

converters

dSPACE 1103

10 kWconverters 2 kW MS+IM+DCM

2 kW MS+IM+DCM

10 kW PMSM+DCM

20 kW MSAP+IM

DP geartrain + machines

e-bike (Li-ion)

e-scooter (NiMH)

EV Tazzari Zero

PbBat

NiMHBat

Li-ionBat

« eV » platform: flexibility

electricalmachines

electricvehicle

95Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

vref

control

rail

ES MS

power electronics DC machines mechanical power train environ.

EMR

[Verhille & al. 2007]

- Control of subway VAL 206 traction system - 96Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

vsub_refFtot1_ref

Fbog2_ref

kD

wh2_ref

shaft2_refTdcm2_ref

kD2kW2

wh1_ref

kD1kW1

Fbog1_ref

newstrategy

wh22_meswh21_meswh12_meswh11_mes

shaft1_mes

Tdcm1_ref

shaft2_mes

vsub_mes

shaft1_ref

New strategy:slip detection

Reduction of torqueof the slipping wheel

Increase of othertorques

- Anti-slip control of subway VAL 206-

experimental validationusing HIL simulation

current (A)ifield2

ifield1

[Verhille & al. 2007]

Page 25: « Study of EVs and HEVs using Energetic Macroscopic … · 2013-10-25 · EMR seminar Harbin Inst. Tech. Oct. 2013 « 3. EMR and inversion-based control of of energetic systems »

97

MEGEVH

Harbin 2013

Bat1

Bat1

Res Res Res

ResResRes

tank ICE

traction current (A)

[Boulon & al. 2010]

uC2

ig2

ig1

uC1

uC1

Tice

Ttot

gen

gen

gen

Tg1Tg1-ref

double generator

ICE

Tg2-ref

Tice-ref Tg2

Bat1Vbat1 iL1

iL1 uh1mh1

ih1

itot1

uC1

uC1

uC2

Bat2Vbat2 iL2

iL2 uh2mh2

ih2uC2

uC2

iMT1

iMT2

battery sets

DC buses

connections

itot3

6

6

Ttot

gear

Tm1

mvsi1

Tm2

itot1

uC1

em1im1

uvsi1 im1

em2im2

uvsi2 im2

mvsi2

gear

gearitot2

uC2

vhev

Environ.Fres

6vhev

Brake

vhevFbk

Fbk-ref

vhev

FtractFtotTgear Fwh

wh vhev

double-machine drive wheel and brake chassis

- High-redundancy HEV -

98

MEGEVH

Harbin 2013[Boulon & al. 2013]

uC2

ig2

ig1

uC1

uC1

Tice

Ttot

gen

gen

gen

Tg1Tg1-ref

double generator

ICE

Tg2-ref

Tice-ref Tg2

Bat1Vbat1 iL1

iL1 uh1mh1

ih1

itot1

uC1

uC1

uC2

Bat2Vbat2 iL2

iL2 uh2mh2

ih2uC2

uC2

iMT1

iMT2

battery sets

DC buses

connections

itot3

6

6

uC2-refitot3-refig2-meas

uh2-ref

iL2-ref ih2-ref

gen-ref Ttot-ref kD

Tg1-ref

Tg2-ref

Ttot

gear

Tm1

mvsi1

Tm2

itot1

uC1

em1im1

uvsi1 im1

em2im2

uvsi2 im2

mvsi2

gear

gearitot2

uC2

vhev

Environ.Fres

6vhev

Brake

vhevFbk

Fbk-ref

vhev

FtractFtotTgear Fwh

wh vhev

vhev-refFtot-ref

kD2

Twh1-ref

Tm2-ref

Ftract-refTm1-ref

kD4

Twh1-ref Fwh-ref

kD3im1-refuvsi1-ref

m1-ref

m2-ref

uC2-refitot3-refig2-meas

uh2-ref

iL2-ref ih2-ref

double-machine drive wheel and brake chassis

strategy

Strategy = coordination of subsystems

- High-redundancy HEV -

99

MEGEVH

Harbin 2013

- 3008 HY4 of PSA -

front EM

Double-parallel diesel HEV

GBICE

HV battery

fuel tank

rear EM

LV Batterie loads

100

MEGEVH

Harbin 2013

- Control of 3008 HY4 -

Idcdc-BT

Vbat-BT

Ωmth

Ibat-HT

Vbat-HTImel-ar

Vbat-HT

Mth.

Cmth

Vbat-HT

Cav

2 4

1 3

2 4

1 3

ME ar

ME av

Vbat-HT

Imel-tot

Cressort

ΩmthCmth

Ωmth

Vbat-HT

Imel-av

Cmel-ar

Ωmel-ar

Cmel-av

Ωemb

Cmel-ar

Ωmel-arCmel-ar

Ωmel-ar Ccrab2

Ωmel-ar Ccrab

Ωred

Ccrab

ΩredCcrab

Ωred

Cred

Ωroue-

ar

Froue-ar

vveh

vveh

Froue-av

Ωroue-av

Cbv

3 4

1 2

3 4

1 2

Cav

ΩembCav

Ωemb Cemb2

Ωemb Cemb

Ωbv

Cemb

ΩbvCemb

Ωbv

Cmth-ref

Cmelav-ref

Cmelar-ref

pemb

Pcrab

Kbv

Bat.HT

Env.vveh

vvehFtot

Fresvveh

Ftract

Freinsvveh

Ffreins

Ffreins-ref

Idcdc-HT

Vbat-HT

PHT-BT-ref

Ωdem

Cdem

Ihach

Vbat-HT

Ch.BT

Vbat-BT

Ibat-BT

Ich-BT

Vbat-BT

Dem

Cdem-ref

Bat.BT

vveh-ref

Ωmelar-crab_open

Ωmth-emb_open

Ibat-BT-ref

Cmth-ref

Cmelav-ref

Cmelar-ref

1

32

4

1

23

4Ftract-ref

Froue-av-ref

Froue-ar-refCred-ref

Cbv-refCemb-ref

Ccrab-ref

Ccrab-refCmel-ar-ref

Cav-ref Cemb-ref

Cav-ref

Cav-ref

krep-av-ar

krep-melav-mth

Ftot-ref

Idcdc-BT-ref

strategy

Validation on « HIL » plate-form

Validation on prototype

[Letrouvé 13]

Page 26: « Study of EVs and HEVs using Energetic Macroscopic … · 2013-10-25 · EMR seminar Harbin Inst. Tech. Oct. 2013 « 3. EMR and inversion-based control of of energetic systems »

101

MEGEVH

Harbin 2013

MEGEVH

Series–Parallel HEVs:• high efficiency for cars (e.g. Toyota Prius)• use of a single planetary geartrain (SPG)• use of 1 ICE and 2 Electric Machines (EMs)

new topology using a EVT• integration of EMs and SPG

no real comparison betweenEVT-based and SPG-based HEVs

EVT for Toyota Prius II?

Tem1

em1

Tem2

em2

- HEV using Electric Variable Transmission -

102

MEGEVH

Harbin 2013

Tem2-ref

Fbk-ref

ivsi1

ubat vhev

Env.Fres

Brake vhev

Fbk

vhevvhev

FtotFwhTtot

em2

chassis

Tice

Tem1

ice

ice

ICE

Tice-ref Tem1

em1

em2

Tem2

idq1

idq1 edq1

vdq1uvsi1

iem1

d/s1

idq2

idq2 edq2

vdq2uvsi2

iem2

d/s2

Bat.

mvsi1

ubat

ubat

itot ivsi2

Tem1

em2wheels

EVT sub-systemICE shaft

ICE-ref

mvsi2

vhev-refFtot-ref

kD

Fwh-refTtot-refidq2-refvdq2-refvvsi2-ref

idq1-refvdq1-refvvsi1-ref Tem1-ref

TEM1-ref

Tem1-ref

strategy SOCest, driver request

id2-refid1-ref

d/s1

d/s2

EMR for the development of the control

0 200 400 600 800 1000 12000

50

100

150Vehicle Speed(km/h)

Time(s)0 200 400 600 800 1000 12000

25

50ICE Power(kW)

Time(s)

0 200 400 600 800 1000 1200-20

0

20EM1 Power(kW)

Time(s)0 200 400 600 800 1000 1200-50

-250

2550 EM2 Power(kW)

Time(s)

0 200 400 600 800 1000 1200-40-20

02040

Battery Power(kW)

Time(s)0 200 400 600 800 1000 120060

80

100SOC(%)

Time(s)

0 200 400 600 800 1000 1200-2000

0

2000

4000EM1 Speed(rpm)

Time(s)

0 200 400 600 800 1000 12000

2000

4000

6000EM2 Speed(rpm)

Time(s)

0 200 400 600 800 1000 1200-100

-50

0

50EM1 id current(A)

Time(s)

0 200 400 600 800 1000 1200-500

-250

0

250 EM2 id current(A)

Time(s)

Simulation of a drive cycle (EUDC)Comparison of the EVT-based HEV with Toyota Prius II:• EVT-based vehicle has more consumption• all operation modes and dynamics are possible• efficiency should be increased at high velocity• EVT has to be re-design in that objective

- HEV using Electric Variable Transmission -

[Cheng & al. 2011]

103

MEGEVH

Harbin 2013

Series–Parallel HEV: well adapted for cars

ICE

PE1 EM1

PE2 EM2

ESS

Trans.SPG

Fuel

Extension to heavy vehicle?(strong constraints on a single GT

Double Planetary geartrain

Patent of

• Design of the DPG vehicle?(FEMTO-ST, Nexter)

• Energy management?(L2EP, Nexter)

• application 1: Garbage truck(IFSTTAR)

• application 2: military truck(Nexter)

- Hybrid Truck & Double Planetary Geartrain -

104

MEGEVH

Harbin 2013

EMR, inversion-based controland multi-level energy management

(a) Vehicle Speed

t (s)

vveh (km/h)

(e) EM1 Power

t (s) PEM1 (pu)

(b) Functions

t (s)

(f) EM2 Power

t (s) PEM2 (pu)

(c) Operating Modes

t (s)

(g) ICE Power

t (s)

PICE (pu)

(d) Power Flows

t (s)

(h) DC Bus Power

t (s) PDC (pu)

Reduction of energy consumption for various cycles

Experimental validation usingHIL simulation in progress

- Hybrid Truck & Double Planetary Geartrain -

[Syed 2012]

Page 27: « Study of EVs and HEVs using Energetic Macroscopic … · 2013-10-25 · EMR seminar Harbin Inst. Tech. Oct. 2013 « 3. EMR and inversion-based control of of energetic systems »

EMR seminarHarbin Inst. Tech.Oct. 2013

A graphical description could be a valuable stepto respect physics’ principle and to organize the control …

such as EMR

Hybrid vehicles require new tools and more interactions

Interaction between Academics and Industry is a key issue…such as MEGEVH

Thanks to the valuable adviceand support of Prof. C.C. Chan!

Coimbra – PortugalUNESCO Wold Heritage

October 27-30, 2014

http://www.vppc2014.org

IEEE Vehicle Power and Propulsion Conference““Spreading ESpreading E--Mobility EverywhereMobility Everywhere””

Organization:

Supported by:

Digests deadline: 3131thth March 2014March 2014

Notification deadline: 1818thth May 2014May 2014

Final paper deadline: 0101thth July 2014 July 2014

Conference in a Carbon Care Philosophy

We will be pleased to Welcome you in We will be pleased to Welcome you in Coimbra!Coimbra!

EMR seminarHarbin Inst. Tech.Oct. 2013

ReferencesReferences

108Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

[Allègre 09] A. L. Allègre, A. Bouscayrol, P. Delarue, P. Barrade, E. Chattot, S. El Fassi, “Energy Storage System with supercapacitor for an innovative subway", IEEE transactions on Industrial Electronics, vol. 57, no. 12, pp. 4001-4012, December 2010 (common paper of L2EP Lille, EPF Lausanne and Siemens Transportation Systems).

[Boulon 10] L. Boulon, D. Hissel, A. Bouscayrol, O. Pape, M-C Péra, “Simulation model of a Military HEV with a Highly Redundant Architecture", IEEE transactions on Vehicular Technology, Vol. 59, no. 6, pp. 2654-2663, July 2010 (common paper of FEMTO-ST, L2EP Lille and Nexter Systems within MEGEVH, French network on HEVs)

[Boulon 13] L. Boulon, A. Bouscayrol, D. Hissel, O. Pape, M-C Péra, “Inversion-based control of a highly redundant military HEV", IEEE transactions on Vehicular Technology, vol. 62, no. 2, February 2013, pp. 500-5010 (common paper of IRH-Univ Québec Trois-Rivières, L2EP Lille, FEMTO-ST and Nexter within MEGEVH, French network on HEVs)

[Bouscayrol 03] A. Bouscayrol, "Formalismes de représentation et de commande des systèmes électromécaniques multimachines multiconvertisseurs", (text in French) HDR de l'Université de Lille 1, décembre 2003.

[Chan 07] C.C. Chan: "The state of the art of electric, hybrid, and fuel cell vehicles“, Proc. of the IEEE, April 2007, Vol. 95, No.4, pp. 704 - 718.

[Chan 10] C. C. Chan, A. Bouscayrol, K. Chen, “Electric, Hybrid and Fuel Cell Vehicles: Architectures and Modeling", IEEE transactions on Vehicular Technology, vol. 59, no. 2, February 2010, pp. 589-598 (common paper of L2EP and Honk-Kong Univ.).

[Chen 08] K. Chen, A. Bouscayrol, A. Berthon, P. Delarue, D. Hissel, R. Trigui, “Global modeling of different vehicles, using EMR to focus on system functions and system energy properties”, IEEE Vehicular Technology Mag., vol. 4, no. 2, June 2009, pp. 80-89 (common paper L2EP, FEMTO and INRETS within MEGEVH network)

[Cheng 11] Y. Cheng, R. Trigui, C. Espanet, A. Bouscayrol, S. Cui, " Analysis of Technical Requirements from the Toyota Prius II for the Design of a PM-EVT”, IEEE transactions on V hi l T h l l 60 6 4106 4114 N b 2011 ( L2EP Lill

- References (1) -

Page 28: « Study of EVs and HEVs using Energetic Macroscopic … · 2013-10-25 · EMR seminar Harbin Inst. Tech. Oct. 2013 « 3. EMR and inversion-based control of of energetic systems »

109Harbin, October 2013

«« EVsEVs and and HEVsHEVs using EMR using EMR »»

[Emadi 05] A. Emadi, K. Rajashekara, S. S. Willaimson, S.M. Lukic, “Topological overview of Hybrid Electric and Fuel Cell vehicula power systems architectures and configurations”, IEEE Trans. on Vehicular Technology, May 2005, Vol. 54, No. 3, pp. 763-770.

[Eshani 05] M. Eshani, Y. Gao, S. E. Gay, A. Emadi, "Modern electric, hybrid electric and fuel cell vehicles", CRC Press, New York, 2005.

[Lhomme 08] W. Lhomme, R. Trigui, P. Delarue, B. Jeanneret, A. Bouscayrol, F. Badin, "Switched causal modeling of transmission with clutch in hybrid electric vehicles”, IEEE Trans. on Vehicular Technology, Vol. 57, no. 4, July 2008, pp. 2081-2088, (common paper L2EP, LTE-INRETS in the framework of MEGEVH network)

[Letrouvé 13] T. Letrouvé, W. Lhomme, A. Bouscayrol, N. Dollinger, “Control validation of Peugeot 3∞8 Hybrid4 vehicle using a reduced-scale power HIL simulation", Journal of Electrical Engineering and Technology, September 2013, vol. 8, no. 5, pp. 1227-1233 (common paper of L2EP Lille, and PSA Peugeot Citroën within MEGEVH)

[Salmasi 07] F. R. Salmasi, "Control strategies for Hybrid Electric Vehicles: evolution, classification, comparison and future trends", IEEE Trans. on Vehicular Technology, September 2007, Vol. 56, No. 3, pp. 2393-2404.

[Syed 12] S. A. Syed, "Energetic Macroscopic Representation and Multi-level energy management fro heavy duty hybrid vehicles suing double planetary geartrain", PhD report, University Lille1, June 2012.

[Verhille 07] J. N. Verhille, A. Bouscayrol, P. J. Barre, J. P. Hautier, “Validation of anti-slip control for a subway traction system using Hardware-In-the-Loop simulation”, IEEE-VPPC’07, Arlington (USA), September 2007 (common paper L2EP Lille and Siemens Transportation System).

- References (2) -