1-21t

20
CHEE 405 (G) Process Heat T ransfer Chapter 2: 1-6 Instructor: W illiam Chirdon , Ph.D. [email protected]

Upload: billiam123

Post on 04-Jun-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1-21T

8/13/2019 1-21T

http://slidepdf.com/reader/full/1-21t 1/20

CHEE 405 (G)

Process Heat Transfer

Chapter 2: 1-6

Instructor:

William Chirdon, Ph.D.

[email protected]

Page 2: 1-21T

8/13/2019 1-21T

http://slidepdf.com/reader/full/1-21t 2/20

Temperature Dependence of

Thermal Conductivity

• Most physical properties are temperature dependent

• Including thermal conductivity

(see Fig. 1-6)• Often fitted to a linear function of T

 –   No strict scientific basis

 –  More complicated functions would be possible and more

accurate –  Choose a function (constant, linear, other) based on the

available data and the demands of the project

Page 3: 1-21T

8/13/2019 1-21T

http://slidepdf.com/reader/full/1-21t 3/20

Temperature Dependence of

Thermal Conductivity

 

2

10

2

1 )1( :WallD-1For

 x

 x T T  Ak  xq    

)1(0   T k k     

 xT  AT k q

  )1(0    

q = heat flow (W)

k  = thermal conductivity (W/m oC)

 A = area perpendicular to heat flow (m2)

T = temperature (oC)

 x = thickness of wall (m) 

  )(

2

)(  2

1

2

2120 T T T T 

 x

 Ak q

   (Eqn 2-2)

Page 4: 1-21T

8/13/2019 1-21T

http://slidepdf.com/reader/full/1-21t 4/20

Multi-Component Systems

Page 5: 1-21T

8/13/2019 1-21T

http://slidepdf.com/reader/full/1-21t 5/20

Multi-layer Walls

k a  k  b k c

xa

  x b

  xc

q

c

c

b

b

aa

 x

T T  Ak q

 x

T T  Ak q

 x

T T  Ak q

)(

)(

)(

34

23

12

T1  T2  T3 T4

Page 6: 1-21T

8/13/2019 1-21T

http://slidepdf.com/reader/full/1-21t 6/20

Multi-layer Walls

c

c

b

b

a

a

 x

T T  Ak q

 x

T T  Ak q

 x

T T  Ak q

)(

)(

)(

34

23

12

41

43

32

21

T T  Ak 

 xq

 Ak 

 xq

 Ak 

 xq

T T  Ak 

 xq

T T  Ak 

 xq

T T  Ak 

 xq

c

c

b

b

a

a

c

c

b

b

a

a

 Ak 

 x

 Ak 

 x

 Ak 

 x

T T q

c

c

b

b

a

a

  41

(equation 2-3)

Page 7: 1-21T

8/13/2019 1-21T

http://slidepdf.com/reader/full/1-21t 7/20

Multi-layer Wall

n

i

overall 

cba

overall 

c

c

b

b

a

a

ii

ii

 R

 R R R

 Ak 

 x

 Ak 

 x

 Ak 

 x

T T q

 Aq

T R

1

41

resistancethermal/

Page 8: 1-21T

8/13/2019 1-21T

http://slidepdf.com/reader/full/1-21t 8/20

Multi-layer Wall

n

i

overall 

i

 slab

ii

ii

 R

T q

 Ak 

 x R

 Aq

T  R

1

/

k a  k  b k c

xa  x b  xc

q

T1  T2  T3 T4

R a  R  b  R c

Electrical Analogy

q  current

T  voltage

R i  resistance

Page 9: 1-21T

8/13/2019 1-21T

http://slidepdf.com/reader/full/1-21t 9/20

Multi-mode Heat Transfer

n

i

overall 

ii

convection

i

 slab

ii

i

i

 R

T  Ah

 R

 Ak 

 x R

 Aq

 R

1

1

/

ha  k  b hc

q

R a  R  b  R c

Co-Current Heat Exchanger

flow flow

T1  T2  T3 T4

solid

Page 10: 1-21T

8/13/2019 1-21T

http://slidepdf.com/reader/full/1-21t 10/20

Multi-mode Heat Transfer

n

i

overall 

 R A

T UAq

1

1

ha  k  b hc

q

R a  R  b  R c

Co-Current Heat Exchanger

flow flowsolid

T1  T2  T3 T4

Page 11: 1-21T

8/13/2019 1-21T

http://slidepdf.com/reader/full/1-21t 11/20

Thermal Resistance and R-values

• Conceptually similar, but not interchangeable

• Watch units!

 –  Thermal Resistance = °C/W

 – R-value =

°C m

2

/W

i

i

i

i

 x R

 Ak 

 x R

value-

resistancethermal

Page 12: 1-21T

8/13/2019 1-21T

http://slidepdf.com/reader/full/1-21t 12/20

Cylindrical Heat ExchangerFluid (Ta) Fluid (T b)

wall

oo

io

ii

ba

iowall cylinder 

io

oiwall cylinder 

ii

ii

 AhkL

r r 

 Ah

T T q

kL

r r  R

r r 

T T kLq

 Aq

T  R

1

2

)/ln(1

2

)/ln()/ln(

)(2

/

 

 

 

Page 13: 1-21T

8/13/2019 1-21T

http://slidepdf.com/reader/full/1-21t 13/20

Insulated Pipe/Wire

Conduction + Convection

o

io

air i

oo

hr k 

r r 

T T  Lq

 Lr  A

1)/ln(

)(2

2

  

  

r i 

r o 

h, Tair  

How will increasing r o affect

the heat transfer rate?

o

io

air i

hAkL

r r 

T T q

1

2

)/ln(

 

 NOTE: Table 2-1 contains

 pipe insulation values.

Page 14: 1-21T

8/13/2019 1-21T

http://slidepdf.com/reader/full/1-21t 14/20

Critical Insulation Thickness

h

hr k hr kr hr kr 

o

ooooo

 

  

 

  11,

11,0

1122

o

io

air i

hr k 

r r  T T  Lq 1)/ln( )(2

   

r i 

r o 

h, Tair  

01)/ln(

11

)(2

2

2

 

 

 

 

o

io

ooair i

o

hr k 

r r 

hr kr T T  L

dr 

dq   

Page 15: 1-21T

8/13/2019 1-21T

http://slidepdf.com/reader/full/1-21t 15/20

Critical Insulation Thickness

• If r o < r c, then increasing r o will increase the

heat transfer rate

 –  Due to the increased surface area for convection

• If r o > r c, then increasing r o will decrease the

heat transfer rate

 –  Due to conduction through the wall

hk r c  

Page 16: 1-21T

8/13/2019 1-21T

http://slidepdf.com/reader/full/1-21t 16/20

Composite Wall System (1D Transfer)

a

 b

c

d h

f

e g

T1T2

q

R a

R  b  R g

R d

R e

R c

R f

R h

Page 17: 1-21T

8/13/2019 1-21T

http://slidepdf.com/reader/full/1-21t 17/20

Steady State Heat Generation

in a 1-D Slab

0

0

2

2

2

2

 

  

 

dx

T d 

q

dx

T d 

T cq

 x

T k 

 x

dot 

dot   

  

1-D Heat Conduction Equation:

Steady-state Assumption:

Steady-state Assumption, no heat generation:

(Note: 3-D and spherical/cylindrical coordinates are in your textbook)

Occurs in nuclear reactors,

electrical resistance, chemical

reactions, (e.g. fresh concrete)

Page 18: 1-21T

8/13/2019 1-21T

http://slidepdf.com/reader/full/1-21t 18/20

Steady State Heat Generation

in a 1-D Slab

21

2

2

2

2

0

C  xC  xk 

qT 

q

dx

T d 

dot 

dot 

Steady-state Assumption:

Eq 2-22a:   x  =  -   L

  x  =   +   L

  x  =   0

Define T at x = 0 as T0 , so that C2 = T0 

If Tx=+L = Tx=-L , then C1 = 0

2

0 2 x

qT T    dot 

General Solution:

Page 19: 1-21T

8/13/2019 1-21T

http://slidepdf.com/reader/full/1-21t 19/20

Steady State Heat Generation

in a 1-D Slab

2

02

 xk 

qT T    dot Eq 2-22a:

  x  =  -   L

  x  =   +   L

  x  =   0

If T = Tw

 at +/- L, then:

q

 L

T T  dot w

22

0

2

0

0

 

 

 

 

 L

 x

T T 

T T 

w

Eq 2-22b:

Page 20: 1-21T

8/13/2019 1-21T

http://slidepdf.com/reader/full/1-21t 20/20

Steady State Heat Generation

in a Cylinder

222

4r  R

qT T    dot 

w   Eq 2-25a:

  r  =   R

  r  =   0

2

0

1     

  

 R

T T 

T T 

w

wEq 2-26:

  r  =   R

(see your text)

  21

2ln

4C r C r 

qT    dot 

General Solution: