092298_lecture13

5

Click here to load reader

Upload: ohenri100

Post on 15-May-2017

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 092298_lecture13

EE 105 Fall 1998Lecture 13

MOSFET Geometry in SPICE

■ Statement for MOSFET ... D,G,S,B are node numbers for drain, gate, source, and bulk terminals

Mname D G S B MODname L= _ W=_ AD= _ AS=_ PD=_ PS=_

MODname specifies the model name for the MOSFET

����

AS = W × Ldiff (source)

Ldiff (source) Ldiff (drain)

AD = W × Ldiff (drain)

NRS = N (source)PS = 2 × Ldiff (source) = W

NRD = N (drain)PD = 2 × Ldiff (drain) = W

W

L

13

EE 105 Fall 1998Lecture 13

MOSFET Model Statement

.MODEL MODname NMOS/PMOS VTO=_ KP=_ GAMMA= _ PHI=_LAMBDA= _ RD=_ RS=_ RSH=_ CBD=_ CBS=_CJ=_ MJ=_ CJSW=_MJSW=_ PB=_ IS= _ CGDO=_ CGSO=_ CGBO=_ TOX=_ LD=_

DC Drain Current Equations:

Parameter name (SPICE / this text)

SPICE symbol Eqs. (4.93), (4.94)

Analytical symbol Eqs. (4.59), (4.60)

Units

channel length Leff L m

polysilicon gate length L Lgate m

lateral diffusion/gate-source overlap

LD LD m

transconductance parameter KP µnCox A/V2

threshold voltage /zero-bias threshold

VTO VTnO V

channel-length modulation parameter

LAMBDA λn V-1

bulk threshold / backgate effect parameter

GAMMA γn V1/2

surface potential / depletion drop in inversion

PHI - φp V

IDS 0 V( GS V– TH)≤=

IDSKP2

-------- W Leff⁄( )VDS 2 VGS VTH–( ) VDS–[ ] 1 LAMBDA VDS⋅+( )= 0 VDS VGS VTH–≤ ≤( )

IDSKP2

-------- W Leff⁄( ) VGS VTH–( )2

1 LAMBDA VDS⋅+( )= 0 VGS VTH– VDS≤≤( )

VTH VTO GAMMA 2 PHI⋅ VBS– 2 PHI⋅–( )+=

Page 2: 092298_lecture13

EE 105 Fall 1998Lecture 13

Capacitances

SPICE includes the “sidewall” capacitance due to the perimeter of the source and drain junctions --

Gate-source and gate-drain overlap capacitance are specified by CGDO and CGSO (units: F/m).

Level 1 MOSFET model:

.MODEL MODN NMOS LEVEL=1 VTO=1 KP=50U LAMBDA=.033 GAMMA=.6+ PHI=0.8 TOX=1.5E-10 CGDO=5E-10 CGSO= 5e-10 CJ=1E-4 CJSW=5E-10+ MJ=0.5 PB=0.95

The Level 1 model is adequate for channel lengths longer than about 1.5 µm

For sub-µm MOSFETs, BSIM = “Berkeley Short-Channel IGFET Model” developed by Profs. P. Ko (now at HKUST) and C. Hu and their students is the industry-standard SPICE model for MOSFETs.

n+ drain

CBD VBD( ) CJ AD⋅

1 VBD PB⁄–( )MJ------------------------------------------- CJSW PD⋅

1 VBD PB⁄–( )MJSW---------------------------------------------------+=

(area) (perimeter)

EE 105 Fall 1998Lecture 13

SPICE Statement for a MOSFET

A

B

F

VDD

VSS

VDD

VSS

0 2 4 6 8 10 12 14 16 18 20 µm

02

46

810

1214

1618

20µ m

Page 3: 092298_lecture13

EE 105 Fall 1998Lecture 13

SPICE Netlist for Extracted Circuit

■ Number nodes sequentially; let VSS = 0 , VDD = 5 V, and VB = 5 V.

.

VF

(3/1)

(3/1)

(4.5/1)(4.5/1)

Cw

CA-SS

CA-DD

CB-SS

CB-DD

+-5 V

0

1

-+VA

2

3

4

M1

M2

M3

M4

EE 105 Fall 1998Lecture 13

SPICE Input File

■ Source File (parastic and load capacitors omitted since the output we want the DC transfer curve and not a transient response)

* simple NAND gateVDD 1 0 5VA 2 0 DCM1 3 2 0 0 modn W=3u L=1u AD=3p AS=12p PD=2u PS=10uM2 4 1 3 0 modn W=3u L=1u AD=12p AS=3p PD=10u PS=2uM3 4 2 1 1 modp W=4.5u L=1u AD=8p AS=18p PD=2u PS=12.5uM4 4 1 1 1 modp W=4.5u L=1u AD=8p AS=18p PD=2u PS=12.5u* standard H&S level 1 models for L = 1 um.model modn nmos level=1 vto=1 kp=50u lambda=.1 gamma=.6 phi=.8 tox=15e-9+ cgdo=.5e-9 cgso=.5e-9 cj=.1e-3 cjsw=.5e-9 mj=.5 pb=.95.model modp pmos level=1 vto=-1 kp=25u lambda=.1 gamma=.6 phi=.8 tox=15e-9+ cgdo=.5e-9 cgso=.5e-9 cj=.3e-3 cjsw=.35e-9 mj=.5 pb=.89* dc transfer curve for VA = 0 to 5 V with 0.1 V steps.DC VA 0 5 0.1.END

■ Spice3 command line syntax

Spice 1 -> load sourcefile

Spice 2 -> run

Spice 3 -> plot v(4)

Page 4: 092298_lecture13

EE 105 Fall 1998Lecture 13

Graphical Output

EE 105 Fall 1998Lecture 13

Digital Electronics

■ Assign “1” and “0” to a range of voltage (or current), with a separation that minimizes a transition region

We will use positive logic (usually the case)

Simplest binary function: inversion

Circuit must take the “1” voltage range at the input and deliver the “0” voltage range at the output.

Logic0

Positive Logic Negative Logic

Voltage

Logic1

Logic0

Logic1

Transition Region Transition Region

A BA B

1

1 0

0

Page 5: 092298_lecture13

EE 105 Fall 1998Lecture 13

Boolean Algebra

■ Standard logic functions

A

B

C

A B AB C

C = ABNAND (not AND) gate

A

B

C

A B A+B C

C = A+BNOR (not OR) gate

EE 105 Fall 1998Lecture 13

Boolean Algebra

■ Adding two-digit binary numbers:

Truth table

Synthesis using standard NAND and NOR gates: C = AB, (XOR)

A + B = F

(and carry = C)

A

B

F

C

A B F C

F A B⊗=