01 hydrology 101 - water...

29
Hydrology 101 April 9, 2014 Dr. Sandoval. Ms. Anzulai 1 University of California, Davis Department of Land, Air, and Water Resources Samuel Sandoval Solis, PhD Assistant Professor Hydrology 101 ESM-121 Water Science and Management Lecture 1 Hydrology 101 : Surface and Groundwater - Hydrologic Cycle - Surface water principles - Groundwater Principles

Upload: dinhphuc

Post on 22-Jun-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Hydrology 101 April 9, 2014

Dr. Sandoval. Ms. Anzulai 1

University of California, DavisDepartment of Land, Air, and Water Resources

Samuel Sandoval Solis, PhDAssistant Professor

Hydrology 101

ESM-121 Water Science and Management

Lecture 1

Hydrology 101 : Surface and Groundwater- Hydrologic Cycle- Surface water principles- Groundwater Principles

Hydrology 101 April 9, 2014

Dr. Sandoval. Ms. Anzulai 2

Precipitation

Evaporation

Evapo-Transpiration

Infiltration

Runoff

Hydrology 101 April 9, 2014

Dr. Sandoval. Ms. Anzulai 3

A key concept of surface water hydrology- Mass Balance (Continuity Equation)

Accounts for addition, internal transfer, storage, and loss of water from a land unit

P = ET + RO + GW + ΔS

http://stream2.cma.gov.cn/pub/comet/HydrologyFlooding/RunoffProcessesInternationalEdition/comet/hydro/basic_int/runoff/print.htm#page_1.0.0

A drainage basin is an extent or an area of land where surface water from rain, melting snow, or ice converges to a single point at a lower elevation, usually the exit of the basin, where the waters join another waterbody, such as a river, lake, reservoir, estuary, wetland, sea, or ocean.

Hydrology 101 April 9, 2014

Dr. Sandoval. Ms. Anzulai 4

Convective Orographic

Stratiform

Hydrology 101 April 9, 2014

Dr. Sandoval. Ms. Anzulai 5

Orographic

Atmospheric Rivers(Video)

Mediterranean Climate-Dry Summers-Wet Winters

http://www.latimes.com/science/la-me-atmospheric-rivers-20150119-story.html

Hydrology 101 April 9, 2014

Dr. Sandoval. Ms. Anzulai 6

Intensity (I)- Intensity (I) = Precipitation (P) / time (t)- I = P/t i.e. in/hour, mm/hour, etc.

Frequency ( Pr (x) )- Frequency = Event / ( Total Events + 1 )- Pr(x) = m/(n+1) i.e. 0.30 or 30%

Return Period (T)- Return Period =

1 / Frequency- T = 1 / Pr(x)- i.e. 2 years, 5 years, …

Intensity-Duration-Frequency Curvestells you how rare a given rain storm is

Hydrology 101 April 9, 2014

Dr. Sandoval. Ms. Anzulai 7

Hydrology 101 April 9, 2014

Dr. Sandoval. Ms. Anzulai 8

Part of the precipitation which wets or adheres to above ground objects until return to the atmosphere through evaporation or sublimation

SteamflowCanopy DripThroughfall

Hydrology 101 April 9, 2014

Dr. Sandoval. Ms. Anzulai 9

EvaporationTransfer of water from land and water masses to the atmosphere

TranspirationThe process by which the plant extract water from the soil, utilize it, and expel it to the atmosphere

Evapotranspiration is dependent upon many factors including: soil cover, vegetation, solar radiation, humidity, wind, etc.

Hydrology 101 April 9, 2014

Dr. Sandoval. Ms. Anzulai 10

TranspirationThe process by which the plant extract water from the soil, utilize it, and expel it to the atmosphere

FactorsWeather parametersCrop FactorsMngmt and Env. Conditions

Penman-Monteith(PM) equation

CIMIS

* FAO (1998). “Crop Evapotranspiration – Guidelines for computing crop water requirements” <http://www.fao.org/docrep/X0490E/x0490e00.htm#Contents>

Hydrology 101 April 9, 2014

Dr. Sandoval. Ms. Anzulai 11

* CIMIS (2012). “ETo Map” <http://wwwcimis.water.ca.gov/cimis/cimiSatRptMap.jsp?urlVCR=hforward&urlImg=eto>

Jan/15/2013

Feb/15/2013

Mar/15/2013

Apr/15/2013

May/15/2013

Jun/15/2013

Jul/15/2013

Aug/15/2013

Sep/15/2013

Oct/15/2012

Nov/15/2012

Dec/15/2012

* CIMIS (2012). “ETo Map” <http://wwwcimis.water.ca.gov/cimis/cimiSatRptMap.jsp?urlVCR=hforward&urlImg=eto>

Jan/2013

Feb/2013

Mar/2013

Oct/2012

Nov/2012

Dec/2012

Apr/2013

May/2013

Jun/2013

Jul/2013

Aug/2013

Sep/2013

Jan/2011

Feb/2011

Mar/2011

Oct/2010

Nov/2010

Dec/2010

Apr/2011

May/2011

Jun/2011

Jul/2011

Aug/2011

Sep/2011

Dry Wet

Hydrology 101 April 9, 2014

Dr. Sandoval. Ms. Anzulai 12

Hydrology 101 April 9, 2014

Dr. Sandoval. Ms. Anzulai 13

Hydrology 101 April 9, 2014

Dr. Sandoval. Ms. Anzulai 14

Process by which precipitation moves downwards through the surface and replenishes soil moisture, recharges aquifers and supports steamflows during dry periods

Hydrology 101 April 9, 2014

Dr. Sandoval. Ms. Anzulai 15

http://stream2.cma.gov.cn/pub/comet/HydrologyFlooding/RunoffProcessesInternationalEdition/comet/hydro/basic_int/runoff/print.htm#page_1.0.0

Hydrology 101 April 9, 2014

Dr. Sandoval. Ms. Anzulai 16

0

2

4

6

8

10

12

14

16

18

20

0.01 0.1 1 10 100 1000 10000 100000

Hei

ght

(fee

t)

Streamflow (cfs)

Rating Curve

Hydrology 101 April 9, 2014

Dr. Sandoval. Ms. Anzulai 17

Drainage Area (A) acresRunoff Coefficient (C) Intensity(i) in/hr

Q=C*i*A

* CA Department of Transportation (2008). “Highway Design Manual” Chapter 810 Hydrology<http://www.dot.ca.gov/hq/oppd/hdm/pdf/chp0810.pdf>

Hydrology 101 April 9, 2014

Dr. Sandoval. Ms. Anzulai 18

Hydrology 101 April 9, 2014

Dr. Sandoval. Ms. Anzulai 19

Groundwater = Water Completely filling Pores/Fractures

Hydrology 101 April 9, 2014

Dr. Sandoval. Ms. Anzulai 20

Saturated Zone

Unsaturated Zone

AKA Vadose zone (“Zone of aeration”) above the water table soil pores contain either

air or water

Hydrology 101 April 9, 2014

Dr. Sandoval. Ms. Anzulai 21

Aquifers: Water bearing properties; this is the “saturated zone”

Confined: Soil or rock below the land surface that is saturated with water. There are layers of impermeable material both above and below it and it is under pressure

Unconfined: aquifer whose upper water surface (water table) is at atmospheric pressure, and thus is able to rise and fall

Hydrology 101 April 9, 2014

Dr. Sandoval. Ms. Anzulai 22

Losingstream

Hydrology 101 April 9, 2014

Dr. Sandoval. Ms. Anzulai 23

Gaining stream

Aquiclude: contains water but cannot transmit it rapidly enough to furnish a significant supply to a well or spring.

Aquitard (“confining unit”): low-permeability zone that retards, but does not prevent, the flow of water. It does not readily yield water for beneficial uses but can serve as a ground water storage unit.

Aquifuge: Contains no geologic openings and cannot hold, transport water

Hydrology 101 April 9, 2014

Dr. Sandoval. Ms. Anzulai 24

To be a good aquifer…1 - good porosity (space between grains)2 - good permeability (connection btwnpores)

Cross contamination concerns Subsurface contaminant transport

Hydrology 101 April 9, 2014

Dr. Sandoval. Ms. Anzulai 25

Direction of Regional GW Flow

Map

from

: ht

tp://

ww

wdp

la.w

ater

.ca.

gov/

sjd/

grou

ndw

ater

/tle-

emap

99.h

tml

Hydrology 101 April 9, 2014

Dr. Sandoval. Ms. Anzulai 26

GW flow velocity is proportional to the slope of the water table – steeper slope result in larger pressure difference between two points

Hydraulic conductivity – Corrects fro permeability difference between materials & viscosity of the solution

Volume of Water (Flow rate)

Cross-sectionalarea of flow

Hydraulic Conductivity

Vertical Drop

Flow Distance

300200

Unconfined Aquifer

Hydrology 101 April 9, 2014

Dr. Sandoval. Ms. Anzulai 27

from: U.S. Geological Survey, ‘Ground Water and the Rural Homeowner’

Hydrology 101 April 9, 2014

Dr. Sandoval. Ms. Anzulai 28

Hydrology 101 April 9, 2014

Dr. Sandoval. Ms. Anzulai 29

1 ft = 0.3048 m

1 m3 = 28.3168x10 -3 ft3

1 m3 = 35.3147 ft3

1 ha = 10,000 m2

1 acre = 43,560 ft2

= 0.4047 ha= 4047 m2

1 gal = 3.785x10 -3 m3

= 3.785 L

1 m3 = 8.11x10-4 af109 m3 = 8.11x105 af1 km3 = 0.811 maf

1 m3 = 264 gal109 m3 = 264x109 gal1 km3 = 264 bg1 km3/yr = 0.7234 bgd