09.12.16toki@osaka-groningen1 relativistic chiral mean field model for nuclear physics (ii) hiroshi...

27
09.12.16 toki@osaka-groningen 1 Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University

Upload: evan-carr

Post on 27-Dec-2015

220 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: 09.12.16toki@osaka-groningen1 Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University

09.12.16 toki@osaka-groningen 1

Relativistic chiral mean field model for nuclear physics (II)

Hiroshi Toki

Research Center for Nuclear Physics

Osaka University

Page 2: 09.12.16toki@osaka-groningen1 Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University

09.12.16 toki@osaka-groningen 2

Pion is important !! Yukawa introduced pion as a mediator of

nuclear interaction (1934) Meyer-Jensen introduced shell model for

finite nuclei (1949) Nambu-Jona-Lasinio introduced chiral

symmetry and its breaking for mass and pion generation (1961)

Page 3: 09.12.16toki@osaka-groningen1 Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University

09.12.16 toki@osaka-groningen 3

Motivation for the second stage

Pion is important in nuclear physics. Pion appears due to chiral symmetry. Particles as nucleon, rho mesons,.. may

change their properties in medium. Chiral symmetry may be recovered

partially in nucleus. Unification of QCD physics and nuclear

physics.

Page 4: 09.12.16toki@osaka-groningen1 Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University

09.12.16 toki@osaka-groningen 4

Spontaneous breaking of chiral symmetry

Quarks & gluons

Hadrons & nucleiConfinement, Mass generation

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Potential energy surface of the vacuum

Chiral order parameter

Yoichiro Nambu

Hosaka

Page 5: 09.12.16toki@osaka-groningen1 Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University

09.12.16 toki@osaka-groningen 5

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

He was motivated by the BCS theory.

E p = ±(ε p2 + Δ2)1/ 2

E p = ±( p2 + m2)1/ 2

Nobel prize (2008)

εiψ i + Δψ ̃ i = E iψ i

−ε iψ ̃ i + Δ*ψ i = E iψ ̃ i

− r

σ ⋅ r

p ψ L + mψ R = E pψ Lr σ ⋅

r p ψ R + mψ L = E pψ R

Δ is the order parameter is the order parameter

m

Particle number Chiral symmetry

Page 6: 09.12.16toki@osaka-groningen1 Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University

09.12.16 toki@osaka-groningen 6

Nambu-Jona-Lasinio Lagrangian

Mean field approximation; Hartree approximation

Fermion gets mass.

The chiral symmetry is spontaneously broken.

ψ ψ → ψ ψ cos(2α ) +ψ iγ 5ψsin(2α )

ψ iγ 5ψ →ψ iγ 5ψ cos(2α ) −ψ ψsin(2α )

ψ → e iαγ 5ψChiral transformation

Page 7: 09.12.16toki@osaka-groningen1 Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University

09.12.16 toki@osaka-groningen 7

Chiral condensate is

The fermion mass is

The mass is similar to the pairing gap in the BCS formalism.The mass generation mechanism for a fermion.

m

G

Gc

1 =GcΛ

2

π 2

Page 8: 09.12.16toki@osaka-groningen1 Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University

09.12.16 toki@osaka-groningen 8

The particle-hole excitation (pion channel): RPA

T =K

+ T

KJ(q)

Page 9: 09.12.16toki@osaka-groningen1 Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University

09.12.16 toki@osaka-groningen 9

The pion mass is zero. Nambu-Goldstone mode has a zero mass.

The nucleon gets mass by chiral condensation.

There appears a massless boson; pseudo-scalar meson.

All the masses of particles are zero at the beginning, butthey are generated dynamically.Massless boson appears (Nambu-Goldstone boson) with pseudo-scalar quantum number.

Page 10: 09.12.16toki@osaka-groningen1 Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University

09.12.16 toki@osaka-groningen 10

Bosonization (Eguchi:1974)

Lσ =1

2(∂ μσ )2 + (∂ μπ a )2

( ) −λ

4(σ 2 + π a 2) − v 2

( )2

Fermion field is quark

Z = Dψ Dψ exp i d4∫ x LNJL[ ]∫€

LNJL = iψ γ μ∂μψ + G ψ ψ( )

2+ ψ iγ 5τ

aψ( )2

[ ]

Auxiliary fields

σ =ψ ψ

π a =ψ iγ 5τaψ

Z = Dψ DψDσDπ a exp∫ i d4∫ x[ψ iγ μ∂ μψ

−ψ g0(σ + iγ 5τaπ a )ψ −

1

2μ0

2(σ 2 + π a 2)]

Page 11: 09.12.16toki@osaka-groningen1 Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University

09.12.16 toki@osaka-groningen 11

Nuclear physics with NJL model

Auxiliary fields

σ =ψ ψ

π a =ψ iγ 5τaψ

SU2 chiral transformation

exp (aqa g5 )

σ → σ cos2θ + ˆ θ aπ asin2θ

π a → π a cos2θ − ˆ θ aσ sin2θ

LNJL = iψ γ μ∂μψ + G ψ ψ( )

2+ ψ iγ 5τ

aψ( )2

[ ]

Confinement (Polyakov NJL Mode)

Lσ =ψ iγ μ∂μ − g(σ + iτ aπ a )( )ψ

+1

2(∂ μσ )2 + (∂ μπ a )2

( ) −λ

4(σ 2 + π a2) − v 2

( )2

SU2c is doneSU3c is not yet done.

Page 12: 09.12.16toki@osaka-groningen1 Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University

09.12.16 toki@osaka-groningen 12

Chiral sigma modelChiral sigma model

Linear Sigma Model Lagrangian

Polar coordinate

Weinberg transformation

Pion is the Nambu boson of chiral symmetry

Page 13: 09.12.16toki@osaka-groningen1 Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University

09.12.16 toki@osaka-groningen 13

Non-linear sigma modelNon-linear sigma model

Lagrangian = fπ +

whereM = gσfπ M* = M + gσ

mπ2 = 2 + fπ mσ

2 = 2 +3 fπ

m = gfπ m

= m + g

~ ~

Free parameters are and

gω (Two parameters)

N

Page 14: 09.12.16toki@osaka-groningen1 Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University

09.12.16 toki@osaka-groningen 14

Relativistic mean field model(standard)

Mean field approximation:

σ = σ + ′ σ

Then take only the mean field part, which is just a number.

σ =σ

=δ0ω

π a = 0

The pion mean field is zero. Hence, the pion contributionis zero in the standard mean field approximation.

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Page 15: 09.12.16toki@osaka-groningen1 Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University

09.12.16 toki@osaka-groningen 15

Relativistic mean field model(pion condensation)

π a = π a Ogawa, Toki, et al.Brown, Migdal..

Since the pion has pseudo-scalar (0-) nature, the parityand charge symmetry are broken.

In finite nuclei, we have to project out spin and isospin,which involves a complicated projection.

Dirac equation

mπ2π a = gπ∇ i ψ iγ 5γ iψ

Page 16: 09.12.16toki@osaka-groningen1 Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University

09.12.16 toki@osaka-groningen 16

Ψ=Ψ(σ ,ω)⊗Ψ(N)Mean field approximation for mesons.

Ψ(N) = C0 RMF + Ci

i

∑ 2p − 2hi

Nucleons are moving in the mean field and occasionally broughtup to high momentum states

due to pion exchange interaction

σ

σ

h h

p p

Brueckner argument

Relativistic Chiral Mean Field Model(powerful method)Wave function for mesons and nucleons

Page 17: 09.12.16toki@osaka-groningen1 Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University

09.12.16 toki@osaka-groningen 17

Why 2p-2h states are necessary for pion (tensor)interaction?

σ

σ

G.S.

Spin-saturated

The spin flipped states are alreadyoccupied by other nucleons.

Pauli forbidden

Page 18: 09.12.16toki@osaka-groningen1 Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University

09.12.16 toki@osaka-groningen 18

Energy minimization with respect tomeson and nucleon fields

δΨ H Ψ

Ψ Ψ= 0

δE

δσ= 0

δE

δω= 0

(Mean field equation)

δE

δψ i(x)= 0

δE

δCi

= 0

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Hartree-Fock

G-matrix component

Page 19: 09.12.16toki@osaka-groningen1 Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University

09.12.16 toki@osaka-groningen 19

Numerical results (1)

4He12C16O

Ogawa TokiNP 2009

Adjust binding energyand size

Tensor

Spin-spin

Pion

Total

12C

Page 20: 09.12.16toki@osaka-groningen1 Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University

09.12.16 toki@osaka-groningen 20

Numerical results 2

The difference between 12C and 16O is 3 MeV/N.

The difference comes from low pion spin states (J<3).This is the Pauli blocking effect.

P3/2

P1/2

C

O

S1/2

Pion energy Pion tensor provides large attraction to 12C

OC

Cumulative Individual contribution

Page 21: 09.12.16toki@osaka-groningen1 Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University

09.12.16 toki@osaka-groningen 21

Chiral symmetry

Nucleon mass is reducedby 20% due to sigma.

We want to work out heavier nuclei for magic number.Spin-orbit splitting should be worked out systematically.

Ogawa TokiNP(2009)

Not 45% as discussedin RMF model.

N

One half is from sigma meson and the other half isfrom the pion.

Page 22: 09.12.16toki@osaka-groningen1 Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University

09.12.16 toki@osaka-groningen 22

Nuclear matterHu Ogawa TokiPhys. Rev. 2009

ψ ψ

E/A

Total

Pion

Σ ~ 50MeV

Total

ψ ψ

σ

Page 23: 09.12.16toki@osaka-groningen1 Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University

09.12.16 toki@osaka-groningen 23

Deeply bound pionic atom

Toki Yamazaki, PL(1988)

Predicted to exist

Found by (d,3He) @ GSIItahashi, Hayano, Yamazaki..Z. Phys.(1996), PRL(2004)

Findings: isovector s-wave

b1

b1(ρ )=1− 0.37

ρ

ρ 0

fπ2mπ

2 = −2mq ψ ψ

ψ ψ

ψ ψ=1− 0.37

ρ

ρ 0

b1 ∝1

fπ2

Page 24: 09.12.16toki@osaka-groningen1 Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University

09.12.16 toki@osaka-groningen 24

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Suzuki, Hayano, Yamazaki..PRL(2004)

Optical model analysisfor the deeply bound state.

Page 25: 09.12.16toki@osaka-groningen1 Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University

09.12.16 toki@osaka-groningen 25

Summary-2

NJL model provides the linear sigma model. Pion (tensor) is treated within the relativistic

chiral mean field model. JJ-magic is produced by pion. Nucleon mass is reduced by 20% Deeply bound pionic atom seems to verify

partial recovery of chiral symmetry.

Page 26: 09.12.16toki@osaka-groningen1 Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University

09.12.16 toki@osaka-groningen 26

Summary

Pion is important in Nuclear Physics. Pion is a Goldstone-Nambu boson of chiral symmetry

breaking. By integrating out the quark field with confinement, we

can get sigma model Lagrangian. Relativistic chiral mean field model is able to work out

the sigma model Lagrangian. We have now a tool to unify the quark picture with the

hadron picture and describe nucleus from quarks.

Page 27: 09.12.16toki@osaka-groningen1 Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University

09.12.16 toki@osaka-groningen 27

Joint Lecture Groningen-Osaka Spontaneous Breaking of Chiral Symmetry in Hadron Physics30 Sep 09:00- CEST/16:00- JST Atsushi HOSAKA07 Oct 09:00- CEST/16:00- JST Nuclear Structure21 Oct 09:00- CEST/16:00- JST Nasser KALANTAR-NAYESTANAKI28 Oct 09:00- CET/17:00- JST Low-energy tests of the Standard Model25 Nov 09:00- CET/17:00- JST Rob TIMMERMANS02 Dec 09:00- CET/17:00- JST Relativistic chiral mean field model description of finite nuclei09 Dec 09:00- CET/17:00- JST Hiroshi TOKI16 Dec 09:00- CET/17:00- JST + WRAP-UP/DISCUSSION