1 challenge the future feasibility study for afm probe calibration using the probe’s electrostatic...

63
1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir. W.M. van Spengen Prof.dr.ir. A. van Keulen

Upload: reynard-blankenship

Post on 23-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

1Challenge the future

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instabilityLaurens Pluimers

Supervisors:

Dr.ir. W.M. van Spengen

Prof.dr.ir. A. van Keulen

Page 2: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

2Challenge the future

103

100

10-3

10-6

10-9

Micrometer(µm)

Nanometer(nm)

Picometer(pm)

Millimeter(mm)

Meter(m)

Kilometer(km)

Scaling

10-12

Page 3: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

3Challenge the future

Microscopes

Hair:40-80 µm

DNA:10-30 nm

Atoms:30-300 pm

Optical microscope

Resolution: 200nm

Resolution: 100pm

Source: andrew.cmu.edu

Atomic force microscope (AFM)

Page 4: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

4Challenge the future

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Page 5: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

5Challenge the future

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Page 6: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

6Challenge the future

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Page 7: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

7Challenge the future

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Outline

Introduction Atomic Force Microscope (AFM)

Page 8: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

8Challenge the future

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Outline

Introduction Atomic Force Microscope (AFM) Probe calibration

Page 9: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

9Challenge the future

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Outline

Introduction Atomic Force Microscope (AFM) Probe calibration Electrostatic pull-in instability

Page 10: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

10Challenge the future

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Outline

Introduction Atomic Force Microscope (AFM) Probe calibration Electrostatic pull-in instability Results of feasibility study

Page 11: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

11Challenge the future

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Outline

Introduction Atomic Force Microscope (AFM) Probe calibration Electrostatic pull-in instability Results of feasibility study Conclusions & Recommendations

Page 12: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

12Challenge the future

Atomic Force MicroscopeWorking principle

Quadrant detectorLaser

Cantilever beam(probe)

Sample

Source: www.bruker.com

Page 13: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

13Challenge the future

Atomic Force MicroscopeWorking principle

Source: http://www.youtube.com/watch?v=fivhcWYEtkQ

Page 14: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

14Challenge the future

Atomic Force MicroscopeSetup: Optical beam deflection system

Page 15: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

15Challenge the future

Atomic Force MicroscopeAFM probe

20μmSource: www.absoluteastronomy.com

Page 16: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

16Challenge the future

Atomic Force MicroscopeImages

Topography image of metallic nanoparticles deposited on graphite

Source: www.oist.jp

Page 17: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

17Challenge the future

Recap

What is an Atomic Force Microscope (AFM)?

“Feeling” the sample surface with probe Optical beam deflection system Resolution ~100pm

Page 18: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

18Challenge the future

Atomic Force MicroscopeModes of operation

Imaging Topography scan

Force measurements Material properties

Page 19: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

19Challenge the future

Atomic Force MicroscopeMode of operation: Force measurementsMeasurement tip / sample interaction forces:

Atomic bonding Van der Waals forces Magnetic forces Chemical bonding

Probe

Sample

h

Source: www.bruker.com

Page 20: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

20Challenge the future

Atomic Force MicroscopeInteraction forces

Material A

Material B

Quadrant detector

Laser

Probe

Fint

Page 21: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

21Challenge the future

Atomic Force MicroscopeInteraction forces

x

y

“Force” imageMaterial A

Material B

Page 22: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

22Challenge the future

Atomic Force MicroscopeProbe calibration

k

Fint

x

Hooke’s lawFint=k·x

Probe

LaserQuadrant detector

k=spring constant

Page 23: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

23Challenge the future

Probe calibrationAdded mass

M

x

Hooke’s law

k

Mgxk

Page 24: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

24Challenge the future

Probe calibrationEuler-Bernoulli beam theory

t

Lb

Cantilever base

3

34EbtL

k Young's modulusE

Page 25: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

25Challenge the future

Probe calibrationOther calibration methods

Method Accuracy

Disadvantages

Added mass 15-25% Destructive, slow

Euler-Bernoulli beam theory

20-40% Inaccurate, slow

Nano-Force Balance 0.4% External equipment, expensive

Thermal tune 20% Only compliant beams

Page 26: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

26Challenge the future

Recap

Why do you need to calibrate the probe?

To determine the exact interaction forces between tip and sample

Bonding forces Material properties

Disadvantages other methods

Need for new method

Page 27: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

27Challenge the future

Probe calibrationNew calibration method

Based on probe’s Electrostatic Pull-in Instability (EPI)

Inventor: Prof.dr.ir. F. van Keulen

Improvements: Wide range of cantilever beams (k= 0.1 – 50 N/m) Non-destructive Integrated system in AFM Fast and easy to use

Page 28: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

28Challenge the future

Probe calibrationNew calibration method

Based on probe’s Electrostatic Pull-in Instability (EPI)

EPI Probe calibration using EPI Experimental setup

Page 29: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

29Challenge the future

Electrostatic Pull-in Instability

V

u=d0 u

Probe

Counter electrode

DC voltage source

Pull-in point

Page 30: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

30Challenge the future

Electrostatic Pull-in Instability

Top view cantilever beam

Page 31: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

31Challenge the future

Non-linear behaviour of the cantilever beam

Elastic restoring forces are linear Electrostatic forces are quadratic Main advantage: well defined instability

point(pull-in) measurement

Electrostatic Pull-in Instability

Page 32: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

32Challenge the future

Probe calibration Electrostatic pull-in instability

20

30

0.562 r piLbVk

d

Lb

d0

0 Permittivity of free space

Dielectric constantr

Page 33: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

33Challenge the future

20

30

0.562 r piLbVk

d

32/3 2/3

0 2 1

30.562

r p pLb V Vk

d

Probe calibration EPI: differential gap method

Vp1

V V

Vp2

Δd

Page 34: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

34Challenge the future

EPI probe calibration Experimental setup

Variables: Differential gap

(Δd) Pull-in voltage

(Vpi) Length (L) Width (b)

32/3 2/30 2 1

30.562

r p pLb V Vk

d

Accuracy: 5 -15 %

Model

Source: www.bruker.com

AFM system

Page 35: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

35Challenge the future

EPI probe calibration Experimental setup

XYZ stage

Variables: Differential gap (Δd)

XYZ stage

Source: www.bruker.com

Page 36: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

36Challenge the future

EPI probe calibration Experimental setup

Variables: Differential gap (Δd) Pull-in voltage (Vpi)

Source: www.bruker.com

XYZ stage

Counter electrode

XYZ stage

Page 37: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

37Challenge the future

EPI probe calibration Experimental setup

Variables: Differential gap (Δd) Pull-in voltage (Vpi)

Source: www.bruker.com

Counter electrode

XYZ stageXYZ stage

Page 38: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

38Challenge the future

EPI probe calibration Experimental setup

Variables: Differential gap (Δd) Pull-in voltage (Vpi) Length (L) Width (b)

Source: www.bruker.com

Counter electrode

XYZ stage

Aspheric lens

Page 39: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

39Challenge the future

EPI probe calibration Calibration mode

Source: www.bruker.com

Variable: Pull-in voltage (Vpi)

Source: www.bruker.com

Page 40: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

40Challenge the future

EPI probe calibration Width scan

x

Source: www.bruker.com

Variable: Width (b)

Source: www.bruker.com

Page 41: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

41Challenge the future

EPI probe calibration Length scan

y

Source: www.bruker.com

Variable: Length (L)

Source: www.bruker.com

Page 42: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

42Challenge the future

EPI probe calibration Experimental setup

Source: www.bruker.com

Source: www.bruker.com

Page 43: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

43Challenge the future

Probe calibration Experimental setup

Optical path

Laser

Aspheric lens

Quadrant detector

Page 44: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

44Challenge the future

Probe calibration Experimental setup

Page 45: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

45Challenge the future

Probe calibration Experimental setup

Page 46: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

46Challenge the future

Probe calibration Experimental setup

Page 47: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

47Challenge the future

Probe calibration Experimental setup

Page 48: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

48Challenge the future

Probe calibration Experimental setup

Page 49: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

49Challenge the future

Results

Performance check: Differential gap (Δd) Pull-in voltage (Vpi) Length (L) Width (w)

Calibration test probe

Page 50: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

50Challenge the future

ResultsWidth scan

Width

Position stage [µm]

QD

ou

tpu

t [V

]

Width scan EPI

Page 51: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

51Challenge the future

ResultsLength scan

Length

Position stage [µm]

QD

ou

tpu

t [V

]

Length scan EPI

Page 52: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

52Challenge the future

ResultsLength/Width scan

Width [µm] Length[µm]

EPI 50.59 ±0.15 467.34 ±0.40

Bruker WL 50.71 ±0.3 466.02 ±0.3

Error [µm] 0.12 ±0.33 1.32 ±0.5

Error [%] 0.23 0.28

Page 53: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

53Challenge the future

ResultsCalibration test probe

Probe Spring constant k [N/m] Δk [%]

NanoWorld EPI

1 (compliant)

0.17

2 (stiff) 46

0.143 16.2

15.38 66.6

Requirement: Accuracy 5 -15 %

Page 54: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

54Challenge the future

Conclusions

Performance check: EPI method can be implemented as integrated

system

Calibration test probe: EPI calibration method is able to determine the

spring constant of AFM probes Accuracy system not within requirements

Page 55: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

55Challenge the future

Recomendations

Increase accuracy by improving model Include fringing field effects Tapered end

beam beam

My model Reality

Page 56: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

56Challenge the future

Recommendations

Increase accuracy by improving model Include fringing field effects Tapered end

Page 57: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

57Challenge the future

Recommendations

Increase accuracy by improving model Include fringing field effects Tapered end

Cantilever beam

Page 58: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

58Challenge the future

Recommendations

Increase accuracy by improving model Include fringing field effects Tapered end

New model in progress

Page 59: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

59Challenge the future

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instabilityQuestions?

Page 60: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

60Challenge the future

Extra sheetWidth scan

Width

Position stage [µm]

QD

ou

tpu

t [V

]

Width scan EPI

Page 61: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

61Challenge the future

Extra sheetWidth scan

Page 62: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

62Challenge the future

Laser + Lens

Quadrant detector

Laser beam

Width cantilever beam

Extra sheetWidth scan

Page 63: 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability Laurens Pluimers Supervisors: Dr.ir

63Challenge the future

Extra sheetExtended model